Skip to content
2000
image of Plants as Medicine for Autism: Reviewing the Evidence for Phytopharmaceuticals for ASD

Abstract

A complicated neural developmental condition, autism spectrum disorder (ASD) is marked by difficulties with social interaction, communication, and repetitive behaviours. There is increasing interest in complementary and alternative medicines, including medicinal plants, to treat the symptoms of ASD as incidence rates rise globally. This thorough analysis looks at the available data supporting a range of plant-based ASD control strategies. We assess important therapeutic herbs, including (turmeric), , , , and (green tea), and talk about their bioactive components, possible modes of action, and clinical results. Several plants have neuroprotective, anti-inflammatory, and antioxidant qualities that may work against the underlying pathophysiological mechanisms of ASD. The body of data is still small, even if certain clinical studies yield encouraging results, especially in the areas of behaviour modification and symptom treatment. The diverse character of ASD, small sample sizes, and methodological problems are study challenges. We also talk about the restrictions and security issues surrounding herbal remedies. Potential directions for phytopharmaceutical design for ASD in the future, such as combination therapy, enhanced delivery strategies, and the requirement for more extensive, carefully planned clinical studies. The potential of medicinal plants in treating ASD is highlighted in this review, but it also emphasizes the urgent need for further thorough study to confirm their efficacy and safety.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072347775250129042526
2025-02-11
2025-04-23
Loading full text...

Full text loading...

References

  1. Vasilakis M. Polychronis K. Panagouli E. Tzila E. Papageorgiou A. Thomaidou L. Psaltopoulou T. Tsolia M. Sergentanis T.N. Tsitsika A.K. Food Difficulties in Infancy and ASD: A Literature Review. Children 2022 10 1 84 10.3390/children10010084 36670635
    [Google Scholar]
  2. Cotterill T. Autism spectrum disorder. Principles and Practices of Working with Pupils with Special Educational Needs and Disability. Routledge 131 151
    [Google Scholar]
  3. Parmeggiani A. Corinaldesi A. Posar A. Early features of autism spectrum disorder: a cross-sectional study. Ital. J. Pediatr. 2019 45 1 144 10.1186/s13052‑019‑0733‑8 31727176
    [Google Scholar]
  4. Kriegel G. Paul S. Leonard K.H. Sandor P. Prevalence of Autism Spectrum Disorder (ASD) in Inpatient Adolescent Psychiatric Population. J. Autism Dev. Disord. 2023 6 10.1007/s10803‑023‑05923‑w 37022576
    [Google Scholar]
  5. O’Connor K. For ASD, Psychiatrists Must Continuously Monitor Patients, Assess Therapies. Psychiatr. News 2023 58 1 10.1176/appi.pn.2023.01.1.3
    [Google Scholar]
  6. Kumar S. Medicinal Plants IntechOpen 2022 10.5772/intechopen.98097
    [Google Scholar]
  7. Savino R. Medoro A. Ali S. Scapagnini G. Maes M. Davinelli S. The emerging role of flavonoids in autism spectrum disorder: A systematic review. J. Clin. Med. 2023 12 10 3520 10.3390/jcm12103520 37240625
    [Google Scholar]
  8. Efron D. Taylor K. Medicinal cannabis for paediatric developmental, behavioural and mental health disorders. Int. J. Environ. Res. Public Health 2023 20 8 5430 10.3390/ijerph20085430 37107712
    [Google Scholar]
  9. Chen L. Shi X.J. Liu H. Mao X. Gui L.N. Wang H. Cheng Y. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry 2021 11 1 15 10.1038/s41398‑020‑01135‑3 33414386
    [Google Scholar]
  10. Bjørklund G. Meguid N.A. El-Bana M.A. Tinkov A.A. Saad K. Dadar M. Hemimi M. Skalny A.V. Hosnedlová B. Kizek R. Osredkar J. Urbina M.A. Fabjan T. El-Houfey A.A. Kałużna-Czaplińska J. Gątarek P. Chirumbolo S. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020 57 5 2314 2332 10.1007/s12035‑019‑01742‑2 32026227
    [Google Scholar]
  11. Pangrazzi L. Balasco L. Bozzi Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci. 2020 21 9 3293 10.3390/ijms21093293 32384730
    [Google Scholar]
  12. Hu T Dong Y He C The gut microbiota and oxidative stress in Autism Spectrum Disorders (ASD). Oxid Med Cell Longev. 2020 2020 8396708 10.1155/2020/8396708
    [Google Scholar]
  13. Pangrazzi L. Balasco L. Bozzi Y. Natural antioxidants: A novel therapeutic approach to autism spectrum disorders? Antioxidants 2020 9 12 1186 10.3390/antiox9121186 33256243
    [Google Scholar]
  14. Nasiry D. Khalatbary A.R. Natural polyphenols for the management of autism spectrum disorder: a review of efficacy and molecular mechanisms. Nutr. Neurosci. 2023 ••• 1 11 36800230
    [Google Scholar]
  15. Niu W. Wu F. Cao W. Wu Z. Chao Y.C. Peng F. Liang C. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Biosci. Rep. 2021 41 1 BSR20202583 10.1042/BSR20202583 33146673
    [Google Scholar]
  16. Lee J.H. Jo H.G. Min S.Y. East Asian Herbal Medicine Combined with Conventional Therapy for Children with Autism Spectrum Disorder: A Systematic Review and Meta-analysis. Explore (NY) 2022 18 6 646 656 10.1016/j.explore.2022.02.001 35181230
    [Google Scholar]
  17. Holdman R. Vigil D. Robinson K. Shah P. Contreras A.E. Safety and Efficacy of Medical Cannabis in Autism Spectrum Disorder Compared with Commonly Used Medications. Cannabis Cannabinoid Res. 2022 7 4 451 463 10.1089/can.2020.0154 34432543
    [Google Scholar]
  18. He Y.Q. Zhou C.C. Jiang S.G. Lan W.Q. Zhang F. Tao X. Chen W.S. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front. Pharmacol. 2024 15 1292807 10.3389/fphar.2024.1292807 38348396
    [Google Scholar]
  19. Saidaiah P. Banu Z. Khan A.A. Geetha A. Somraj B. A comprehensive review of omega-3 fatty acids: Sources, industrial applications, and health benefits. Ann. Phytomed. 2024 13 1 209 225 10.54085/ap.2024.13.1.20
    [Google Scholar]
  20. Erridge S. Sodergren M.H. Rucker J.J. Medical cannabis in autism spectrum disorder: a specialist perspective. Br. J. Neurosci. Nurs. 2022 18 5 232 235 10.12968/bjnn.2022.18.5.232
    [Google Scholar]
  21. Sachdeva P. Mehdi I. Kaith R. Ahmad F. Anwar M.S. Potential natural products for the management of autism spectrum disorder. Ibrain 2022 8 3 365 376 10.1002/ibra.12050 37786737
    [Google Scholar]
  22. Noor-E-Tabassum Das R. Lami M.S. Chakraborty A.J. Mitra S. Tallei T.E. Idroes R. Mohamed A.A.R. Hossain M.J. Dhama K. Mostafa-Hedeab G. Emran T.B. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications. Evid. Based Complement. Alternat. Med. 2022 2022 1 30 10.1155/2022/8288818 35265150
    [Google Scholar]
  23. Öztürk S. Sari A. Therapeutic Applications of Ginkgo biloba L. Tree: Systemic Review. J. Lit. Pharm. Sci. 2023 12 1 31 42 10.5336/pharmsci.2022‑91528
    [Google Scholar]
  24. Lou J-S. Hu D. Wang H-J. Ginkgo biloba : A Potential Anti-Cancer Agent. Medicinal Plants IntechOpen 2022 10.5772/intechopen.104788
    [Google Scholar]
  25. Shaikh S.S. Dighe N.S. A review on: Medicinal properties of Ginkgo biloba. Int J Pharm Chem Anal 2021 8 3 86 90 10.18231/j.ijpca.2021.018
    [Google Scholar]
  26. Akanchise T. Angelova A. Ginkgo biloba and long COVID: In vivo and in vitro models for the evaluation of nanotherapeutic efficacy. Pharmaceutics 2023 15 5 1562 10.3390/pharmaceutics15051562 37242804
    [Google Scholar]
  27. Li Y. Wang K. Zhu X. Cheng Z. Zhu L. Murray M. Zhou F. Ginkgo biloba extracts protect human retinal Müller glial cells from t -BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis. J. Pharm. Pharmacol. 2023 75 3 385 396 10.1093/jpp/rgac095 36583518
    [Google Scholar]
  28. Petrov L. Alexandrova A. Argirova M. Tomova T. Georgieva A. Tsvetanova E. Mileva M. Chromatographic profile and redox-modulating capacity of methanol extract from seeds of Ginkgo biloba L. originating from Plovdiv Region in Bulgaria. Life 2022 12 6 878 10.3390/life12060878 35743909
    [Google Scholar]
  29. Klomsakul P. Aiumsubtub A. Chalopagorn P. Evaluation of antioxidant activities and tyrosinase inhibitory effects of Ginkgo biloba tea extract. ScientificWorldJournal 2022 2022 1 7 10.1155/2022/4806889 35342374
    [Google Scholar]
  30. Zhang L. Fang X. Sun J. Su E. Cao F. Zhao L. Study on synergistic anti-inflammatory effect of typical functional components of extracts of Ginkgo Biloba leaves. Molecules 2023 28 3 1377 10.3390/molecules28031377 36771046
    [Google Scholar]
  31. Kareem A.A. Anti-inflammatory activity of Gingko Biloba Extract in Cotton Pellet-Induced Granuloma in Rats: A comparative Study with Prednisolone and Dexamethasone. Iraqi J. Pharm. Sci. 2022 31 184 193
    [Google Scholar]
  32. Hussain S.A. Aziz T.A. Mahwi T.O. Gingko biloba extract improves the lipid profile, inflammatory markers, leptin level and the antioxidant status of T2DM patients poorly responding to metformin: A double blind, randomized, placebo-controlled trial. Braz. J. Pharm. Sci. 2022 58
    [Google Scholar]
  33. Kis B. Ifrim F.C. Buda V. Avram S. Pavel I.Z. Antal D. Paunescu V. Dehelean C.A. Ardelean F. Diaconeasa Z. Soica C. Danciu C. Cannabidiol - from plant to human body: A promising bioactive molecule with multi-target effects in cancer. Int. J. Mol. Sci. 2019 20 23 5905 10.3390/ijms20235905 31775230
    [Google Scholar]
  34. Faim J. Balteiro J. Cannabis Therapeutic Applications - Review. Eur. J. Public Health 2020 30 Suppl. 2 ckaa040.015 10.1093/eurpub/ckaa040.015
    [Google Scholar]
  35. Charitos I.A. Gagliano-Candela R. Santacroce L. Bottalico L. The Cannabis Spread throughout the Continents and its Therapeutic Use in History. Endocr. Metab. Immune Disord. Drug Targets 2021 21 3 407 417 10.2174/22123873MTA2DNzki3 32433013
    [Google Scholar]
  36. Silva Junior E.A. Medeiros W.M.B. Santos J.P.M. Sousa J.M.M. Costa F.B. Pontes K.M. Borges T.C. Neto Segundo C.E. Andrade e Silva A.H. Nunes E.L.G. Alves N.T. Rosa M.D. Albuquerque K.L.G.D. Evaluation of the efficacy and safety of cannabidiol-rich cannabis extract in children with autism spectrum disorder: randomized, double-blind, and placebo-controlled clinical trial. Trends Psychiatry Psychother. 2024 46 e20210396 10.47626/2237‑6089‑2021‑0396 35617670
    [Google Scholar]
  37. Rupasinghe H.P.V. Davis A. Kumar S.K. Murray B. Zheljazkov V.D. Industrial Hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 2020 25 18 4078 10.3390/molecules25184078 32906622
    [Google Scholar]
  38. Hurgobin B. Tamiru-Oli M. Welling M.T. Doblin M.S. Bacic A. Whelan J. Lewsey M.G. Recent advances in Cannabis sativa genomics research. New Phytol. 2021 230 1 73 89 10.1111/nph.17140 33283274
    [Google Scholar]
  39. Ferber S.G. Namdar D. Hen-Shoval D. Eger G. Koltai H. Shoval G. Shbiro L. Weller A. The “Entourage Effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders. Curr. Neuropharmacol. 2020 18 2 87 96 10.2174/1570159X17666190903103923 31481004
    [Google Scholar]
  40. Kamal B.S. Kamal F. Lantela D.E. Cannabis and the anxiety of fragmentation - A systems approach for finding an anxiolytic cannabis chemotype. Front. Neurosci. 2018 12 730 10.3389/fnins.2018.00730 30405331
    [Google Scholar]
  41. Berger M. Li E. Rice S. Davey C.G. Ratheesh A. Adams S. Jackson H. Hetrick S. Parker A. Spelman T. Kevin R. McGregor I.S. McGorry P. Amminger G.P. Cannabidiol for treatment-resistant anxiety disorders in young people. J. Clin. Psychiatry 2022 83 5 3 10.4088/JCP.21m14130 35921510
    [Google Scholar]
  42. Iglesias L.P. Bedeschi L. Aguiar D.C. Asth L. Moreira F.A. Effects of Δ 9 -THC and Type-1 cannabinoid receptor agonists in the elevated plus maze test of anxiety: A systematic review and meta-analysis. Cannabis Cannabinoid Res. 2023 8 1 24 33 10.1089/can.2022.0078 35984927
    [Google Scholar]
  43. Wright M. Di Ciano P. Brands B. Use of cannabidiol for the treatment of anxiety: a short synthesis of pre-clinical and clinical evidence. Cannabis Cannabinoid Res. 2020 5 3 191 196 10.1089/can.2019.0052 32923656
    [Google Scholar]
  44. Carreira L.D. Matias F.C. Campos M.G. Clinical data on canabinoids: translational research in the treatment of autism spectrum disorders. Biomedicines 2022 10 4 796 10.3390/biomedicines10040796 35453548
    [Google Scholar]
  45. Ross S.M. Integrative Pain Solutions, Part 2. Holist. Nurs. Pract. 2022 36 4 255 258 10.1097/HNP.0000000000000537 35708560
    [Google Scholar]
  46. Siani-Rose M. Cox S. Goldstein B. Abrams D. Taylor M. Kurek I. Cannabis-responsive biomarkers: A pharmacometabolomics-based application to evaluate the impact of medical cannabis treatment on children with autism spectrum disorder. Cannabis Cannabinoid Res. 2023 8 1 126 137 10.1089/can.2021.0129 34874191
    [Google Scholar]
  47. Hacohen M. Stolar O.E. Berkovitch M. Elkana O. Kohn E. Hazan A. Heyman E. Sobol Y. Waissengreen D. Gal E. Dinstein I. Children and adolescents with ASD treated with CBD-rich cannabis exhibit significant improvements particularly in social symptoms: an open label study. Transl. Psychiatry 2022 12 1 375 10.1038/s41398‑022‑02104‑8 36085294
    [Google Scholar]
  48. Abdul Manap A.S. Vijayabalan S. Madhavan P. Chia Y.Y. Arya A. Wong E.H. Rizwan F. Bindal U. Koshy S. Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A Review on Its Properties, Mechanisms of Action, and Preclinical and Clinical Studies. Drug Target Insights 2019 13 10.1177/1177392819866412 31391778
    [Google Scholar]
  49. Sudheer W.N. Thiruvengadam M. Nagella P. A comprehensive review on tissue culture studies and secondary metabolite production in Bacopa monnieri L. Pennell: a nootropic plant. Crit. Rev. Biotechnol. 2023 43 6 956 970 10.1080/07388551.2022.2085544 35819370
    [Google Scholar]
  50. Dubey T. Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch. Biochem. Biophys. 2019 676 108153 10.1016/j.abb.2019.108153 31622587
    [Google Scholar]
  51. Vinod A. Sathianarayanan S. Babu A.E. Sadanandan P. Venu A.K. Venkidasamy B. Bacopa monnieri for Disorders Affecting Brain: Current Perspectives. Curr. Top. Med. Chem. 2022 22 23 1909 1929 10.2174/1568026622666220119111538 35043757
    [Google Scholar]
  52. Abhishek M. Rubal S. Rohit K. Rupa J. Phulen S. Gurjeet K. Raj S.A. Manisha P. Alka B. Ramprasad P. Bikash M. Neuroprotective effect of the standardised extract of Bacopa monnieri (BacoMind) in valproic acid model of autism spectrum disorder in rats. J. Ethnopharmacol. 2022 293 115199 10.1016/j.jep.2022.115199 35346813
    [Google Scholar]
  53. Aguiar S. Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013 16 4 313 326 10.1089/rej.2013.1431 23772955
    [Google Scholar]
  54. Rajan K.E. Preethi J. Singh H.K. Molecular and functional characterization of Bacopa monniera : A retrospective review. Evid. Based Complement. Alternat. Med. 2015 2015 1 12 10.1155/2015/945217 26413131
    [Google Scholar]
  55. Kumar N. Abichandani L.G. Thawani V. Gharpure K.J. Naidu M.U.R. Venkat Ramana G. Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: A six‐week, randomized placebo‐controlled trial. Evid. Based Complement. Alternat. Med. 2016 2016 1 4103423 10.1155/2016/4103423 27803728
    [Google Scholar]
  56. Rastogi S. Pal R. Kulshreshtha D.K. Bacoside A3--A triterpenoid saponin from Bacopa monniera. Phytochemistry 1994 36 1 133 137 10.1016/S0031‑9422(00)97026‑2 7764837
    [Google Scholar]
  57. Valotto Neto L.J. Reverete de Araujo M. Moretti Junior R.C. Mendes Machado N. Joshi R.K. dos Santos Buglio D. Barbalho Lamas C. Direito R. Fornari Laurindo L. Tanaka M. Barbalho S.M. Investigating the neuroprotective and cognitive-enhancing effects of Bacopa monnieri: A systematic review focused on inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Antioxidants 2024 13 4 393 10.3390/antiox13040393 38671841
    [Google Scholar]
  58. Kocaadam B. Şanlier N. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017 57 13 2889 2895 10.1080/10408398.2015.1077195 26528921
    [Google Scholar]
  59. Yatoo M.I. Gopalakrishnan A. Saxena A. Parray O.R. Tufani N.A. Chakraborty S. Tiwari R. Dhama K. Iqbal H.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - A review. Recent Pat. Inflamm. Allergy Drug Discov. 2018 12 1 39 58 10.2174/1872213X12666180115153635 29336271
    [Google Scholar]
  60. Bhat A. Mahalakshmi A.M. Ray B. Tuladhar S. Hediyal T.A. Manthiannem E. Padamati J. Chandra R. Chidambaram S.B. Sakharkar M.K. Benefits of curcumin in brain disorders. Biofactors 2019 45 5 666 689 10.1002/biof.1533 31185140
    [Google Scholar]
  61. Abd El-Hack M.E. El-Saadony M.T. Swelum A.A. Arif M. Abo Ghanima M.M. Shukry M. Noreldin A. Taha A.E. El-Tarabily K.A. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. J. Sci. Food Agric. 2021 101 14 5747 5762 10.1002/jsfa.11372 34143894
    [Google Scholar]
  62. Memarzia A. Khazdair M.R. Behrouz S. Gholamnezhad Z. Jafarnezhad M. Saadat S. Boskabady M.H. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects ofCurcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021 47 3 311 350 10.1002/biof.1716 33606322
    [Google Scholar]
  63. Hay E. Lucariello A. Contieri M. Esposito T. De Luca A. Guerra G. Perna A. Therapeutic effects of turmeric in several diseases: An overview. Chem. Biol. Interact. 2019 310 108729 10.1016/j.cbi.2019.108729 31255636
    [Google Scholar]
  64. Bhandari R. Kuhad A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sci. 2015 141 156 169 10.1016/j.lfs.2015.09.012 26407474
    [Google Scholar]
  65. Saja K. Babu M.S. Karunagaran D. Sudhakaran P.R. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int. Immunopharmacol. 2007 7 13 1659 1667 10.1016/j.intimp.2007.08.018 17996675
    [Google Scholar]
  66. Gilhotra N. Dhingra D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010 1352 167 175 10.1016/j.brainres.2010.07.007 20633542
    [Google Scholar]
  67. Aja P.M. Izekwe F.I. Famurewa A.C. Ekpono E.U. Nwite F.E. Igwenyi I.O. Awoke J.N. Ani O.G. Aloke C. Obasi N.A. Udeh K.U. Ale B.A. Hesperidin protects against cadmium-induced pancreatitis by modulating insulin secretion, redox imbalance and iNOS/NF-ĸB signaling in rats. Life Sci. 2020 259 118268 10.1016/j.lfs.2020.118268 32800830
    [Google Scholar]
  68. Siniscalco D. Schultz S. Brigida A.L. Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals (Basel) 2018 11 2 56 10.3390/ph11020056 29867038
    [Google Scholar]
  69. Chainoglou E. Hadjipavlou-Litina D. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids. Int. J. Mol. Sci. 2020 21 6 1975 10.3390/ijms21061975 32183162
    [Google Scholar]
  70. Zhong Z. Han J. Zhang J. Xiao Q. Hu J. Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des. Devel. Ther. 2018 12 1479 1489 10.2147/DDDT.S160776 29872270
    [Google Scholar]
  71. Surh Y-J Chun K-S Cha H-H Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001 480-481 243 68 10.1016/S0027‑5107(01)00183‑X
    [Google Scholar]
  72. Cabrera C. Artacho R. Giménez R. Beneficial effects of green tea--a review. J. Am. Coll. Nutr. 2006 25 2 79 99 10.1080/07315724.2006.10719518 16582024
    [Google Scholar]
  73. Lardner A.L. Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutr. Neurosci. 2014 17 4 145 155 10.1179/1476830513Y.0000000079 23883567
    [Google Scholar]
  74. Banji D. Banji O.J.F. Abbagoni S. Hayath M.S. Kambam S. Chiluka V.L. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res. 2011 1410 141 151 10.1016/j.brainres.2011.06.063 21820650
    [Google Scholar]
  75. Bent S. Bertoglio K. Hendren R.L. Omega-3 fatty acids for autistic spectrum disorder: a systematic review. J. Autism Dev. Disord. 2009 39 8 1145 1154 10.1007/s10803‑009‑0724‑5 19333748
    [Google Scholar]
  76. Amminger G.P. Berger G.E. Schäfer M.R. Klier C. Friedrich M.H. Feucht M. Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol. Psychiatry 2007 61 4 551 553 10.1016/j.biopsych.2006.05.007 16920077
    [Google Scholar]
  77. Meiri G. Bichovsky Y. Belmaker R.H. Omega 3 fatty acid treatment in autism. J Child Adolesc Psychopharmacol 2009 19 4 449 51 10.1089/cap.2008.0123
    [Google Scholar]
  78. Bent S. Bertoglio K. Ashwood P. Bostrom A. Hendren R.L. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J. Autism Dev. Disord. 2011 41 5 545 554 10.1007/s10803‑010‑1078‑8 20683766
    [Google Scholar]
  79. Varambally S. Gangadhar B.N. Yoga and Traditional Healing Methods in Mental Health. Mental Health and Illness in the Rural World. Mental Health and Illness Worldwide Springer : Singapore 2020 297 326 10.1007/978‑981‑10‑2345‑3_20
    [Google Scholar]
  80. Adams J.B. Kirby J. Audhya T. Whiteley P. Bain J. Vitamin/mineral/micronutrient supplement for autism spectrum disorders: a research survey. BMC Pediatr. 2022 22 1 590 10.1186/s12887‑022‑03628‑0 36229781
    [Google Scholar]
  81. Adams J.B. Audhya T. McDonough-Means S. Rubin R.A. Quig D. Geis E. Gehn E. Loresto M. Mitchell J. Atwood S. Barnhouse S. Lee W. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 2011 11 1 111 10.1186/1471‑2431‑11‑111 22151477
    [Google Scholar]
  82. Bjørklund G. Waly M.I. Al-Farsi Y. Saad K. Dadar M. Rahman M.M. Elhoufey A. Chirumbolo S. Jóźwik-Pruska J. Kałużna-Czaplińska J. The role of vitamins in autism spectrum disorder: What do we know? J. Mol. Neurosci. 2019 67 3 373 387 10.1007/s12031‑018‑1237‑5 30607900
    [Google Scholar]
  83. Duvall M.G. Pikman Y. Kantor D.B. Ariagno K. Summers L. Sectish T.C. Mullen M.P. Pulmonary hypertension associated with scurvy and vitamin deficiencies in an autistic child. Pediatrics 2013 132 6 e1699 e1703 10.1542/peds.2012‑3054 24190688
    [Google Scholar]
  84. Kałużna-Czaplińska J. Socha E. Rynkowski J. B vitamin supplementation reduces excretion of urinary dicarboxylic acids in autistic children. Nutr. Res. 2011 31 7 497 502 10.1016/j.nutres.2011.06.002 21840465
    [Google Scholar]
  85. Schmidt R.J. Tancredi D.J. Ozonoff S. Hansen R.L. Hartiala J. Allayee H. Schmidt L.C. Tassone F. Hertz-Picciotto I. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am. J. Clin. Nutr. 2012 96 1 80 89 10.3945/ajcn.110.004416 22648721
    [Google Scholar]
  86. Kittana M. Ahmadani A. Stojanovska L. Attlee A. The role of vitamin d supplementation in children with autism spectrum disorder: A narrative review. Nutrients 2021 14 1 26 10.3390/nu14010026 35010901
    [Google Scholar]
  87. Halagali P. Nayak D. Rathnanand M. Tippavajhala V.K. Sharma H. Biswas D. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. Academic Press. Koduru T.S. Osmani R.A.M. Singh E. Dutta S.B.T.T.N.R. 2025 373 397 10.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  88. Sandhya T. Sowjanya J. Veeresh B. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem. Res. 2012 37 5 1121 1131 10.1007/s11064‑012‑0717‑1 22322665
    [Google Scholar]
  89. Al-Askar M. Bhat R.S. Selim M. Al-Ayadhi L. El-Ansary A. Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complement. Altern. Med. 2017 17 1 259 10.1186/s12906‑017‑1763‑7 28486989
    [Google Scholar]
  90. Zhong H. Xiao R. Ruan R. Liu H. Li X. Cai Y. Zhao J. Fan X. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology (Berl.) 2020 237 12 3539 3552 10.1007/s00213‑020‑05634‑5 32803366
    [Google Scholar]
  91. Trovò L. Fuchs C. De Rosa R. Barbiero I. Tramarin M. Ciani E. Rusconi L. Kilstrup-Nielsen C. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo. Neurobiol. Dis. 2020 138 104791 10.1016/j.nbd.2020.104791 32032735
    [Google Scholar]
  92. Poleg S. Kourieh E. Ruban A. Shapira G. Shomron N. Barak B. Offen D. Behavioral aspects and neurobiological properties underlying medical cannabis treatment in Shank3 mouse model of autism spectrum disorder. Transl. Psychiatry 2021 11 1 524 10.1038/s41398‑021‑01612‑3 34645786
    [Google Scholar]
  93. Fleury-Teixeira P. Caixeta F.V. Ramires da Silva L.C. Brasil-Neto J.P. Malcher-Lopes R. Effects of CBD-Enriched Cannabis sativa Extract on Autism Spectrum Disorder Symptoms: An Observational Study of 18 Participants Undergoing Compassionate Use. Front. Neurol. 2019 10 1145 10.3389/fneur.2019.01145 31736860
    [Google Scholar]
  94. Aran A. Harel M. Cassuto H. Polyansky L. Schnapp A. Wattad N. Shmueli D. Golan D. Castellanos F.X. Cannabinoid treatment for autism: a proof-of-concept randomized trial. Mol. Autism 2021 12 1 6 10.1186/s13229‑021‑00420‑2 33536055
    [Google Scholar]
  95. Al-Gholam MA Ameen O The Neuroprotective Effect of Ginkgo Biloba Extract on Valproic Acid Induced Autistic Features in Mice. JCDR 2020 14 8 10.7860/JCDR/2020/44201.13948
    [Google Scholar]
  96. Hasanzadeh E. Mohammadi M.R. Ghanizadeh A. Rezazadeh S.A. Tabrizi M. Rezaei F. Akhondzadeh S. A double-blind placebo controlled trial of Ginkgo biloba added to risperidone in patients with autistic disorders. Child Psychiatry Hum. Dev. 2012 43 5 674 682 10.1007/s10578‑012‑0292‑3 22392415
    [Google Scholar]
  97. Niederhofer H. First preliminary results of an observation of Ginkgo Biloba treating patients with autistic disorder. Phytother. Res. 2009 23 11 1645 1646 10.1002/ptr.2778 19274699
    [Google Scholar]
  98. Rezaiezadeh H. Langarizadeh M.A. Tavakoli M.R. Sabokro M. Banazadeh M. Kohlmeier K.A. Shabani M. Therapeutic potential of Bergenin in the management of neurological-based diseases and disorders. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 11 8349 8366 10.1007/s00210‑024‑03197‑2 38850305
    [Google Scholar]
  99. Erridge S. Kerr-Gaffney J. Holvey C. Coomber R. Barros D.A.R. Bhoskar U. Mwimba G. Praveen K. Symeon C. Sachdeva-Mohan S. Sodergren M.H. Rucker J.J. Clinical outcome analysis of patients with autism spectrum disorder: analysis from the UK Medical Cannabis Registry. Ther. Adv. Psychopharmacol. 2022 12 20451253221116240 10.1177/20451253221116240 36159065
    [Google Scholar]
  100. Wahid M. Ali A. Saqib F. Aleem A. Bibi S. Afzal K. Ali A. Baig A. Khan S.A. Bin Asad M.H.H. Pharmacological exploration of traditional plants for the treatment of neurodegenerative disorders. Phytother. Res. 2020 34 12 3089 3112 10.1002/ptr.6742 32478964
    [Google Scholar]
  101. Halagali P. Nayak D. Tippavajhala V.K. Rathnanand M. Biswas D. Sharma H. Navigating the nanoscopic frontier: Ethical dimensions in developing nanocarriers for neurodegenerative diseases. Academic Press. Koduru T.S. Osmani R.A.M. Singh E. Dutta S.B.T.T.N.R. 2025 399 420 10.1016/B978‑0‑443‑28822‑7.00011‑8
    [Google Scholar]
  102. Barch D.M. The Dangers of small samples and insufficient methodological detail. Schizophr. Bull. 2023 49 1 5 6 10.1093/schbul/sbac137 36516215
    [Google Scholar]
  103. McDermott R. On the scientific study of small samples: Challenges confronting quantitative and qualitative methodologies. Leadersh. Q. 2023 34 3 101675 10.1016/j.leaqua.2023.101675
    [Google Scholar]
  104. Sagi-Dain L. Weisz B. Haratz Krajden K. Singer A. Yaron Y. Maymon R. Methodological drawbacks in the alleged association between foetal sonographic anomalies and autism. Brain 2022 145 10 e90 e91 10.1093/brain/awac246 35802022
    [Google Scholar]
  105. Rødgaard E.M. Jensen K. Miskowiak K.W. Mottron L. Representativeness of autistic samples in studies recruiting through social media. Autism Res. 2022 15 8 1447 1456 10.1002/aur.2777 35809003
    [Google Scholar]
  106. Wathen J.K. Jagannatha S. Ness S. Bangerter A. Pandina G. A platform trial approach to proof-of-concept (POC) studies in autism spectrum disorder: Autism spectrum POC initiative (ASPI). Contemp. Clin. Trials Commun. 2023 32 101061 10.1016/j.conctc.2023.101061 36949847
    [Google Scholar]
  107. Jacob S. Anagnostou E. Hollander E. Jou R. McNamara N. Sikich L. Tobe R. Murphy D. McCracken J. Ashford E. Chatham C. Clinch S. Smith J. Sanders K. Murtagh L. Noeldeke J. Veenstra-VanderWeele J. Large multicenter randomized trials in autism: key insights gained from the balovaptan clinical development program. Mol. Autism 2022 13 1 25 10.1186/s13229‑022‑00505‑6 35690870
    [Google Scholar]
  108. Narzisi A. Alonso-Esteban Y. Masi G. Alcantud-Marín F. Research-Based Intervention (RBI) for Autism Spectrum Disorder: Looking beyond Traditional Models and Outcome Measures for Clinical Trials. Children (Basel) 2022 9 3 430 10.3390/children9030430 35327802
    [Google Scholar]
  109. Baribeau D. Vorstman J. Anagnostou E. Novel treatments in autism spectrum disorder. Curr. Opin. Psychiatry 2022 35 2 101 110 10.1097/YCO.0000000000000775 35044968
    [Google Scholar]
  110. Salehi A. Puchalski K. Shokoohinia Y. Zolfaghari B. Asgary S. Differentiating cannabis products: drugs, food, and supplements. Front. Pharmacol. 2022 13 906038 10.3389/fphar.2022.906038 35833025
    [Google Scholar]
  111. Sun H. Cross-Cultural Differences in Autism Spectrum Disorder Symptoms. Lecture Notes in Education Psychology and Public Media 2023 3 1 168 173 10.54254/2753‑7048/3/2022499
    [Google Scholar]
  112. Aglinskas A. Anzellotti S. Precision psychiatry requires disentangling disorder‐specific variation: The case of ASD. Clin. Transl. Med. 2022 12 10 e1079 10.1002/ctm2.1079 36214746
    [Google Scholar]
  113. Kilpatrick S. Irwin C. Singh K.K. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Transl. Psychiatry 2023 13 1 217 10.1038/s41398‑023‑02510‑6 37344450
    [Google Scholar]
  114. Gallagher L. Anagnostou E. Genomics to therapeutics for ASD: Promise and challenges. J. Am. Acad. Child Adolesc. Psychiatry 2022 61 10 S318 10.1016/j.jaac.2022.07.708
    [Google Scholar]
  115. Obara S.C. Kaindi D.M. Okoth M.W. Marangu D. A review of dietary and nutritional interventions available for management of autism spectrum disorder symptoms in children and adolescents - Kenya. Afr. J. Food Agric. Nutr. Dev. 2023 23 121 23835 23858 10.18697/ajfand.121.22955
    [Google Scholar]
  116. Mazurek A. Machaj D. Polak J. Grobecki D. Lis J. Machaj D. Raczkiewicz P. Adamik W. The role of diet and supplementation in the prevention and treatment of autism spectrum disorders. J. Educ. Health Sport 2023 26 1 11 16 10.12775/JEHS.2023.26.01.001
    [Google Scholar]
  117. Hindera O. 14.5 Dietary Considerations in ASD: Nutrient intake, special diets, potential interventions. J. Am. Acad. Child Adolesc. Psychiatry 2022 61 10 S21 10.1016/j.jaac.2022.07.093
    [Google Scholar]
  118. Datta D. Colaco V. Bandi S.P. Sharma H. Dhas N. Giram P.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities. Polymers for Oral Drug Delivery Technologies (pp.263-333)Edition: A volume in Elsevier Ltd Series in Biomaterials Elsevier Woodhead Publishing 2025
    [Google Scholar]
  119. Hellings J. Pharmacotherapy in autism spectrum disorders, including promising older drugs warranting trials. World J. Psychiatry 2023 13 6 262 277 10.5498/wjp.v13.i6.262 37383284
    [Google Scholar]
  120. Maniram J. Karrim S.B.S. Oosthuizen F. Wiafe E. Pharmacological management of core symptoms and comorbidities of autism spectrum disorder in children and adolescents: A systematic review. Neuropsychiatr. Dis. Treat. 2022 18 1629 1644 10.2147/NDT.S371013 35968512
    [Google Scholar]
  121. Figueiredo J.S.B. De Oliveira D.A. Brandão M.M. Royo V.A. De Souza S.G.A. Pharmaceutical care in the health of Autistic Spectrum disorder. Brazilian Journal of Health Review 2023 6 1 3785 3797 10.34119/bjhrv6n1‑293
    [Google Scholar]
  122. Ballester P. Espadas C. Londoño A.C. Almenara S. Aguilar V. Belda C. Pérez E. Muriel J. Peiró A.M. The challenge of detecting adverse events in adults with autism spectrum disorder who have intellectual disability. Autism Res. 2022 15 1 192 202 10.1002/aur.2624 34652075
    [Google Scholar]
  123. Raz R. Oulhote Y. Invited Perspective: Air Pollution and Autism Spectrum Disorder: Are We There Yet? Environ. Health Perspect. 2022 130 1 011303 10.1289/EHP10617 35040692
    [Google Scholar]
  124. Harris K. 14.2 Improving safety and access to care for youth with neurodevelopmental disorders. J. Am. Acad. Child Adolesc. Psychiatry 2022 61 10 S298 10.1016/j.jaac.2022.07.634
    [Google Scholar]
  125. Munnich A. Unraveling the etiological complexity of autism spectrum disorders. Dev. Med. Child Neurol. 2020 62 4 404 404 10.1111/dmcn.14455 32124985
    [Google Scholar]
  126. Urdaneta K.E. Castillo M.A. Montiel N. Semprún-Hernández N. Antonucci N. Siniscalco D. Autism spectrum disorders: Potential neuro-psychopharmacotherapeutic plant-based drugs. Assay Drug Dev. Technol. 2018 16 8 433 444 10.1089/adt.2018.848 30427697
    [Google Scholar]
  127. von Wintzingerode F. Selent B. Hegemann W. Göbel U.B. Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl. Environ. Microbiol. 1999 65 1 283 286 10.1128/AEM.65.1.283‑286.1999 9872791
    [Google Scholar]
  128. Cruz-Martins N. Quispe C. Kırkın C. Şenol E. Zuluğ A. Özçelik B. Ademiluyi A.O. Oyeniran O.H. Semwal P. Kumar M. Sharopov F. López V. Les F. Bagiu I.C. Butnariu M. Sharifi-Rad J. Alshehri M.M. Cho W.C. Paving plant‐food‐derived bioactives as effective therapeutic agents in Autism Spectrum Disorder. Oxid. Med. Cell. Longev. 2021 2021 1 1131280 10.1155/2021/1131280 34471461
    [Google Scholar]
  129. Bartz J.A. Young L.J. Hollander E. Preclinical Animal Models of Autistic Spectrum Disorders (ASD) San Diego: Academic Press 2008 353 394
    [Google Scholar]
  130. Assimopoulos S. Beauchamp A. Lerch J.P. Preclinical Models of Autism Spectrum Disorder BT - Neurodevelopmental Pediatrics: Genetic and Environmental Influences. Eisenstat D.D. Goldowitz D. Oberlander T.F. Cham Springer International Publishing 2023 309 325
    [Google Scholar]
  131. Silverman J.L. Thurm A. Ethridge S.B. Soller M.M. Petkova S.P. Abel T. Bauman M.D. Brodkin E.S. Harony-Nicolas H. Wöhr M. Halladay A. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes Brain Behav. 2022 21 5 e12803 10.1111/gbb.12803 35285132
    [Google Scholar]
  132. Parmar G.R. Sailor G.U. Nanotechnological Approach for Design and Delivery of Phytopharmaceuticals BT - Nanocarriers: Drug Delivery System: An Evidence Based Approach. Shah N. Singapore Springer Singapore 2021 281 301
    [Google Scholar]
  133. Al Noman A. Dev Sharma P. Jahin Mim T. Al Azad M. Sharma H. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease. Aging Pathobiology and Therapeutics 2024 6 4 1 13 10.31491/APT.2024.12.155
    [Google Scholar]
  134. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Sharma H. Unraveling Neurological Drug Delivery: Polymeric Nanocarriers for Enhanced Blood-Brain Barrier Penetration. Curr. Drug Targets 2024 26 1 24 10.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  135. Inamdar A. Gurupadayya B. Halagali P. S N. Pathak R. Singh H. Sharma H. Cutting-Edge Strategies for Overcoming Therapeutic Barriers in Alzheimer’s Disease. Curr. Pharm. Des. 2024 31 1 21 10.2174/0113816128344571241018154506 39492772
    [Google Scholar]
  136. Al Noman A. Afrosa H. Lihu I.K. Sarkar O. Nabin N.R. Datta M. Pathak R. Sharma H. Vitamin D and Neurological Health: Unraveling Risk Factors, Disease Progression, and Treatment Potential. CNS Neurol. Disord. Drug Targets 2024 24 1 12 10.2174/0118715273330972241009092828 39440730
    [Google Scholar]
  137. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Correlation between Cognitive Impairment and Peripheral Biomarkers - Significance of Phosphorylated Tau and Amyloid-β in Alzheimer ’ s Disease : A New Insight. Curr Psychiatry Res Rev 2024 1 25 10.2174/0126660822329981241007105405
    [Google Scholar]
  138. Sharma H. Chandra P. Pathak R. Bhandari M. Arushi S.V. Advancements in the therapeutic approaches to treat neurological disorders. Cah Magellanes-NS. 2024 6 2 4328 4389
    [Google Scholar]
  139. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. INDIAN DRUGS 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  140. Pathak R. Sharma S. Bhandari M. Nogai L. Mishra R. Saxena A. Reena Km S.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions. J. Exp. Zool. India 2024 21 2 2447 2461 10.59467/jez.2024.27.2.2447
    [Google Scholar]
  141. Sharma H. Pathak R. Biswas D. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: A comprehensive exploration, review and future perspectives on intervention strategies. Curr. Psychiatry Rev. 2024 20 10.2174/0126660822304321240520075036
    [Google Scholar]
  142. Chandra P. Ali Z. Fatima N. Sharma H. Sachan N. Sharma K.K. Verma A. Shankhpushpi (Convolvulus pluricaulis): Exploring its Cognitive Enhancing Mechanisms and Therapeutic Potential in Neurodegenerative Disorders. Curr. Bioact. Compd. 2024 20 10.2174/0115734072292339240416095600
    [Google Scholar]
  143. Sharma H. Chandra P. Effects of natural remedies on memory loss and Alzheimer’s disease. Afr. J. Bio. Sc. 2024 6 7 187 211 10.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  144. Halagali P. Inamdar A. Singh J. Anand A. Sadhu P. Pathak R. Sharma H. Biswas D. Phytochemicals, Herbal Extracts, and Dietary Supplements for Metabolic Disease Management. Endocr. Metab. Immune Disord. Drug Targets 2024 24 10.2174/0118715303287911240409055710 38676520
    [Google Scholar]
  145. Das S. Mukherjee T. Mohanty S. Nayak N. Mal P. Ashique S. Pal R. Mohanto S. Sharma H. Impact of NF-κB Signaling and Sirtuin-1 Protein for Targeted Inflammatory Intervention. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010301469240409082212 38638042
    [Google Scholar]
  146. Ashique S. Pal R. Sharma H. Mishra N. Garg A. Unraveling the Emerging Niche Role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI). CNS Neurol. Disord. Drug Targets 2024 23 11 1357 1370 10.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  147. Sharma H Chandra P Verma A Pandey SN Kumar P Sigh A Therapeutic approaches of nutraceuticals in the prevention of neurological disorders. 2023
    [Google Scholar]
  148. Sharma H. Chandra P. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  149. Sharma H. Pathak R. Jain S. Bhandari M. Mishra R. Reena K. Varshney P. Ficus racemosa L.: A review on its important medicinal uses, phytochemicals and biological activities. J. Popul. Ther. Clin. Pharmacol. 2023 30 17 213 227 10.47750/jptcp.2023.30.17.018
    [Google Scholar]
  150. Sharma H. Pathak R. Kumar N. Nogai L. Mishra R. Bhandari M. Koli M. Pandey P. Endocannabinoid system: Role in depression, recompense, and pain control. J. Surv. Fish. Sci. 2023 10 4S 2743 2751 10.17762/sfs.v10i4S.1655
    [Google Scholar]
  151. Sharma H. Rachamalla H.K. Mishra N. Chandra P. Pathak R. Ashique S. Introduction to Exosome and Its Role in Brain Disorders BT - Exosomes Based Drug Delivery Strategies for Brain Disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 1 35 10.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  152. Sharma H. Tyagi S.J. Chandra P. Verma A. Kumar P. Ashique S. Role of Exosomes in Parkinson’s and Alzheimer’s Diseases BT - Exosomes Based Drug Delivery Strategies for Brain Disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  153. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Correlation Between Exosomes and Neuro-inflammation in Various Brain Disorders BT - Exosomes Based Drug Delivery Strategies for Brain Disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 273 302 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
  154. Sharma H. Rani T. Khan S. An Insight into Neuropathic Pain: A Systemic and up-to-Date Review. Int. J. Pharm. Sci. Res. 2023 14 2 607 621 10.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  155. Pathak R. Sharma H. Kumar N. A Brief Review on Anthocephalus cadamba. Acta Scientific Pharmacology. 2022 3 5
    [Google Scholar]
  156. Sharma H Pathak R. A review on prelimenary phytochemical screening of Curcuma longa linn. J Pharma Herbal Med Res 2021 7 2 24 27
    [Google Scholar]
  157. Sharma H Anand A Halagali P Inamdar A Pathak R Taghizadeh‐Hesary F Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. Role of flavonoids in chronic metabolic diseases Wiley 2024 459 510 10.1002/9781394238071.ch13
    [Google Scholar]
  158. Pathak R. Sharma H. A review on medicinal uses of Cinnamomum verum (Cinnamon). J. Drug Deliv. Ther. 2021 11 6-S 161 166 10.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  159. Sharma H. Halagali P. Majumder A. Sharma V. Pathak R. Natural compounds targeting signaling pathways in breast cancer therapy. African J Biol Sci 2024 6 10 5430 5479
    [Google Scholar]
  160. Pathak R. Kaur V. Sharma S. Bhandari M. Mishra R. Saxena A. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors. Afr. J. Bio. Sc. 2024 6 9 1311 1330
    [Google Scholar]
  161. Kumar P. Sharma H. Singh A. Durgapal S. Kukreti G. Bhowmick M. Bhowmick P. Ashique S. Targeting the Interplay of Proteins through PROTACs for Management Cancer and Associated Disorders. Curr. Cancer Ther. Rev. 2024 20 20 10.2174/0115733947304806240417092449
    [Google Scholar]
  162. Ashique S Bhowmick M Pal R Khatoon H Kumar P Sharma H Garg A Kumar S Das U Multi drug resistance in colorectal cancer-approaches to overcome, advancements and future success. Adv. Cancer Biol. - Metastasis 2024 10 100114 10.1016/j.adcanc.2024.100114
    [Google Scholar]
  163. Kumar P. Pandey S. Ahmad F. Verma A. Sharma H. Ashique S. Carbon nanotubes: A targeted drug delivery against cancer cell. Curr. Nanosci. 2023 9 1 31
    [Google Scholar]
  164. Sharma H. Pathak R. Sachan N. Chandra P. Role of Tumor Antigens for Cancer Vaccine Development. Cancer Vaccination and Challenges. New York Apple Academic Press 2024 57 94 10.1201/9781003501718‑3
    [Google Scholar]
  165. Kaushik M. Kumar S. Singh M. Sharma H. Bhowmick M. Bhowmick P. Bio-inspired Nanomaterials in Cancer Theranostics. Nanotheranostics for Diagnosis and Therapy. Singapore Springer Nature 2024 95 123 10.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072347775250129042526
Loading
/content/journals/cbc/10.2174/0115734072347775250129042526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test