Skip to content
2000
image of A Review of Newer Biologically Potent Pyridine Analogues

Abstract

Pyridine is a nitrogen-containing six-membered heterocycle that is used both independently and fused with other heterocyclic rings such as thiazole, thiophene, and most likely with imidazole having a wide range of biological applications. In this review, we report all possible applications of pyridine analogs for all possible diseases. Due to various medicinal applications, the pyridine scaffold has become a fascinating target for medicinal chemistry researchers globally. These particular properties like basicity, water solubility, hydrogen bond forming ability, stability, and small molecular size led researchers to pay more attention to the pyridine molecule with different geometries such as anticancer, antitubercular, anticonvulsant, fungal, bacterial, anti-inflammatory, antidepressant, antioxidant, anti-HIV, antidiabetic and against the COVID 19. This review encompasses all possible applications of pyridine analogs for various diseases.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072347787241008180129
2024-12-04
2025-01-18
Loading full text...

Full text loading...

References

  1. Ling Y. Hao Z.Y. Liang D. Zhang C.L. Liu Y.F. Wang Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther. 2021 15 4289 4338 10.2147/DDDT.S329547 34675489
    [Google Scholar]
  2. Garrison A.T. Childress E.S. Davis D.C. Lindsley C.W. Preparation of 1,5-dihydropyrazolo[3′,4′:5,6]pyrano[3,4- b ]pyridines via a microwave-assisted, palladium-catalyzed regioselective C–H heteroarylation of electron-rich pyrazoles. J. Org. Chem. 2019 84 9 5855 5862 10.1021/acs.joc.9b00144 30807155
    [Google Scholar]
  3. Albratty M. Alhazmi H.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. Arab. J. Chem. 2022 15 6 103846 10.1016/j.arabjc.2022.103846
    [Google Scholar]
  4. De S. Kumar S K A. Shah S.K. Kazi S. Sarkar N. Banerjee S. Dey S. Pyridine: The scaffolds with significant clinical diversity. RSC Advances 2022 12 24 15385 15406 10.1039/D2RA01571D 35693235
    [Google Scholar]
  5. Hamada Y. Role of pyridines in medicinal chemistry and design of BACE1 inhibitors possessing a pyridine scaffold. Pyrimidine InTech Open 2018 10.5772/intechopen.74719
    [Google Scholar]
  6. Kaur N. Six-memberedn-heterocycles: Microwave-assisted synthesis. Synth. Commun. 2015 45 1 1 34 10.1080/00397911.2013.813548
    [Google Scholar]
  7. Althagafi I. Abdel-Latif E. Synthesis and antibacterial activity of new imidazo[1,2- a ]pyridines festooned with pyridine, thiazole or pyrazole moiety. Polycycl. Aromat. Compd. 2022 42 7 4487 4500 10.1080/10406638.2021.1894185
    [Google Scholar]
  8. Esteghamat-Panah R. Hadadzadeh H. Farrokhpour H. Simpson J. Abdolmaleki A. Abyar F. Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-bis(2-benzimidazolyl)pyridine. Eur. J. Med. Chem. 2017 127 958 971 10.1016/j.ejmech.2016.11.005 27836194
    [Google Scholar]
  9. Sadeghi S. Davoodvandi A. Pourhanifeh M.H. Sharifi N. ArefNezhad R. Sahebnasagh R. Moghadam S.A. Sahebkar A. Mirzaei H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur. J. Med. Chem. 2019 178 131 140 10.1016/j.ejmech.2019.05.067 31195168
    [Google Scholar]
  10. Kahriman N. Peker K. Serdaroğlu V. Aydın A. Usta A. Fandaklı S. Yaylı N. Novel 2-amino-4-aryl-6-pyridopyrimidines and N-alkyl derivatives: Synthesis, characterization and investigation of anticancer, antibacterial activities and DNA/BSA binding affinities. Bioorg. Chem. 2020 99 103805 10.1016/j.bioorg.2020.103805 32272366
    [Google Scholar]
  11. Dam J. Ismail Z. Kurebwa T. Gangat N. Harmse L. Marques H.M. Lemmerer A. Bode M.L. de Koning C.B. Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity. Eur. J. Med. Chem. 2017 126 353 368 10.1016/j.ejmech.2016.10.041 27907874
    [Google Scholar]
  12. Abdelazem A.Z. Al-Sanea M.M. Park H.M. Lee S.H. Synthesis of new diarylamides with pyrimidinyl pyridine scaffold and evaluation of their anti-proliferative effect on cancer cell lines. Bioorg. Med. Chem. Lett. 2016 26 4 1301 1304 10.1016/j.bmcl.2016.01.014 26786696
    [Google Scholar]
  13. Akhtar J. Khan A.A. Ali Z. Haider R. Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017 125 143 189 10.1016/j.ejmech.2016.09.023 27662031
    [Google Scholar]
  14. Mekky A.E.M. Sanad S.M.H. Said A.Y. Elneairy M.A.A. Synthesis, cytotoxicity, in-vitro antibacterial screening and in-silico study of novel thieno[2,3- b ]pyridines as potential pim-1 inhibitors. Synth. Commun. 2020 50 15 2376 2389 10.1080/00397911.2020.1778033
    [Google Scholar]
  15. Hamd A.H. Al-Lami N. Anti-breast cancer activity of some synthesized pyrazole derivatives bearing imidazo[1,2a]pyridine moiety. Iraqi J. Sci. 2023 4105 4117 10.24996/ijs.2023.64.7.1
    [Google Scholar]
  16. Mishra M. Mohapatra S. Mishra N.P. Jena B.K. Panda P. Nayak S. Recent advances in iron(III) chloride catalyzed synthesis of heterocycles. Tetrahedron Lett. 2019 60 33 150925 10.1016/j.tetlet.2019.07.016
    [Google Scholar]
  17. Abdelrahman M.A. Salama I. Gomaa M.S. Elaasser M.M. Abdel-Aziz M.M. Soliman D.H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 2017 138 698 714 10.1016/j.ejmech.2017.07.004 28715707
    [Google Scholar]
  18. Machado I. Marino L.B. Demoro B. Echeverría G.A. Piro O.E. Leite C.Q.F. Pavan F.R. Gambino D. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents. Eur. J. Med. Chem. 2014 87 267 273 10.1016/j.ejmech.2014.09.067 25261824
    [Google Scholar]
  19. Hu Y.Q. Zhang S. Zhao F. Gao C. Feng L.S. Lv Z.S. Xu Z. Wu X. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 2017 133 255 267 10.1016/j.ejmech.2017.04.002 28390957
    [Google Scholar]
  20. Moraski G.C. Oliver A.G. Markley L.D. Cho S. Franzblau S.G. Miller M.J. Scaffold-switching: An exploration of 5,6-fused bicyclic heteroaromatics systems to afford antituberculosis activity akin to the imidazo[1,2-a]pyridine-3-carboxylates. Bioorg. Med. Chem. Lett. 2014 24 15 3493 3498 10.1016/j.bmcl.2014.05.062 24909079
    [Google Scholar]
  21. Trotsko N. Golus J. Kazimierczak P. Paneth A. Przekora A. Ginalska G. Wujec M. Synthesis and antimycobacterial activity of thiazolidine-2,4-dione based derivatives with halogenbenzohydrazones and pyridinecarbohydrazones substituents. Eur. J. Med. Chem. 2020 189 112045 10.1016/j.ejmech.2020.112045 31951961
    [Google Scholar]
  22. Samanta S. Kumar S. Aratikatla E.K. Ghorpade S.R. Singh V. Recent developments of imidazo[1,2- a ]pyridine analogues as antituberculosis agents. RSC Med. Chem. 2023 14 4 644 657 10.1039/D3MD00019B 37122538
    [Google Scholar]
  23. Ahmad G. Rasool N. Rizwan K. Imran I. Zahoor A.F. Zubair M. Sadiq A. Rashid U. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg. Chem. 2019 92 103216 10.1016/j.bioorg.2019.103216 31491567
    [Google Scholar]
  24. Pradhan J. Goyal A. Synthesis, anticonvulsant activity and QSAR studies of some new pyrazolyl pyridines. Med. Chem. Res. 2016 25 8 1639 1656 10.1007/s00044‑016‑1597‑8
    [Google Scholar]
  25. Sirakanyan S.N. Geronikaki A. Spinelli D. Paronikyan R.G. Dzhagatspanyan I.A. Nazaryan I.M. Akopyan A.H. Hovakimyan A.A. Pyridofuropyrrolo[1,2-a]pyrimidines and pyridofuropyrimido[1,2-a]azepines: New chemical entities (NCE) with anticonvulsive and psychotropic properties. RSC Advances 2016 6 38 32234 32244 10.1039/C6RA02581A
    [Google Scholar]
  26. Bentzinger G. Pair E. Guillon J. Marchivie M. Mullié C. Agnamey P. Dassonville-Klimpt A. Sonnet P. Enantiopure substituted pyridines as promising antimalarial drug candidates. Tetrahedron 2020 76 15 131088 10.1016/j.tet.2020.131088
    [Google Scholar]
  27. Le Manach C. Paquet T. Wicht K. Nchinda A.T. Brunschwig C. Njoroge M. Gibhard L. Taylor D. Lawrence N. Wittlin S. Eyermann C.J. Basarab G.S. Duffy J. Fish P.V. Street L.J. Chibale K. Antimalarial lead-optimization studies on a 2, 6-imidazopyridine series within a constrained chemical space to circumvent atypical dose–response curves against multidrug resistant parasite strains. J. Med. Chem. 2018 61 20 9371 9385 10.1021/acs.jmedchem.8b01333 30256636
    [Google Scholar]
  28. Adamcsik B. Nagy E. Urbán B. Szabó P. Pekker P. Skoda-Földes R. Palladium nanoparticles on a pyridinium supported ionic liquid phase: A recyclable and low-leaching palladium catalyst for aminocarbonylation reactions. RSC Advances 2020 10 40 23988 23998 10.1039/D0RA03406A 35517315
    [Google Scholar]
  29. Shi Y. Wang Q. Rong J. Ren J. Song X. Fan X. Shen M. Xia Y. Wang N. Liu Z. Hu Q. Ye T. Yu L. Synthesis and biological evaluation of (1,2,4)triazole[4,3-a]pyridine derivatives as potential therapeutic agents for concanavalin A-induced hepatitis. Eur. J. Med. Chem. 2019 179 182 195 10.1016/j.ejmech.2019.06.025 31254920
    [Google Scholar]
  30. Zhu Y.J. Guo X-F. Fan Z-J. Chen L. Ma L-Y. Wang H-X. Wei Y. Xu X-M. Lin J-P. Bakulev V.A. Approach to thiazole-containing tetrahydropyridines via Aza–Rauhut–Currier reaction and their potent fungicidal and insecticidal activity. RSC Advances 2016 6 113 112704 112711 10.1039/C6RA24342H
    [Google Scholar]
  31. Abbady M.S. Youssef M.S.K. Synthesis and biological activity of some new pyridines, pyrans, and indazoles containing pyrazolone moiety. Med. Chem. Res. 2014 23 7 3558 3568 10.1007/s00044‑014‑0935‑y
    [Google Scholar]
  32. Darandale S.N. Mulla N.A. Pansare D.N. Sangshetti J.N. Shinde D.B. A novel amalgamation of 1,2,3-triazoles, piperidines and thieno pyridine rings and evaluation of their antifungal activity. Eur. J. Med. Chem. 2013 65 527 532 10.1016/j.ejmech.2013.04.045 23807083
    [Google Scholar]
  33. El-borai M.A. Rizk H.F. Abd-Aal M.F. El-Deeb I.Y. Synthesis of pyrazolo[3,4-b]pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activities – Part 1. Eur. J. Med. Chem. 2012 48 92 96 10.1016/j.ejmech.2011.11.038 22178093
    [Google Scholar]
  34. Fayed E.A. Nosseir E.S. Atef A. El-Kalyoubi S.A. In vitro antimicrobial evaluation and in silico studies of coumarin derivatives tagged with pyrano-pyridine and pyrano-pyrimidine moieties as DNA gyrase inhibitors. Mol. Divers. 2022 26 1 341 363 10.1007/s11030‑021‑10224‑4 33895960
    [Google Scholar]
  35. Foley T.L. Rai G. Yasgar A. Daniel T. Baker H.L. Attene-Ramos M. Kosa N.M. Leister W. Burkart M.D. Jadhav A. Simeonov A. Maloney D.J. 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. J. Med. Chem. 2014 57 3 1063 1078 10.1021/jm401752p 24450337
    [Google Scholar]
  36. Ghattas A.E.B.A.G. Khodairy A. Moustafa H.M. Hussein B.R.M. Farghaly M.M. Aboelez M.O. Synthesis, in vitro antibacterial and in vivo anti-inflammatory activity of some new pyridines. Pharm. Chem. J. 2017 51 8 652 660 10.1007/s11094‑017‑1670‑8
    [Google Scholar]
  37. Grenier M.C. Davis R.W. Wilson-Henjum K.L. LaDow J.E. Black J.W. Caran K.L. Seifert K. Minbiole K.P.C. The antibacterial activity of 4,4′-bipyridinium amphiphiles with conventional, bicephalic and gemini architectures. Bioorg. Med. Chem. Lett. 2012 22 12 4055 4058 10.1016/j.bmcl.2012.04.079 22578455
    [Google Scholar]
  38. Kamat V. Santosh R. Poojary B. Nayak S.P. Kumar B.K. Sankaranarayanan M. Faheem Khanapure S. Barretto D.A. Vootla S.K. Pyridine-and thiazole-based hydrazides with promising anti-inflammatory and antimicrobial activities along with their in silico studies. ACS Omega 2020 5 39 25228 25239 10.1021/acsomega.0c03386 33043201
    [Google Scholar]
  39. Wang S. Liu H. Wang X. Lei K. Li G. Quan Z. Synthesis and evaluation of antidepressant activities of 5-aryl-4,5-dihydrotetrazolo [1,5-a]thieno[2,3-e]pyridine derivatives. Molecules 2019 24 10 1857 10.3390/molecules24101857 31091808
    [Google Scholar]
  40. Ribeiro J.L.S. Soares J.C.A.V. Portapilla G.B. Providello M.V. Lima C.H.S. Muri E.M.F. de Albuquerque S. Dias L.R.S. Trypanocidal activity of new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine derivatives: Synthesis, in vitro and in vivo studies. Bioorg. Med. Chem. 2021 29 115855 10.1016/j.bmc.2020.115855 33199200
    [Google Scholar]
  41. Peglow T.J. Schumacher R.F. Cargnelutti R. Reis A.S. Luchese C. Wilhelm E.A. Perin G. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett 2017 58 38 3734 3738 10.1016/j.tetlet.2017.08.030
    [Google Scholar]
  42. Yang J. Chen W. Kang D. Lu X. Li X. Liu Z. Huang B. Daelemans D. Pannecouque C. De Clercq E. Zhan P. Liu X. Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives targeting the entrance channel of NNRTI binding pocket. Eur. J. Med. Chem. 2016 109 294 304 10.1016/j.ejmech.2015.11.039 26802545
    [Google Scholar]
  43. Savant M.M. Ladva K.D. Pandit A.B. Facile synthesis of highly functionalized novel pyrazolopyridones using oxoketene dithioacetal and their anti-HIV activity. Synth. Commun. 2018 48 13 1640 1648 10.1080/00397911.2018.1458239
    [Google Scholar]
  44. Yu M. Ken Zhang J. Wang Y. Zhu J. Kayser F. Medina J.C. Siegler K. Conn M. Shan B. Grillo M.P. Coward P. Jim Liu J. Discovery and optimization of N-(3-(1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-4-yloxy)phenyl)benzenesulfonamides as novel GPR119 agonists. Bioorg. Med. Chem. Lett. 2014 24 1 156 160 10.1016/j.bmcl.2013.11.053 24332491
    [Google Scholar]
  45. Veselov M.S. Ivanenkov Y.A. Yamidanov R.S. Osterman I.A. Sergiev P.V. Aladinskiy V.A. Aladinskaya A.V. Terentiev V.A. Ayginin A.A. Skvortsov D.A. Komarova K.S. Chemeris A.V. Baimiev A.K. Sofronova A.A. Machulkin A.E. Petrov R.A. Maklakova S.Y. Bezrukov D.S. Filkov G.I. Zainullina L.F. Maximova M.A. Zileeva Z.R. Kartsev V.G. Vakhitova Y.V. Dontsova O.A. Identification of pyrrolo-pyridine derivatives as novel class of antibacterials. Mol. Divers. 2020 24 1 233 239 10.1007/s11030‑019‑09946‑3 30949901
    [Google Scholar]
  46. Lachowicz J.I. Nurchi V.M. Crisponi G. Jaraquemada-Pelaez M.G. Arca M. Pintus A. Santos M.A. Quintanova C. Gano L. Szewczuk Z. Zoroddu M.A. Peana M. Domínguez-Martín A. Choquesillo-Lazarte D. Hydroxypyridinones with enhanced iron chelating properties. Synthesis, characterization and in vivo tests of 5-hydroxy-2-(hydroxymethyl)pyridine-4(1H)-one. Dalton Trans. 2016 45 15 6517 6528 10.1039/C6DT00129G 26956442
    [Google Scholar]
  47. Dawood D.H. Srour A.M. Saleh D.O. Huff K.J. Greco F. Osborn H.M.I. New pyridine and chromene scaffolds as potent vasorelaxant and anticancer agents. RSC Advances 2021 11 47 29441 29452 10.1039/D1RA04758B 35479558
    [Google Scholar]
  48. Lv K. Li L. Wang B. Liu M. Wang B. Shen W. Guo H. Lu Y. Design, synthesis and antimycobacterial activity of novel imidazo[1,2- a ]pyridine-3-carboxamide derivatives. Eur. J. Med. Chem. 2017 137 117 125 10.1016/j.ejmech.2017.05.044 28577507
    [Google Scholar]
  49. Jamale D.K. Vibhute S.S. Undare S.S. Valekar N.J. Patil K.T. Warekar P.P. Patil P.T. Kolekar G.B. Anbhule P.V. Unexpected formation of 4,5-dihydro-1H-pyrazolo[3,4-b]pyridine derivatives as a potent antitubercular agent and its evaluation by green chemistry metrics. Synth. Commun. 2018 48 21 2750 2760 10.1080/00397911.2018.1524491
    [Google Scholar]
  50. Bodige S. Ravula P. Gulipalli K.C. Endoori S. Cherukumalli P.K.R. Jn N.S.C. Seelam N. Design, synthesis, antitubercular and antibacterial activities of pyrrolo[3,2-b]pyridine-3-carboxamide linked 2-methoxypyridine derivatives and in silico docking studies. Synth. Commun. 2019 49 17 2219 2234 10.1080/00397911.2019.1618874
    [Google Scholar]
  51. Lu X. Tang J. Cui S. Wan B. Franzblauc S.G. Zhang T. Zhang X. Ding K. Pyrazolo[1,5-a]pyridine-3-carboxamide hybrids: Design, synthesis and evaluation of anti-tubercular activity. Eur. J. Med. Chem. 2017 125 41 48 10.1016/j.ejmech.2016.09.030 27654393
    [Google Scholar]
  52. Perdigão G. Deraeve C. Mori G. Pasca M.R. Pratviel G. Bernardes-Génisson V. Pyridine-3,4-dicarboximide as starting material for the total synthesis of the natural product eupolauramine and its isomer iso-eupolauramine endowed with anti-tubercular activities. Tetrahedron 2015 71 10 1555 1559 10.1016/j.tet.2015.01.034
    [Google Scholar]
  53. Wang A. Lv K. Li L. Liu H. Tao Z. Wang B. Liu M. Ma C. Ma X. Han B. Wang A. Lu Y. Design, synthesis and biological activity of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides as new antitubercular agents. Eur. J. Med. Chem. 2019 178 715 725 10.1016/j.ejmech.2019.06.038 31229874
    [Google Scholar]
  54. Wang H. Wang A. Gu J. Fu L. Lv K. Ma C. Tao Z. Wang B. Liu M. Guo H. Lu Y. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine-3-carboxamide derivatives. Eur. J. Med. Chem. 2019 165 11 17 10.1016/j.ejmech.2018.12.071 30654236
    [Google Scholar]
  55. Patel H. Chaudhari K. Jain P. Surana S. Synthesis and in vitro antitubercular activity of pyridine analouges against the resistant Mycobacterium tuberculosis . Bioorg. Chem. 2020 102 104099 10.1016/j.bioorg.2020.104099 32711084
    [Google Scholar]
  56. Tang J. Wang B. Wu T. Wan J. Tu Z. Njire M. Wan B. Franzblauc S.G. Zhang T. Lu X. Ding K. Design, synthesis, and biological evaluation of pyrazolo[1,5- a ]pyridine-3-carboxamides as novel antitubercular agents. ACS Med. Chem. Lett. 2015 6 7 814 818 10.1021/acsmedchemlett.5b00176 26191372
    [Google Scholar]
  57. Giri R.R. Lad H.B. Bhila V.G. Patel C.V. Brahmbhatt D.I. Modified pyridine-substituted coumarins: A new class of antimicrobial and antitubercular agents. Synth. Commun. 2015 45 3 363 375 10.1080/00397911.2014.963875
    [Google Scholar]
  58. Desai N.C. Trivedi A. Somani H. Jadeja K.A. Vaja D. Nawale L. Khedkar V.M. Sarkar D. Synthesis, biological evaluation, and molecular docking study of pyridine clubbed 1,3,4-oxadiazoles as potential antituberculars. Synth. Commun. 2018 48 5 524 540 10.1080/00397911.2017.1410892
    [Google Scholar]
  59. Velezheva V. Brennan P. Ivanov P. Kornienko A. Lyubimov S. Kazarian K. Nikonenko B. Majorov K. Apt A. Synthesis and antituberculosis activity of indole–pyridine derived hydrazides, hydrazide–hydrazones, and thiosemicarbazones. Bioorg. Med. Chem. Lett. 2016 26 3 978 985 10.1016/j.bmcl.2015.12.049 26725953
    [Google Scholar]
  60. Atta A. Fahmy S. Rizk O. Sriram D. Mahran M.A. Labouta I.M. Structure-based design of some isonicotinic acid hydrazide analogues as potential antitubercular agents. Bioorg. Chem. 2018 80 721 732 10.1016/j.bioorg.2018.07.028 30077175
    [Google Scholar]
  61. Sajja Y. Vanguru S. Vulupala H.R. Nagarapu L. Perumal Y. Sriram D. Nanubolu J.B. Design, synthesis, and in vitro antituberculosis activity of benzo[6,7]cyclohepta[1,2‐ b ]pyridine‐1,3,4‐oxadiazole derivatives. Chem. Biol. Drug Des. 2017 90 4 496 500 10.1111/cbdd.12969 28267891
    [Google Scholar]
  62. Wu Z. Lu Y. Li L. Zhao R. Wang B. Lv K. Liu M. You X. Identification of N -(2-Phenoxyethyl)imidazo[1,2- a ]pyridine-3-carboxamides as new antituberculosis agents. ACS Med. Chem. Lett. 2016 7 12 1130 1133 10.1021/acsmedchemlett.6b00330 27994751
    [Google Scholar]
  63. Desai N.C. Somani H. Trivedi A. Bhatt K. Nawale L. Khedkar V.M. Jha P.C. Sarkar D. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg. Med. Chem. Lett. 2016 26 7 1776 1783 10.1016/j.bmcl.2016.02.043 26920799
    [Google Scholar]
  64. Jose G. Suresha Kumara T.H. Nagendrappa G. Sowmya H.B.V. Sriram D. Yogeeswari P. Sridevi J.P. Guru Row T.N. Hosamani A.A. Sujan Ganapathy P.S. Chandrika N. Narendra L.V. Synthesis, molecular docking and anti-mycobacterial evaluation of new imidazo[1,2-a]pyridine-2-carboxamide derivatives. Eur. J. Med. Chem. 2015 89 616 627 10.1016/j.ejmech.2014.10.079 25462270
    [Google Scholar]
  65. Sajja Y. Vanguru S. Vulupala H.R. Bantu R. Yogeswari P. Sriram D. Nagarapu L. Design, synthesis and in vitro anti-tuberculosis activity of benzo[6,7]cyclohepta[1,2- b ]pyridine-1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett. 2017 27 23 5119 5121 10.1016/j.bmcl.2017.10.071 29113761
    [Google Scholar]
  66. Pulipati L. Sridevi J.P. Yogeeswari P. Sriram D. Kantevari S. Synthesis and antitubercular evaluation of novel dibenzo[ b, d ]thiophene tethered imidazo[1,2- a ]pyridine-3-carboxamides. Bioorg. Med. Chem. Lett. 2016 26 13 3135 3140 10.1016/j.bmcl.2016.04.088 27184765
    [Google Scholar]
  67. Danac R. Mangalagiu I.I. Antimycobacterial activity of nitrogen heterocycles derivatives: Bipyridine derivatives. Part III [13,14]. Eur. J. Med. Chem. 2014 74 664 670 10.1016/j.ejmech.2013.09.061 24268596
    [Google Scholar]
  68. Kumar D. Beena Khare G. Kidwai S. Tyagi A.K. Singh R. Rawat D.S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem. 2014 81 301 313 10.1016/j.ejmech.2014.05.005 24852277
    [Google Scholar]
  69. Kang S. Kim Y.M. Kim R.Y. Seo M.J. No Z. Nam K. Kim S. Kim J. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203. Eur. J. Med. Chem. 2017 125 807 815 10.1016/j.ejmech.2016.09.082 27750198
    [Google Scholar]
  70. Naidu K.M. Nagesh H.N. Singh M. Sriram D. Yogeeswari P. Gowri Chandra Sekhar K.V. Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. Eur. J. Med. Chem. 2015 92 415 426 10.1016/j.ejmech.2015.01.013 25590862
    [Google Scholar]
  71. Kang S. Kim R.Y. Seo M.J. Lee S. Kim Y.M. Seo M. Seo J.J. Ko Y. Choi I. Jang J. Nam J. Park S. Kang H. Kim H.J. Kim J. Ahn S. Pethe K. Nam K. No Z. Kim J. Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. J. Med. Chem. 2014 57 12 5293 5305 10.1021/jm5003606 24870926
    [Google Scholar]
  72. El-Sayed N.S. Shirazi A.N. El-Meligy M.G. El-Ziaty A.K. Rowley D. Sun J. Nagib Z.A. Parang K. Synthesis of 4-aryl-6-indolylpyridine-3-carbonitriles and evaluation of their antiproliferative activity. Tetrahedron Lett. 2014 55 6 1154 1158 10.1016/j.tetlet.2013.12.081 24678129
    [Google Scholar]
  73. Peerzada M.N. Khan P. Ahmad K. Hassan M.I. Azam A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem. 2018 155 13 23 10.1016/j.ejmech.2018.05.034 29852328
    [Google Scholar]
  74. Baltus C.B. Jorda R. Marot C. Berka K. Bazgier V. Kryštof V. Prié G. Viaud-Massuard M.C. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors. Eur. J. Med. Chem. 2016 108 701 719 10.1016/j.ejmech.2015.12.023 26741853
    [Google Scholar]
  75. Naresh Kumar R. Poornachandra Y. Nagender P. Mallareddy G. Ravi Kumar N. Ranjithreddy P. Ganesh Kumar C. Narsaiah B. Synthesis of novel trifluoromethyl substituted furo[2,3- b ]pyridine and pyrido[3′,2′:4,5]furo[3,2- d ]pyrimidine derivatives as potential anticancer agents. Eur. J. Med. Chem. 2016 108 68 78 10.1016/j.ejmech.2015.11.007 26629861
    [Google Scholar]
  76. Shuai W. Li X. Li W. Xu F. Lu L. Yao H. Yang L. Zhu H. Xu S. Zhu Z. Xu J. Design, synthesis and anticancer properties of isocombretapyridines as potent colchicine binding site inhibitors. Eur. J. Med. Chem. 2020 197 112308 10.1016/j.ejmech.2020.112308 32339853
    [Google Scholar]
  77. Karki R. Park C. Jun K.Y. Kadayat T.M. Lee E.S. Kwon Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur. J. Med. Chem. 2015 90 360 378 10.1016/j.ejmech.2014.11.045 25437622
    [Google Scholar]
  78. Shringare S.N. Chavan H.V. Bhale P.S. Dongare S.B. Mule Y.B. Patil S.B. Bandgar B.P. Synthesis and pharmacological evaluation of combretastatin-A4 analogs of pyrazoline and pyridine derivatives as anticancer, anti-inflammatory and antioxidant agents. Med. Chem. Res. 2018 27 4 1226 1237 10.1007/s00044‑018‑2142‑8
    [Google Scholar]
  79. Abd El-All A.S. Osman S.A. Roaiah H.M.F. Abdalla M.M. Abd El Aty A.A. AbdEl-Hady W.H. Potent anticancer and antimicrobial activities of pyrazole, oxazole and pyridine derivatives containing 1,2,4-triazine moiety. Med. Chem. Res. 2015 24 12 4093 4104 10.1007/s00044‑015‑1460‑3
    [Google Scholar]
  80. Wu C.J. Wu J.Q. Hu Y. Pu S. Lin Y. Zeng Z. Hu J. Chen W.H. Design, synthesis and biological evaluation of indole-based [1,2,4]triazolo[4,3-a] pyridine derivatives as novel microtubule polymerization inhibitors. Eur. J. Med. Chem. 2021 223 113629 10.1016/j.ejmech.2021.113629 34175541
    [Google Scholar]
  81. Fu C.W. Hsieh Y.J. Chang T.T. Chen C.L. Yang C.Y. Liao A. Hsiao P.W. Li W.S. Anticancer efficacy of unique pyridine-based tetraindoles. Eur. J. Med. Chem. 2015 104 165 176 10.1016/j.ejmech.2015.09.032 26457743
    [Google Scholar]
  82. Ghanem N.M. Farouk F. George R.F. Abbas S.E.S. El-Badry O.M. Design and synthesis of novel imidazo[4,5-b]pyridine based compounds as potent anticancer agents with CDK9 inhibitory activity. Bioorg. Chem. 2018 80 565 576 10.1016/j.bioorg.2018.07.006 30025343
    [Google Scholar]
  83. Eissa I.H. El-Naggar A.M. El-Hashash M.A. Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorg. Chem. 2016 67 43 56 10.1016/j.bioorg.2016.05.006 27253830
    [Google Scholar]
  84. Abdelaziz M.E. El-Miligy M.M.M. Fahmy S.M. Mahran M.A. Hazzaa A.A. Design, synthesis and docking study of pyridine and thieno[2,3-b] pyridine derivatives as anticancer PIM-1 kinase inhibitors. Bioorg. Chem. 2018 80 674 692 10.1016/j.bioorg.2018.07.024 30064079
    [Google Scholar]
  85. Abouzid K.A.M. Al-Ansary G.H. El-Naggar A.M. Eco-friendly synthesis of novel cyanopyridine derivatives and their anticancer and PIM-1 kinase inhibitory activities. Eur. J. Med. Chem. 2017 134 357 365 10.1016/j.ejmech.2017.04.024 28431341
    [Google Scholar]
  86. Zhao B. Li Y. Xu P. Dai Y. Luo C. Sun Y. Ai J. Geng M. Duan W. Discovery of Substituted 1 H -Pyrazolo[3,4- b ]pyridine Derivatives as Potent and Selective FGFR Kinase Inhibitors. ACS Med. Chem. Lett. 2016 7 6 629 634 10.1021/acsmedchemlett.6b00066 27326339
    [Google Scholar]
  87. Milišiūnaitė V. Arbačiauskienė E. Řezníčková E. Jorda R. Malínková V. Žukauskaitė A. Holzer W. Šačkus A. Kryštof V. Synthesis and anti-mitotic activity of 2,4- or 2,6-disubstituted- and 2,4,6-trisubstituted-2H-pyrazolo[4,3-c]pyridines. Eur. J. Med. Chem. 2018 150 908 919 10.1016/j.ejmech.2018.03.037 29602037
    [Google Scholar]
  88. El-Gohary N.S. Gabr M.T. Shaaban M.I. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents. Bioorg. Chem. 2019 89 102976 10.1016/j.bioorg.2019.102976 31103494
    [Google Scholar]
  89. Kadayat T.M. Song C. Kwon Y. Lee E.S. Modified 2,4-diaryl-5H-indeno[1,2-b]pyridines with hydroxyl and chlorine moiety: Synthesis, anticancer activity, and structure–activity relationship study. Bioorg. Chem. 2015 62 30 40 10.1016/j.bioorg.2015.07.002 26218799
    [Google Scholar]
  90. Shi Y.K. Wang B. Shi X.L. Zhao Y.D. Yu B. Liu H.M. Synthesis and biological evaluation of new steroidal pyridines as potential anti-prostate cancer agents. Eur. J. Med. Chem. 2018 145 11 22 10.1016/j.ejmech.2017.12.094 29310026
    [Google Scholar]
  91. Eldehna W.M. Altoukhy A. Mahrous H. Abdel-Aziz H.A. Design, synthesis and QSAR study of certain isatin-pyridine hybrids as potential anti-proliferative agents. Eur. J. Med. Chem. 2015 90 684 694 10.1016/j.ejmech.2014.12.010 25499988
    [Google Scholar]
  92. Shrestha A. Park S. Shin S. Man Kadayat T. Bist G. Katila P. Kwon Y. Lee E.S. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg. Chem. 2018 79 1 18 10.1016/j.bioorg.2018.03.033 29715635
    [Google Scholar]
  93. Bassyouni F.A. Tawfik H.A. Soliman A.M. Rehim M.A. Synthesis and anticancer activity of some new pyridine derivatives. Res. Chem. Intermed. 2012 38 7 1291 1310 10.1007/s11164‑011‑0413‑9
    [Google Scholar]
  94. Xie W. Xie S. Zhou Y. Tang X. Liu J. Yang W. Qiu M. Design and synthesis of novel 5,6-disubstituted pyridine-2,3-dione-3-thiosemicarbazone derivatives as potential anticancer agents. Eur. J. Med. Chem. 2014 81 22 27 10.1016/j.ejmech.2014.05.001 24819956
    [Google Scholar]
  95. Abdel-aziz H.M. Gomha S.M. El-Sayed A.A. Mabkhot Y.N. Alsayari A. Muhsinah A.B. Facile synthesis and antiproliferative activity of new 3-cyanopyridines. BMC Chem. 2019 13 1 137 10.1186/s13065‑019‑0652‑1 31891163
    [Google Scholar]
  96. Gu L. Jin C. Synthesis and antitumor activity of α-aminophosphonates containing thiazole[5,4-b]pyridine moiety. Org. Biomol. Chem. 2012 10 35 7098 7102 10.1039/c2ob25875g 22850968
    [Google Scholar]
  97. Wang R. Chen Y. Yang B. Yu S. Zhao X. Zhang C. Hao C. Zhao D. Cheng M. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents. Bioorg. Chem. 2020 94 103474 10.1016/j.bioorg.2019.103474 31859010
    [Google Scholar]
  98. Tian N. Wu H. Zhang H. Yang D. Lv L. Yang Z. Zhang T. Quan D. Zhou L. Xie Y. Xu Y. Wei N. Zhang J. Chen M. Schmitz J.C. Tian Y. Wu S. Discovery of [1,2,4]triazolo[4,3-a]pyridines as potent Smoothened inhibitors targeting the Hedgehog pathway with improved antitumor activity in vivo . Bioorg. Med. Chem. 2020 28 16 115584 10.1016/j.bmc.2020.115584 32690258
    [Google Scholar]
  99. Liu W. Zhou J. Zhang T. Zhu H. Qian H. Zhang H. Huang W. Gust R. Design and synthesis of thiourea derivatives containing a benzo[5,6]cyclohepta[1,2-b]pyridine moiety as potential antitumor and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2012 22 8 2701 2704 10.1016/j.bmcl.2012.03.002 22450132
    [Google Scholar]
  100. Thongaram P. Borwornpinyo S. Kanjanasirirat P. Jearawuttanakul K. Kongsema M. Chuanopparat N. Ngernmeesri P. Synthesis and anticancer activity evaluation of benzo[6,7]oxepino[3,2-b] pyridine derivatives. Tetrahedron 2020 76 39 131473 10.1016/j.tet.2020.131473
    [Google Scholar]
  101. Luo Z. Valeru A. Penjarla S. Liu B. Khan I. Synthesis, anticancer activity and molecular docking studies of novel pyrido[1,2- a ]pyrimidin-4-one derivatives. Synth. Commun. 2019 49 17 2235 2243 10.1080/00397911.2019.1619773
    [Google Scholar]
  102. Dolezal R. Soukup O. Malinak D. Savedra R.M.L. Marek J. Dolezalova M. Pasdiorova M. Salajkova S. Korabecny J. Honegr J. Ramalho T.C. Kuca K. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2016 121 699 711 10.1016/j.ejmech.2016.05.058 27341309
    [Google Scholar]
  103. Jose G. Suresha Kumara T.H. Sowmya H.B.V. Sriram D. Guru Row T.N. Hosamani A.A. More S.S. Janardhan B. Harish B.G. Telkar S. Ravikumar Y.S. Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2- c ]pyridine Mannich bases. Eur. J. Med. Chem. 2017 131 275 288 10.1016/j.ejmech.2017.03.015 28340368
    [Google Scholar]
  104. Sangani C.B. Makawana J.A. Zhang X. Teraiya S.B. Lin L. Zhu H.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem. 2014 76 549 557 10.1016/j.ejmech.2014.01.018 24607998
    [Google Scholar]
  105. Jose G. Suresha Kumara T.H. Nagendrappa G. Sowmya H.B.V. Jasinski J.P. Millikan S.P. Chandrika N. More S.S. Harish B.G. New polyfunctional imidazo[4,5-C]pyridine motifs: Synthesis, crystal studies, docking studies and antimicrobial evaluation. Eur. J. Med. Chem. 2014 77 288 297 10.1016/j.ejmech.2014.03.019 24657565
    [Google Scholar]
  106. Gezegen H. Ceylan M. Karaman İ. Şahin E. Synthesis, characterization, and antibacterial activity of novel pyridones. Synth. Commun. 2014 44 8 1084 1093 10.1080/00397911.2013.845902
    [Google Scholar]
  107. Kumar G.S. Poornachandra Y. Reddy K.R. Kumar C.G. Narsaiah B. Synthesis of novel triazolothione, thiadiazole, triazole-functionalized furo/thieno[2,3- b ]pyridine derivatives and their antimicrobial activity. Synth. Commun. 2017 47 20 1864 1873 10.1080/00397911.2017.1354379
    [Google Scholar]
  108. Desai N.C. Bhatt N.B. Joshi S.B. Vaja D.V. Synthesis and characterization of oxazine bearing pyridine scaffold as potential antimicrobial agents. Synth. Commun. 2017 47 24 2360 2368 10.1080/00397911.2017.1377734
    [Google Scholar]
  109. Yagnam S. Akondi A.M. Trivedi R. Rathod B. Prakasham R.S. Sridhar B. Spirooxindole-fused pyrazolo pyridine derivatives: NiO–SiO 2 catalyzed one-pot synthesis and antimicrobial activities. Synth. Commun. 2018 48 3 255 266 10.1080/00397911.2017.1393687
    [Google Scholar]
  110. Grigor’ev A.A. Shtyrlin N.V. Gabbasova R.R. Zeldi M.I. Grishaev D. Gnezdilov O.I. Shtyrlin Y.G. Synthesis, antibacterial and antitumor activity of methylpyridinium salts of pyridoxine functionalized 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles. Synth. Commun. 2018 48 2288 2304 10.1080/00397911.2018.1501487
    [Google Scholar]
  111. El-Sayed H.A. Abdel Hamid A.M. Mohammed S.M. Moustafa A.H. Design, synthesis, and antimicrobial activity of fluorophore 1,2,3-triazoles linked nicotinonitrile derivatives. Synth. Commun. 2019 49 16 2096 2105 10.1080/00397911.2019.1616760
    [Google Scholar]
  112. Salhi L. Achouche-Bouzroura S. Nechak R. Nedjar-Kolli B. Rabia C. Merazig H. Poulain-Martini S. Dunach E. Synthesis of functionalized dihydroimidazo[1,2- A ]pyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents. Synth. Commun. 2020 50 3 412 422 10.1080/00397911.2019.1699933
    [Google Scholar]
  113. Sanad S.M.H. Mekky A.E.M. Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate. Synth. Commun. 2020 50 10 1468 1485 10.1080/00397911.2020.1743318
    [Google Scholar]
  114. Yule I.A. Czaplewski L.G. Pommier S. Davies D.T. Narramore S.K. Fishwick C.W.G. Pyridine-3-carboxamide-6-yl-ureas as novel inhibitors of bacterial DNA gyrase: Structure based design, synthesis, SAR and antimicrobial activity. Eur. J. Med. Chem. 2014 86 31 38 10.1016/j.ejmech.2014.08.025 25137573
    [Google Scholar]
  115. Fontaine F. Héquet A. Voisin-Chiret A.S. Bouillon A. Lesnard A. Cresteil T. Jolivalt C. Rault S. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives. Eur. J. Med. Chem. 2015 95 185 198 10.1016/j.ejmech.2015.02.056 25817769
    [Google Scholar]
  116. Wang P.Y. Fang H.S. Shao W.B. Zhou J. Chen Z. Song B.A. Yang S. Synthesis and biological evaluation of pyridinium-functionalized carbazole derivatives as promising antibacterial agents. Bioorg. Med. Chem. Lett. 2017 27 18 4294 4297 10.1016/j.bmcl.2017.08.040 28843708
    [Google Scholar]
  117. Marepu N. Yeturu S. Pal M. 1,2,3-Triazole fused with pyridine/pyrimidine as new template for antimicrobial agents: Regioselective synthesis and identification of potent N-heteroarenes. Bioorg. Med. Chem. Lett. 2018 28 20 3302 3306 10.1016/j.bmcl.2018.09.021 30243590
    [Google Scholar]
  118. Paronikyan E.G. Dashyan S.S. Noravyan A.S. Tamazyan R.A. Ayvazyan A.G. Panosyan H.A. A novel and efficient synthesis of diamino derivatives of pyrano[3,4-c]pyridines. Tetrahedron 2015 71 18 2686 2691 10.1016/j.tet.2015.03.040
    [Google Scholar]
  119. Huang J. Zhou J. Song S. Song H. Chen Z. Yi W. A new and efficient ZnCl2-catalyzed synthesis and biological evaluation of novel 2-amino-3,5-dicyano-4-aryl-6-aryl-aminopyridines as potent antibacterial agents against Helicobacter pylori (HP). Tetrahedron 2015 71 45 8628 8636 10.1016/j.tet.2015.09.018
    [Google Scholar]
  120. Sangshetti J.N. Dharmadhikari P.P. Chouthe R.S. Fatema B. Lad V. Karande V. Darandale S.N. Shinde D.B. Microwave assisted nano (ZnO–TiO2 ) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial agents. Bioorg. Med. Chem. Lett. 2013 23 7 2250 2253 10.1016/j.bmcl.2013.01.041 23434418
    [Google Scholar]
  121. Qian A. Zheng Y. Wang R. Wei J. Cui Y. Cao X. Yang Y. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity. Bioorg. Med. Chem. Lett. 2018 28 3 344 350 10.1016/j.bmcl.2017.12.040 29289430
    [Google Scholar]
  122. Liao S. Shang S. Shen M. Rao X. Si H. Song J. Song Z. One-pot synthesis and antimicrobial evaluation of novel 3-cyanopyridine derivatives of (−)-β-pinene. Bioorg. Med. Chem. Lett. 2016 26 6 1512 1515 10.1016/j.bmcl.2016.02.024 26898336
    [Google Scholar]
  123. Kalinin A.A. Voloshina A.D. Kulik N.V. Zobov V.V. Mamedov V.A. Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety. Eur. J. Med. Chem. 2013 66 345 354 10.1016/j.ejmech.2013.05.038 23811259
    [Google Scholar]
  124. El-Borai M.A. Rizk H.F. Beltagy D.M. El-Deeb I.Y. Microwave-assisted synthesis of some new pyrazolopyridines and their antioxidant, antitumor and antimicrobial activities. Eur. J. Med. Chem. 2013 66 415 422 10.1016/j.ejmech.2013.04.043 23831694
    [Google Scholar]
  125. Veeraswamy B. Madhu D. Jitender Dev G. Poornachandra Y. Shravan Kumar G. Ganesh Kumar C. Narsaiah B. Studies on synthesis of novel pyrido[2,3-d]pyrimidine derivatives, evaluation of their antimicrobial activity and molecular docking. Bioorg. Med. Chem. Lett. 2018 28 9 1670 1675 10.1016/j.bmcl.2018.03.022 29602683
    [Google Scholar]
  126. Desai N.C. Jadeja K.A. Jadeja D.J. Khedkar V.M. Jha P.C. Design, synthesis, antimicrobial evaluation, and molecular docking study of some 4-thiazolidinone derivatives containing pyridine and quinazoline moiety. Synth. Commun. 2020 1 12 10.1080/00397911.2020.1861302
    [Google Scholar]
  127. Lomov D.A. Abramyants M.G. Astashkina N.V. Korotkikh N.I. Lubenets V.I. Novikov V.P. Komarovskaya-Porokhnyavets E.Z. Smolyar N.N. Synthesis and fungi/bactericidal activities of 4-(4-dimethylaminophenyl)pyridine derivatives. Pharm. Chem. J. 2016 50 8 526 529 10.1007/s11094‑016‑1482‑2
    [Google Scholar]
  128. Chandak N. Kumar S. Kumar P. Sharma C. Aneja K.R. Sharma P.K. Exploration of antimicrobial potential of pyrazolo[3,4-b]pyridine scaffold bearing benzenesulfonamide and trifluoromethyl moieties. Med. Chem. Res. 2013 22 11 5490 5503 10.1007/s00044‑013‑0544‑1
    [Google Scholar]
  129. Desai N.C. Pandya D.D. Joshi V.V. Rajpara K.M. Vaghani H.V. Satodiya H.M. Synthesis, characterization and antimicrobial screening of hybrid molecules containing benzimidazole-pyrazole and pyridine nucleus. Med. Chem. Res. 2012 21 12 4463 4472 10.1007/s00044‑012‑9990‑4
    [Google Scholar]
  130. Chai X. Yu S. Wang X. Wang N. Zhu Z. Zhang D. Wu Q. Cao Y. Sun Q. Synthesis and antifungal activity of novel 7-O-substituted pyridyl-4-methyl coumarin derivatives. Med. Chem. Res. 2013 22 10 4654 4662 10.1007/s00044‑013‑0470‑2
    [Google Scholar]
  131. Desai N.C. Patel B.Y. Dave B.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med. Chem. Res. 2017 26 1 109 119 10.1007/s00044‑016‑1732‑6
    [Google Scholar]
  132. Valencia-Galicia N.A. Corona-Sánchez R. Ballinas-Indili R. Toscano R.A. Macías-Rubalcava M.L. Álvarez-Toledano C. Synthesis of novel N,N′-bis(triflyl)-1,7-dihydroimidazo[4,5-b]pyridines and their δ-bromolactone derivatives as antifungal agents. Tetrahedron Lett. 2017 58 32 3168 3171 10.1016/j.tetlet.2017.07.004
    [Google Scholar]
  133. Bhat M.A. Khan A.A. Khan S. Al-Omar M.A. Parvez M.K. Al-Dosari M.S. Al-Dhfyan A. Synthesis and anti-Candidal activity of N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide. Bioorg. Med. Chem. Lett. 2014 24 5 1299 1302 10.1016/j.bmcl.2014.01.060 24513049
    [Google Scholar]
  134. Kadayat T.M. Banskota S. Bist G. Gurung P. Magar T.B.T. Shrestha A. Kim J.A. Lee E.S. Synthesis and biological evaluation of pyridine-linked indanone derivatives: Potential agents for inflammatory bowel disease. Bioorg. Med. Chem. Lett. 2018 28 14 2436 2441 10.1016/j.bmcl.2018.06.012 29910080
    [Google Scholar]
  135. Liu H. Li Y. Wang X.Y. Wang B. He H.Y. Liu J.Y. Xiang M.L. He J. Wu X.H. Yang L. Synthesis, preliminary structure–activity relationships, and in vitro biological evaluation of 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2013 23 8 2349 2352 10.1016/j.bmcl.2013.02.059 23499235
    [Google Scholar]
  136. Sajja Y. Vulupala H.R. Bantu R. Nagarapu L. Vasamsetti S.B. Kotamraju S. Nanubolu J.B. Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2- b ]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2016 26 3 858 863 10.1016/j.bmcl.2015.12.078 26748696
    [Google Scholar]
  137. Abdelgawad M.A. Bakr R.B. Azouz A.A. Novel pyrimidine-pyridine hybrids: Synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorg. Chem. 2018 77 339 348 10.1016/j.bioorg.2018.01.028 29421710
    [Google Scholar]
  138. Dennis Bilavendran J. Manikandan A. Thangarasu P. Sivakumar K. Synthesis and discovery of pyrazolo-pyridine analogs as inflammation medications through pro- and anti-inflammatory cytokine and COX-2 inhibition assessments. Bioorg. Chem. 2020 94 103484 10.1016/j.bioorg.2019.103484 31796215
    [Google Scholar]
  139. Paronikyan E.G. Petrou A. Fesatidou M. Geronikaki A. Dashyan S.S. Mamyan S.S. Paronikyan R.G. Nazaryan I.M. Hakopyan H.H. Derivatives of a new heterocyclic system – pyrano[3,4- c ][1,2,4]triazolo[4,3- a ]pyridines: Synthesis, docking analysis and neurotropic activity. MedChemComm 2019 10 8 1399 1411 10.1039/C9MD00187E 31534657
    [Google Scholar]
  140. Zaki R.M. Kamal El-Dean A.M. Mickey J.A. Marzouk N.A. Ahmed R.H. Synthesis, reactions, and antioxidant activity of 3-(pyrrol-1-yl)-4,6-dimethyl selenolo[2,3- b ]pyridine derivatives. Synth. Commun. 2017 47 24 2406 2416 10.1080/00397911.2017.1381259
    [Google Scholar]
  141. Taha M. Ismail N.H. Imran S. Rashwan H. Jamil W. Ali S. Kashif S.M. Rahim F. Salar U. Khan K.M. Synthesis of 6-chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies. Bioorg. Chem. 2016 65 48 56 10.1016/j.bioorg.2016.01.007 26855413
    [Google Scholar]
  142. Rao Kota T.V. Gandham H.B. Sanasi P.D. Green synthesis, characterization and antidiabetic activity of 2-substituted aryl/alkyl-n-aryl/alkyl imidazo[1,2-a]pyridin-3-amine derivatives. Asian J. Chem. 2018 30 7 1531 1536 10.14233/ajchem.2018.21220
    [Google Scholar]
  143. Dabaeva V.V. Bagdasaryan M.R. Dashyan S.S. Dzhagatspanyan I.A. Nazaryan I.M. Akopyan A.G. Paronikyan R.G. Synthesis and neurotropic activity of new condensed pyrano[4,3-b]-pyridines derivatives. Pharm. Chem. J. 2019 52 10 844 849 10.1007/s11094‑019‑1912‑z
    [Google Scholar]
  144. Sirakanyan S.N. Akopyan É.K. Paronikyan R.G. Nazaryan I.M. Akopyan A.G. Ovakimyan A.A. Synthesis and neurotropic activity of piperazino-derivatives of pyrano[3,4-c]pyridines. Pharm. Chem. J. 2019 53 6 495 499 10.1007/s11094‑019‑02026‑8
    [Google Scholar]
  145. Li T. Zhang J. Pan J. Wu Z. Hu D. Song B. Design, synthesis, and antiviral activities of 1,5-benzothiazepine derivatives containing pyridine moiety. Eur. J. Med. Chem. 2017 125 657 662 10.1016/j.ejmech.2016.09.069 27721151
    [Google Scholar]
  146. Indumathi S. Karthikeyan R. Nasser A.J.A. Idhayadhulla A. Kumar R.S. Anticonvulsant, analgesic and anti-inflammatory activities of some novel pyrrole and 1, 4-dihydropyridine derivatives. J. Chem. Pharm. Res. 2015 7 434 440
    [Google Scholar]
  147. Alghamdi A. Abouzied A.S. Alamri A. Anwar S. Ansari M. Khadra I. Zaki Y.H. Gomha S.M. Synthesis, molecular docking, and dynamic simulation targeting main protease (Mpro) of new, thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors. Curr. Issues Mol. Biol. 2023 45 2 1422 1442 10.3390/cimb45020093 36826038
    [Google Scholar]
  148. Abdelshaheed M.M. El Subbagh H.I. Tantawy M.A. Attia R.T. Youssef K.M. Fawzy I.M. Discovery of new pyridine heterocyclic hybrids; design, synthesis, dynamic simulations, and in vitro and in vivo breast cancer biological assays. RSC Advances 2023 13 23 15689 15703 10.1039/D3RA02875E 37235111
    [Google Scholar]
  149. Ashmawy F.O. Gomha S.M. Abdallah M.A. Zaki M.E.A. Al-Hussain S.A. El-desouky M.A. Synthesis, in vitro evaluation and molecular docking studies of novel thiophenyl thiazolyl-pyridine hybrids as potential anticancer agents. Molecules 2023 28 11 4270 10.3390/molecules28114270 37298747
    [Google Scholar]
  150. Ziembicka D. Gobis K. Szczesio M. Olczak A. Augustynowicz-Kopeć E. Głogowska A. Korona-Głowniak I. Bojanowski K. Synthesis and structure–activity relationship of 2,6-disubstituted thiosemicarbazone derivatives of pyridine as potential antituberculosis agents. Materials (Basel) 2023 16 1 448 10.3390/ma16010448 36614785
    [Google Scholar]
  151. Hussain R. Rehman W. Rahim F. Khan S. Alanazi A.S. Alanazi M.M. Rasheed L. Khan Y. Ali Shah S.A. Taha M. Synthesis, in vitro thymidine phosphorylase inhibitory activity and molecular docking study of novel pyridine-derived bis-oxadiazole bearing bis-schiff base derivatives. Arab. J. Chem. 2023 16 6 104773 10.1016/j.arabjc.2023.104773
    [Google Scholar]
  152. Elsayed M.A. Elsayed A.M. Sroor F.M. Novel biologically active pyridine derivatives: Synthesis, structure characterization, in vitro antimicrobial evaluation and structure-activity relationship. Med. Chem. Res. 2024 33 3 476 491 10.1007/s00044‑024‑03188‑1
    [Google Scholar]
  153. Anwer K.E. Hamza Z.K. Ramadan R.M. Synthesis, spectroscopic, DFT calculations, biological activity, SAR, and molecular docking studies of novel bioactive pyridine derivatives. Sci. Rep. 2023 13 1 15598 10.1038/s41598‑023‑42714‑w 37730837
    [Google Scholar]
  154. Alenazi N.A. Alharbi H. Fawzi Qarah A. Alsoliemy A. Abualnaja M.M. Karkashan A. Abbas B. El-Metwaly N.M. New thieno[2,3-b]pyridine-based compounds: Synthesis, molecular modelling, antibacterial and antifungal activities. Arab. J. Chem. 2023 16 11 105226 10.1016/j.arabjc.2023.105226
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072347787241008180129
Loading
/content/journals/cbc/10.2174/0115734072347787241008180129
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer ; antioxidant ; anti-inflammatory ; Pyridine ; antimicrobial ; antitubercular
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test