Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

A complicated neural developmental condition, autism spectrum disorder (ASD) is marked by difficulties with social interaction, communication, and repetitive behaviours. There is increasing interest in complementary and alternative medicines, including medicinal plants, to treat the symptoms of ASD as incidence rates rise globally. This thorough analysis looks at the available data supporting a range of plant-based ASD control strategies. We assess important therapeutic herbs, including (turmeric), , , , and (green tea), and talk about their bioactive components, possible modes of action, and clinical results. Several plants have neuroprotective, anti-inflammatory, and antioxidant qualities that may work against the underlying pathophysiological mechanisms of ASD. The body of data is still small, even if certain clinical studies yield encouraging results, especially in the areas of behaviour modification and symptom treatment. The diverse character of ASD, small sample sizes, and methodological problems are study challenges. We also talk about the restrictions and security issues surrounding herbal remedies. Potential directions for phytopharmaceutical design for ASD in the future, such as combination therapy, enhanced delivery strategies, and the requirement for more extensive, carefully planned clinical studies. The potential of medicinal plants in treating ASD is highlighted in this review, but it also emphasizes the urgent need for further thorough study to confirm their efficacy and safety.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072347775250129042526
2025-02-11
2026-02-13
Loading full text...

Full text loading...

References

  1. VasilakisM. PolychronisK. PanagouliE. TzilaE. PapageorgiouA. ThomaidouL. PsaltopoulouT. TsoliaM. SergentanisT.N. TsitsikaA.K. Food difficulties in infancy and ASD: A Literature Review.Children20221018410.3390/children10010084 36670635
    [Google Scholar]
  2. CotterillT. Autism spectrum disorder.In: Principles and Practices of Working with Pupils with Special Educational Needs and Disability.2019131151
    [Google Scholar]
  3. ParmeggianiA. CorinaldesiA. PosarA. Early features of autism spectrum disorder: A cross-sectional study.Ital. J. Pediatr.201945114410.1186/s13052‑019‑0733‑8 31727176
    [Google Scholar]
  4. KriegelG. PaulS. LeonardK.H. SandorP. Prevalence of autism spectrum disorder (ASD) in inpatient adolescent psychiatric population.J. Autism Dev. Disord.20236551138114510.1007/s10803‑023‑05923‑w 37022576
    [Google Scholar]
  5. O’ConnorK. For ASD, Psychiatrists must continuously monitor patients, assess therapies.Psychiatr. News202358110.1176/appi.pn.2023.01.1.3
    [Google Scholar]
  6. Kumar, S., Ed.; Medicinal Plants.IntechOpen202210.5772/intechopen.98097
    [Google Scholar]
  7. SavinoR. MedoroA. AliS. ScapagniniG. MaesM. DavinelliS. The emerging role of flavonoids in Autism spectrum disorder: A systematic review.J. Clin. Med.20231210352010.3390/jcm12103520 37240625
    [Google Scholar]
  8. EfronD. TaylorK. Medicinal cannabis for paediatric developmental, behavioural and mental health disorders.Int. J. Environ. Res. Public Health2023208543010.3390/ijerph20085430 37107712
    [Google Scholar]
  9. ChenL. ShiX.J. LiuH. MaoX. GuiL.N. WangH. ChengY. Oxidative stress marker aberrations in children with Autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109).Transl. Psychiatry20211111510.1038/s41398‑020‑01135‑3 33414386
    [Google Scholar]
  10. BjørklundG. MeguidN.A. El-BanaM.A. TinkovA.A. SaadK. DadarM. HemimiM. SkalnyA.V. HosnedlováB. KizekR. OsredkarJ. UrbinaM.A. FabjanT. El-HoufeyA.A. Kałużna-CzaplińskaJ. GątarekP. ChirumboloS. Oxidative stress in Autism spectrum disorder.Mol. Neurobiol.20205752314233210.1007/s12035‑019‑01742‑2 32026227
    [Google Scholar]
  11. PangrazziL. BalascoL. BozziY. Oxidative stress and immune system dysfunction in Autism spectrum disorders.Int. J. Mol. Sci.2020219329310.3390/ijms21093293 32384730
    [Google Scholar]
  12. HuT. DongY. HeC. The gut microbiota and oxidative stress in Autism Spectrum Disorders (ASD).Oxid. Med. Cell. Longev.20202020839670810.1155/2020/8396708
    [Google Scholar]
  13. PangrazziL. BalascoL. BozziY. Natural antioxidants: A novel therapeutic approach to Autism spectrum disorders?Antioxidants2020912118610.3390/antiox9121186 33256243
    [Google Scholar]
  14. NasiryD. KhalatbaryA.R. Natural polyphenols for the management of Autism spectrum disorder: a review of efficacy and molecular mechanisms.Nutr. Neurosci.2024273241251 36800230
    [Google Scholar]
  15. NiuW. WuF. CaoW. WuZ. ChaoY.C. PengF. LiangC. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6.Biosci. Rep.2021411BSR2020258310.1042/BSR20202583 33146673
    [Google Scholar]
  16. LeeJ.H. JoH.G. MinS.Y. East Asian herbal medicine combined with conventional therapy for children with Autism spectrum disorder: A systematic review and meta-analysis.Explore (NY)202218664665610.1016/j.explore.2022.02.001 35181230
    [Google Scholar]
  17. HoldmanR. VigilD. RobinsonK. ShahP. ContrerasA.E. Safety and efficacy of medical cannabis in Autism spectrum disorder compared with commonly used medications.Cannabis Cannabinoid Res.20227445146310.1089/can.2020.0154 34432543
    [Google Scholar]
  18. HeY.Q. ZhouC.C. JiangS.G. LanW.Q. ZhangF. TaoX. ChenW.S. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery.Front. Pharmacol.202415129280710.3389/fphar.2024.1292807 38348396
    [Google Scholar]
  19. SaidaiahP. BanuZ. KhanA.A. GeethaA. SomrajB. A comprehensive review of omega-3 fatty acids: Sources, industrial applications, and health benefits.Ann. Phytomed.202413120922510.54085/ap.2024.13.1.20
    [Google Scholar]
  20. ErridgeS. SodergrenM.H. RuckerJ.J. Medical cannabis in Autism spectrum disorder: A specialist perspective.Br. J. Neurosci. Nurs.202218523223510.12968/bjnn.2022.18.5.232
    [Google Scholar]
  21. SachdevaP. MehdiI. KaithR. AhmadF. AnwarM.S. Potential natural products for the management of Autism spectrum disorder.Ibrain20228336537610.1002/ibra.12050 37786737
    [Google Scholar]
  22. Noor-E-Tabassum DasR. LamiM.S. ChakrabortyA.J. MitraS. TalleiT.E. IdroesR. MohamedA.A.R. HossainM.J. DhamaK. Mostafa-HedeabG. EmranT.B. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications.Evid. Based Complement. Alternat. Med.2022202213010.1155/2022/8288818 35265150
    [Google Scholar]
  23. ÖztürkS. SariA. Therapeutic applications of Ginkgo biloba L. tree: Systemic review.J. Lit. Pharm. Sci.2023121314210.5336/pharmsci.2022‑91528
    [Google Scholar]
  24. LouJ-S. HuD. WangH-J. Ginkgo biloba: A potential anti-cancer agent. Medicinal Plants.IntechOpen202210.5772/intechopen.104788
    [Google Scholar]
  25. ShaikhS.S. DigheN.S. A review on: Medicinal properties of Ginkgo biloba.Int. J. Pharm. Chem. Anal.202183869010.18231/j.ijpca.2021.018
    [Google Scholar]
  26. AkanchiseT. AngelovaA. Ginkgo biloba and long COVID: In vivo and in vitro models for the evaluation of nanotherapeutic efficacy.Pharmaceutics2023155156210.3390/pharmaceutics15051562 37242804
    [Google Scholar]
  27. LiY. WangK. ZhuX. ChengZ. ZhuL. MurrayM. ZhouF. Ginkgo biloba extracts protect human retinal Müller glial cells from t -BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis.J. Pharm. Pharmacol.202375338539610.1093/jpp/rgac095 36583518
    [Google Scholar]
  28. PetrovL. AlexandrovaA. ArgirovaM. TomovaT. GeorgievaA. TsvetanovaE. MilevaM. Chromatographic profile and redox-modulating capacity of methanol extract from seeds of Ginkgo biloba L. originating from Plovdiv Region in Bulgaria.Life202212687810.3390/life12060878 35743909
    [Google Scholar]
  29. KlomsakulP. AiumsubtubA. ChalopagornP. Evaluation of antioxidant activities and tyrosinase inhibitory effects of Ginkgo biloba tea extract.Sci. World. J.202220221710.1155/2022/4806889 35342374
    [Google Scholar]
  30. ZhangL. FangX. SunJ. SuE. CaoF. ZhaoL. Study on synergistic anti-inflammatory effect of typical functional components of extracts of Ginkgo biloba leaves.Molecules2023283137710.3390/molecules28031377 36771046
    [Google Scholar]
  31. KareemA.A. Anti-inflammatory activity of Gingko biloba extract in cotton pellet-induced granuloma in rats: A comparative study with Prednisolone and Dexamethasone.Iraqi J. Pharm. Sci.202231184193
    [Google Scholar]
  32. HussainS.A. AzizT.A. MahwiT.O. Gingko biloba extract improves the lipid profile, inflammatory markers, leptin level and the antioxidant status of T2DM patients poorly responding to metformin: A double blind, randomized, placebo-controlled trial.Braz. J. Pharm. Sci.202258
    [Google Scholar]
  33. KisB. IfrimF.C. BudaV. AvramS. PavelI.Z. AntalD. PaunescuV. DeheleanC.A. ArdeleanF. DiaconeasaZ. SoicaC. DanciuC. Cannabidiol - from plant to human body: A promising bioactive molecule with multi-target effects in cancer.Int. J. Mol. Sci.20192023590510.3390/ijms20235905 31775230
    [Google Scholar]
  34. FaimJ. BalteiroJ. Cannabis therapeutic applications-review.Eur. J. Public Health202030Suppl. 2ckaa040.01510.1093/eurpub/ckaa040.015
    [Google Scholar]
  35. CharitosI.A. Gagliano-CandelaR. SantacroceL. BottalicoL. The cannabis spread throughout the continents and its therapeutic use in history.Endocr. Metab. Immune Disord. Drug Targets202121340741710.2174/22123873MTA2DNzki3 32433013
    [Google Scholar]
  36. Silva JuniorE.A. MedeirosW.M.B. SantosJ.P.M. SousaJ.M.M. CostaF.B. PontesK.M. BorgesT.C. Neto SegundoC.E. Andrade e SilvaA.H. NunesE.L.G. AlvesN.T. RosaM.D. AlbuquerqueK.L.G.D. Evaluation of the efficacy and safety of cannabidiol-rich cannabis extract in children with Autism spectrum disorder: randomized, double-blind, and placebo-controlled clinical trial.Trends Psychiatry Psychother.202446e2021039610.47626/2237‑6089‑2021‑0396 35617670
    [Google Scholar]
  37. RupasingheH.P.V. DavisA. KumarS.K. MurrayB. ZheljazkovV.D. Industrial Hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals.Molecules20202518407810.3390/molecules25184078 32906622
    [Google Scholar]
  38. HurgobinB. Tamiru-OliM. WellingM.T. DoblinM.S. BacicA. WhelanJ. LewseyM.G. Recent advances in Cannabis sativa genomics research.New Phytol.20212301738910.1111/nph.17140 33283274
    [Google Scholar]
  39. FerberS.G. NamdarD. Hen-ShovalD. EgerG. KoltaiH. ShovalG. ShbiroL. WellerA. The “Entourage Effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders.Curr. Neuropharmacol.2020182879610.2174/1570159X17666190903103923 31481004
    [Google Scholar]
  40. KamalB.S. KamalF. LantelaD.E. Cannabis and the anxiety of fragmentation - A systems approach for finding an anxiolytic cannabis chemotype.Front. Neurosci.20181273010.3389/fnins.2018.00730 30405331
    [Google Scholar]
  41. BergerM. LiE. RiceS. DaveyC.G. RatheeshA. AdamsS. JacksonH. HetrickS. ParkerA. SpelmanT. KevinR. McGregorI.S. McGorryP. AmmingerG.P. Cannabidiol for treatment-resistant anxiety disorders in young people.J. Clin. Psychiatry2022835310.4088/JCP.21m14130 35921510
    [Google Scholar]
  42. IglesiasL.P. BedeschiL. AguiarD.C. AsthL. MoreiraF.A. Effects of Δ9-THC and Type-1 cannabinoid receptor agonists in the elevated plus maze test of anxiety: A systematic review and meta-analysis.Cannabis Cannabinoid Res.202381243310.1089/can.2022.0078 35984927
    [Google Scholar]
  43. WrightM. Di CianoP. BrandsB. Use of cannabidiol for the treatment of anxiety: a short synthesis of pre-clinical and clinical evidence.Cannabis Cannabinoid Res.20205319119610.1089/can.2019.0052 32923656
    [Google Scholar]
  44. CarreiraL.D. MatiasF.C. CamposM.G. Clinical data on canabinoids: translational research in the treatment of Autism spectrum disorders.Biomedicines202210479610.3390/biomedicines10040796 35453548
    [Google Scholar]
  45. RossS.M. Integrative Pain Solutions, Part 2.Holist. Nurs. Pract.202236425525810.1097/HNP.0000000000000537 35708560
    [Google Scholar]
  46. Siani-RoseM. CoxS. GoldsteinB. AbramsD. TaylorM. KurekI. Cannabis-responsive biomarkers: A pharmacometabolomics-based application to evaluate the impact of medical cannabis treatment on children with Autism spectrum disorder.Cannabis Cannabinoid Res.20238112613710.1089/can.2021.0129 34874191
    [Google Scholar]
  47. HacohenM. StolarO.E. BerkovitchM. ElkanaO. KohnE. HazanA. HeymanE. SobolY. WaissengreenD. GalE. DinsteinI. Children and adolescents with ASD treated with CBD-rich cannabis exhibit significant improvements particularly in social symptoms: an open label study.Transl. Psychiatry202212137510.1038/s41398‑022‑02104‑8 36085294
    [Google Scholar]
  48. Abdul ManapA.S. VijayabalanS. MadhavanP. ChiaY.Y. AryaA. WongE.H. RizwanF. BindalU. KoshyS. Bacopa monnieri, A neuroprotective lead in Alzheimer disease: A review on its properties, mechanisms of action, and preclinical and clinical studies.Drug Target Insights201913110.1177/1177392819866412 31391778
    [Google Scholar]
  49. SudheerW.N. ThiruvengadamM. NagellaP. A comprehensive review on tissue culture studies and secondary metabolite production in Bacopa monnieri L. Pennell: A nootropic plant.Crit. Rev. Biotechnol.202343695697010.1080/07388551.2022.2085544 35819370
    [Google Scholar]
  50. DubeyT. ChinnathambiS. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease.Arch. Biochem. Biophys.201967610815310.1016/j.abb.2019.108153 31622587
    [Google Scholar]
  51. VinodA. SathianarayananS. BabuA.E. SadanandanP. VenuA.K. VenkidasamyB. Bacopa monnieri for Disorders Affecting Brain: Current Perspectives.Curr. Top. Med. Chem.202222231909192910.2174/1568026622666220119111538 35043757
    [Google Scholar]
  52. AbhishekM. RubalS. RohitK. RupaJ. PhulenS. GurjeetK. RajS.A. ManishaP. AlkaB. RamprasadP. BikashM. Neuroprotective effect of the standardised extract of Bacopa monnieri (BacoMind) in valproic acid model of Autism spectrum disorder in rats.J. Ethnopharmacol.202229311519910.1016/j.jep.2022.115199 35346813
    [Google Scholar]
  53. AguiarS. BorowskiT. Neuropharmacological review of the nootropic herb Bacopa monnieri.Rejuvenation Res.201316431332610.1089/rej.2013.1431 23772955
    [Google Scholar]
  54. RajanK.E. PreethiJ. SinghH.K. Molecular and functional characterization of Bacopa monniera: A retrospective review.Evid. Based Complement. Alternat. Med.2015201511210.1155/2015/945217 26413131
    [Google Scholar]
  55. KumarN. AbichandaniL.G. ThawaniV. GharpureK.J. NaiduM.U.R. Venkat RamanaG. Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: A six‐week, randomized placebo‐controlled trial.Evid. Based Complement. Alternat. Med.201620161410342310.1155/2016/4103423 27803728
    [Google Scholar]
  56. RastogiS. PalR. KulshreshthaD.K. Bacoside A3-A triterpenoid saponin from Bacopa monniera.Phytochemistry199436113313710.1016/S0031‑9422(00)97026‑2 7764837
    [Google Scholar]
  57. Valotto NetoL.J. Reverete de AraujoM. Moretti JuniorR.C. Mendes MachadoN. JoshiR.K. dos Santos BuglioD. Barbalho LamasC. DireitoR. Fornari LaurindoL. TanakaM. BarbalhoS.M. Investigating the neuroprotective and cognitive-enhancing effects of Bacopa monnieri: A systematic review focused on inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis.Antioxidants202413439310.3390/antiox13040393 38671841
    [Google Scholar]
  58. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.1077195 26528921
    [Google Scholar]
  59. YatooM.I. GopalakrishnanA. SaxenaA. ParrayO.R. TufaniN.A. ChakrabortyS. TiwariR. DhamaK. IqbalH.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - A review.Recent Pat. Inflamm. Allergy Drug Discov.2018121395810.2174/1872213X12666180115153635 29336271
    [Google Scholar]
  60. BhatA. MahalakshmiA.M. RayB. TuladharS. HediyalT.A. ManthiannemE. PadamatiJ. ChandraR. ChidambaramS.B. SakharkarM.K. Benefits of curcumin in brain disorders.Biofactors201945566668910.1002/biof.1533 31185140
    [Google Scholar]
  61. Abd El-HackM.E. El-SaadonyM.T. SwelumA.A. ArifM. Abo GhanimaM.M. ShukryM. NoreldinA. TahaA.E. El-TarabilyK.A. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability.J. Sci. Food Agric.2021101145747576210.1002/jsfa.11372 34143894
    [Google Scholar]
  62. MemarziaA. KhazdairM.R. BehrouzS. GholamnezhadZ. JafarnezhadM. SaadatS. BoskabadyM.H. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review.Biofactors202147331135010.1002/biof.1716 33606322
    [Google Scholar]
  63. HayE. LucarielloA. ContieriM. EspositoT. De LucaA. GuerraG. PernaA. Therapeutic effects of turmeric in several diseases: An overview.Chem. Biol. Interact.201931010872910.1016/j.cbi.2019.108729 31255636
    [Google Scholar]
  64. BhandariR. KuhadA. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of Autism spectrum disorders.Life Sci.201514115616910.1016/j.lfs.2015.09.012 26407474
    [Google Scholar]
  65. SajaK. BabuM.S. KarunagaranD. SudhakaranP.R. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells.Int. Immunopharmacol.20077131659166710.1016/j.intimp.2007.08.018 17996675
    [Google Scholar]
  66. GilhotraN. DhingraD. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice.Brain Res.2010135216717510.1016/j.brainres.2010.07.007 20633542
    [Google Scholar]
  67. AjaP.M. IzekweF.I. FamurewaA.C. EkponoE.U. NwiteF.E. IgwenyiI.O. AwokeJ.N. AniO.G. AlokeC. ObasiN.A. UdehK.U. AleB.A. Hesperidin protects against cadmium-induced pancreatitis by modulating insulin secretion, redox imbalance and iNOS/NF-ĸB signaling in rats.Life Sci.202025911826810.1016/j.lfs.2020.118268 32800830
    [Google Scholar]
  68. SiniscalcoD. SchultzS. BrigidaA.L. AntonucciN. Inflammation and neuro-immune dysregulations in Autism spectrum disorders.Pharmaceuticals (Basel)20181125610.3390/ph11020056 29867038
    [Google Scholar]
  69. ChainoglouE. Hadjipavlou-LitinaD. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids.Int. J. Mol. Sci.2020216197510.3390/ijms21061975 32183162
    [Google Scholar]
  70. ZhongZ. HanJ. ZhangJ. XiaoQ. HuJ. ChenL. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system.Drug Des. Devel. Ther.2018121479148910.2147/DDDT.S160776 29872270
    [Google Scholar]
  71. SurhY-J. ChunK-S. ChaH-H. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation.Mutat. Res.2001480-48124326810.1016/S0027‑5107(01)00183‑X
    [Google Scholar]
  72. CabreraC. ArtachoR. GiménezR. Beneficial effects of green tea-a review.J. Am. Coll. Nutr.2006252799910.1080/07315724.2006.10719518 16582024
    [Google Scholar]
  73. LardnerA.L. Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders.Nutr. Neurosci.201417414515510.1179/1476830513Y.0000000079 23883567
    [Google Scholar]
  74. BanjiD. BanjiO.J.F. AbbagoniS. HayathM.S. KambamS. ChilukaV.L. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced Autism in animals.Brain Res.2011141014115110.1016/j.brainres.2011.06.063 21820650
    [Google Scholar]
  75. BentS. BertoglioK. HendrenR.L. Omega-3 fatty acids for Autistic spectrum disorder: A systematic review.J. Autism Dev. Disord.20093981145115410.1007/s10803‑009‑0724‑5 19333748
    [Google Scholar]
  76. AmmingerG.P. BergerG.E. SchäferM.R. KlierC. FriedrichM.H. FeuchtM. Omega-3 fatty acids supplementation in children with autism: A double-blind randomized, placebo-controlled pilot study.Biol. Psychiatry200761455155310.1016/j.biopsych.2006.05.007 16920077
    [Google Scholar]
  77. MeiriG. BichovskyY. BelmakerR.H. Omega 3 fatty acid treatment in autism.J. Child Adolesc. Psychopharmacol.200919444945110.1089/cap.2008.0123
    [Google Scholar]
  78. BentS. BertoglioK. AshwoodP. BostromA. HendrenR.L. A pilot randomized controlled trial of omega-3 fatty acids for] Autism spectrum disorder.J. Autism Dev. Disord.201141554555410.1007/s10803‑010‑1078‑8 20683766
    [Google Scholar]
  79. VaramballyS. GangadharB.N. Yoga and traditional healing methods in mental health. Mental Health and Illness in the Rural World. Mental Health and Illness Worldwide.SingaporeSpringer202029732610.1007/978‑981‑10‑2345‑3_20
    [Google Scholar]
  80. AdamsJ.B. KirbyJ. AudhyaT. WhiteleyP. BainJ. Vitamin/mineral/micronutrient supplement for Autism spectrum disorders: A research survey.BMC Pediatr.202222159010.1186/s12887‑022‑03628‑0 36229781
    [Google Scholar]
  81. AdamsJ.B. AudhyaT. McDonough-MeansS. RubinR.A. QuigD. GeisE. GehnE. LorestoM. MitchellJ. AtwoodS. BarnhouseS. LeeW. Effect of a vitamin/mineral supplement on children and adults with Autism.BMC Pediatr.201111111110.1186/1471‑2431‑11‑111 22151477
    [Google Scholar]
  82. BjørklundG. WalyM.I. Al-FarsiY. SaadK. DadarM. RahmanM.M. ElhoufeyA. ChirumboloS. Jóźwik-PruskaJ. Kałużna-CzaplińskaJ. The role of vitamins in Autism spectrum disorder: What do we know?J. Mol. Neurosci.201967337338710.1007/s12031‑018‑1237‑5 30607900
    [Google Scholar]
  83. DuvallM.G. PikmanY. KantorD.B. AriagnoK. SummersL. SectishT.C. MullenM.P. Pulmonary hypertension associated with scurvy and vitamin deficiencies in an autistic child.Pediatrics20131326e1699e170310.1542/peds.2012‑3054 24190688
    [Google Scholar]
  84. Kałużna-CzaplińskaJ. SochaE. RynkowskiJ. B vitamin supplementation reduces excretion of urinary dicarboxylic acids in autistic children.Nutr. Res.201131749750210.1016/j.nutres.2011.06.002 21840465
    [Google Scholar]
  85. SchmidtR.J. TancrediD.J. OzonoffS. HansenR.L. HartialaJ. AllayeeH. SchmidtL.C. TassoneF. Hertz-PicciottoI. Maternal periconceptional folic acid intake and risk of Autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study.Am. J. Clin. Nutr.2012961808910.3945/ajcn.110.004416 22648721
    [Google Scholar]
  86. KittanaM. AhmadaniA. StojanovskaL. AttleeA. The role of vitamin d supplementation in children with Autism spectrum disorder: A narrative review.Nutrients20211412610.3390/nu14010026 35010901
    [Google Scholar]
  87. HalagaliP. NayakD. RathnanandM. TippavajhalaV.K. SharmaH. BiswasD. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. Academic Press. KoduruT.S. OsmaniR.A.M. SinghE. DuttaS.B.T.T.N.R. 202537339710.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  88. SandhyaT. SowjanyaJ. VeereshB. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced Autism in rats.Neurochem. Res.20123751121113110.1007/s11064‑012‑0717‑1 22322665
    [Google Scholar]
  89. Al-AskarM. BhatR.S. SelimM. Al-AyadhiL. El-AnsaryA. Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism.BMC Complement. Altern. Med.201717125910.1186/s12906‑017‑1763‑7 28486989
    [Google Scholar]
  90. ZhongH. XiaoR. RuanR. LiuH. LiX. CaiY. ZhaoJ. FanX. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism.Psychopharmacology (Berl.)2020237123539355210.1007/s00213‑020‑05634‑5 32803366
    [Google Scholar]
  91. TrovòL. FuchsC. De RosaR. BarbieroI. TramarinM. CianiE. RusconiL. Kilstrup-NielsenC. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo.Neurobiol. Dis.202013810479110.1016/j.nbd.2020.104791 32032735
    [Google Scholar]
  92. PolegS. KouriehE. RubanA. ShapiraG. ShomronN. BarakB. OffenD. Behavioral aspects and neurobiological properties underlying medical cannabis treatment in Shank3 mouse model of Autism spectrum disorder.Transl. Psychiatry202111152410.1038/s41398‑021‑01612‑3 34645786
    [Google Scholar]
  93. Fleury-TeixeiraP. CaixetaF.V. Ramires da SilvaL.C. Brasil-NetoJ.P. Malcher-LopesR. Effects of CBD-enriched Cannabis sativa extract on Autism spectrum disorder symptoms: An observational study of 18 participants undergoing compassionate use.Front. Neurol.201910114510.3389/fneur.2019.01145 31736860
    [Google Scholar]
  94. AranA. HarelM. CassutoH. PolyanskyL. SchnappA. WattadN. ShmueliD. GolanD. CastellanosF.X. Cannabinoid treatment for Autism: A proof-of-concept randomized trial.Mol. Autism2021121610.1186/s13229‑021‑00420‑2 33536055
    [Google Scholar]
  95. Al-GholamM.A. AmeenO. The neuroprotective effect of Ginkgo biloba extract on valproic acid induced autistic features in mice.JCDR202014810.7860/JCDR/2020/44201.13948
    [Google Scholar]
  96. HasanzadehE. MohammadiM.R. GhanizadehA. RezazadehS.A. TabriziM. RezaeiF. AkhondzadehS. A double-blind placebo controlled trial of Ginkgo biloba added to risperidone in patients with autistic disorders.Child Psychiatry Hum. Dev.201243567468210.1007/s10578‑012‑0292‑3 22392415
    [Google Scholar]
  97. NiederhoferH. First preliminary results of an observation of Ginkgo biloba treating patients with autistic disorder.Phytother. Res.200923111645164610.1002/ptr.2778 19274699
    [Google Scholar]
  98. RezaiezadehH. LangarizadehM.A. TavakoliM.R. SabokroM. BanazadehM. KohlmeierK.A. ShabaniM. Therapeutic potential of Bergenin in the management of neurological-based diseases and disorders.Naunyn Schmiedebergs Arch. Pharmacol.2024397118349836610.1007/s00210‑024‑03197‑2 38850305
    [Google Scholar]
  99. ErridgeS. Kerr-GaffneyJ. HolveyC. CoomberR. BarrosD.A.R. BhoskarU. MwimbaG. PraveenK. SymeonC. Sachdeva-MohanS. SodergrenM.H. RuckerJ.J. Clinical outcome analysis of patients with Autism spectrum disorder: analysis from the UK Medical Cannabis Registry.Ther. Adv. Psychopharmacol.2022122045125322111624010.1177/20451253221116240 36159065
    [Google Scholar]
  100. WahidM. AliA. SaqibF. AleemA. BibiS. AfzalK. AliA. BaigA. KhanS.A. Bin AsadM.H.H. Pharmacological exploration of traditional plants for the treatment of neurodegenerative disorders.Phytother. Res.202034123089311210.1002/ptr.6742 32478964
    [Google Scholar]
  101. HalagaliP. NayakD. TippavajhalaV.K. RathnanandM. BiswasD. SharmaH. Navigating the nanoscopic frontier: Ethical dimensions in developing nanocarriers for neurodegenerative diseases. Academic Press. KoduruT.S. OsmaniR.A.M. SinghE. DuttaS.B.T.T.N.R. 202539942010.1016/B978‑0‑443‑28822‑7.00011‑8
    [Google Scholar]
  102. BarchD.M. The Dangers of small samples and insufficient methodological detail.Schizophr. Bull.20234915610.1093/schbul/sbac137 36516215
    [Google Scholar]
  103. McDermottR. On the scientific study of small samples: Challenges confronting quantitative and qualitative methodologies.Leadersh. Q.202334310167510.1016/j.leaqua.2023.101675
    [Google Scholar]
  104. Sagi-DainL. WeiszB. Haratz KrajdenK. SingerA. YaronY. MaymonR. Methodological drawbacks in the alleged association between foetal sonographic anomalies and autism.Brain202214510e90e9110.1093/brain/awac246 35802022
    [Google Scholar]
  105. RødgaardE.M. JensenK. MiskowiakK.W. MottronL. Representativeness of autistic samples in studies recruiting through social media.Autism Res.20221581447145610.1002/aur.2777 35809003
    [Google Scholar]
  106. WathenJ.K. JagannathaS. NessS. BangerterA. PandinaG. A platform trial approach to proof-of-concept (POC) studies in autism spectrum disorder: Autism spectrum POC initiative (ASPI).Contemp. Clin. Trials Commun.20233210106110.1016/j.conctc.2023.101061 36949847
    [Google Scholar]
  107. JacobS. AnagnostouE. HollanderE. JouR. McNamaraN. SikichL. TobeR. MurphyD. McCrackenJ. AshfordE. ChathamC. ClinchS. SmithJ. SandersK. MurtaghL. NoeldekeJ. Veenstra-VanderWeeleJ. Large multicenter randomized trials in autism: key insights gained from the balovaptan clinical development program.Mol. Autism20221312510.1186/s13229‑022‑00505‑6 35690870
    [Google Scholar]
  108. NarzisiA. Alonso-EstebanY. MasiG. Alcantud-MarínF. Research-based intervention (RBI) for Autism spectrum disorder: Looking beyond traditional models and outcome measures for clinical trials.Children (Basel)20229343010.3390/children9030430 35327802
    [Google Scholar]
  109. BaribeauD. VorstmanJ. AnagnostouE. Novel treatments in autism spectrum disorder.Curr. Opin. Psychiatry202235210111010.1097/YCO.0000000000000775 35044968
    [Google Scholar]
  110. SalehiA. PuchalskiK. ShokoohiniaY. ZolfaghariB. AsgaryS. Differentiating cannabis products: Drugs, food, and supplements.Front. Pharmacol.20221390603810.3389/fphar.2022.906038 35833025
    [Google Scholar]
  111. SunH. Cross-cultural differences in Autism spectrum disorder symptoms.Lec. Not. Edu. Psycho. Pub. Med.20233116817310.54254/2753‑7048/3/2022499
    [Google Scholar]
  112. AglinskasA. AnzellottiS. Precision psychiatry requires disentangling disorder‐specific variation: The case of ASD.Clin. Transl. Med.20221210e107910.1002/ctm2.1079 36214746
    [Google Scholar]
  113. KilpatrickS. IrwinC. SinghK.K. Human pluripotent stem cell (hPSC) and organoid models of autism: Opportunities and limitations.Transl. Psychiatry202313121710.1038/s41398‑023‑02510‑6 37344450
    [Google Scholar]
  114. GallagherL. AnagnostouE. Genomics to therapeutics for ASD: Promise and challenges.J. Am. Acad. Child Adolesc. Psychiatry20226110S31810.1016/j.jaac.2022.07.708
    [Google Scholar]
  115. ObaraS.C. KaindiD.M. OkothM.W. MaranguD. A review of dietary and nutritional interventions available for management of Autism spectrum disorder symptoms in children and adolescents - Kenya.Afr. J. Food Agric. Nutr. Dev.202323121238352385810.18697/ajfand.121.22955
    [Google Scholar]
  116. MazurekA. MachajD. PolakJ. GrobeckiD. LisJ. MachajD. RaczkiewiczP. AdamikW. The role of diet and supplementation in the prevention and treatment of Autism spectrum disorders.J. Educ. Health Sport2023261111610.12775/JEHS.2023.26.01.001
    [Google Scholar]
  117. HinderaO. 14.5 Dietary Considerations in ASD: Nutrient intake, special diets, potential interventions.J. Am. Acad. Child Adolesc. Psychiatry20226110S2110.1016/j.jaac.2022.07.093
    [Google Scholar]
  118. DattaD. ColacoV. BandiS.P. SharmaH. DhasN. GiramP.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities.Polymers for Oral Drug Delivery Technologies (pp.263-333)Edition: A volume in Elsevier Ltd Series in BiomaterialsElsevier Woodhead Publishing2025
    [Google Scholar]
  119. HellingsJ. Pharmacotherapy in Autism spectrum disorders, including promising older drugs warranting trials.World J. Psychiatry202313626227710.5498/wjp.v13.i6.262 37383284
    [Google Scholar]
  120. ManiramJ. KarrimS.B.S. OosthuizenF. WiafeE. Pharmacological management of core symptoms and comorbidities of Autism spectrum disorder in children and adolescents: A systematic review.Neuropsychiatr. Dis. Treat.2022181629164410.2147/NDT.S371013 35968512
    [Google Scholar]
  121. FigueiredoJ.S.B. De OliveiraD.A. BrandãoM.M. RoyoV.A. De SouzaS.G.A. Pharmaceutical care in the health of Autistic Spectrum disorder.Brazilian J. Health Rev.2023613785379710.34119/bjhrv6n1‑293
    [Google Scholar]
  122. BallesterP. EspadasC. LondoñoA.C. AlmenaraS. AguilarV. BeldaC. PérezE. MurielJ. PeiróA.M. The challenge of detecting adverse events in adults with Autism spectrum disorder who have intellectual disability.Autism Res.202215119220210.1002/aur.2624 34652075
    [Google Scholar]
  123. RazR. OulhoteY. Invited perspective: Air pollution and Autism spectrum disorder: Are we there yet?Environ. Health Perspect.2022130101130310.1289/EHP10617 35040692
    [Google Scholar]
  124. HarrisK. 14.2 Improving safety and access to care for youth with neurodevelopmental disorders.J. Am. Acad. Child Adolesc. Psychiatry20226110S29810.1016/j.jaac.2022.07.634
    [Google Scholar]
  125. MunnichA. Unraveling the etiological complexity of autism spectrum disorders.Dev. Med. Child Neurol.202062440440410.1111/dmcn.14455 32124985
    [Google Scholar]
  126. UrdanetaK.E. CastilloM.A. MontielN. Semprún-HernándezN. AntonucciN. SiniscalcoD. Autism spectrum disorders: Potential neuro-psychopharmacotherapeutic plant-based drugs.Assay Drug Dev. Technol.201816843344410.1089/adt.2018.848 30427697
    [Google Scholar]
  127. von WintzingerodeF. SelentB. HegemannW. GöbelU.B. Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium.Appl. Environ. Microbiol.199965128328610.1128/AEM.65.1.283‑286.1999 9872791
    [Google Scholar]
  128. Cruz-MartinsN. QuispeC. KırkınC. ŞenolE. ZuluğA. ÖzçelikB. AdemiluyiA.O. OyeniranO.H. SemwalP. KumarM. SharopovF. LópezV. LesF. BagiuI.C. ButnariuM. Sharifi-RadJ. AlshehriM.M. ChoW.C. Paving plant‐food‐derived bioactives as effective therapeutic agents in Autism spectrum disorder.Oxid. Med. Cell. Longev.202120211113128010.1155/2021/1131280 34471461
    [Google Scholar]
  129. BartzJ.A. YoungL.J. HollanderE. Preclinical animal models of Autistic spectrum disorders (ASD).San DiegoAcademic Press2008353394
    [Google Scholar]
  130. AssimopoulosS. BeauchampA. LerchJ.P. Preclinical models of Autism spectrum disorder BT - neurodevelopmental pediatrics: Genetic and environmental influences.ChamSpringer International Publishing2023309325
    [Google Scholar]
  131. SilvermanJ.L. ThurmA. EthridgeS.B. SollerM.M. PetkovaS.P. AbelT. BaumanM.D. BrodkinE.S. Harony-NicolasH. WöhrM. HalladayA. Reconsidering animal models used to study Autism spectrum disorder: Current state and optimizing future.Genes Brain Behav.2022215e1280310.1111/gbb.12803 35285132
    [Google Scholar]
  132. ParmarG.R. SailorG.U. Nanotechnological Approach for Design and Delivery of Phytopharmaceuticals BT - Nanocarriers: Drug Delivery System: An Evidence Based Approach.SingaporeSpringer Singapore2021281301
    [Google Scholar]
  133. Al NomanA. Dev SharmaP. Jahin MimT. Al AzadM. SharmaH. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease.Aging Pathobiol. Ther.20246411310.31491/APT.2024.12.155
    [Google Scholar]
  134. InamdarA. GurupadayyaB. HalagaliP. TippavajhalaV.K. KhanF. PathakR. SharmaH. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration.Curr. Drug Targets20242612410.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  135. InamdarA. GurupadayyaB. HalagaliP. SN. PathakR. SinghH. SharmaH. Cutting-edge strategies for overcoming therapeutic barriers in Alzheimer’s disease.Curr. Pharm. Des.20243112110.2174/0113816128344571241018154506 39492772
    [Google Scholar]
  136. Al NomanA. AfrosaH. LihuI.K. SarkarO. NabinN.R. DattaM. PathakR. SharmaH. Vitamin D and neurological health: Unraveling risk factors, disease progression, and treatment potential.CNS Neurol. Disord. Drug Targets20242411210.2174/0118715273330972241009092828 39440730
    [Google Scholar]
  137. SarkarS. BhuiU. KumarB. AshiqueS. KumarP. SharmaH. Correlation between cognitive impairment and peripheral biomarkers - significance of phosphorylated Tau and Amyloid-β in Alzheimer’s disease: A new insight.Curr. Psychiatry Res. Rev.202412510.2174/0126660822329981241007105405
    [Google Scholar]
  138. SharmaH. ChandraP. PathakR. BhandariM. ArushiS.V. Advancements in the therapeutic approaches to treat neurological disorders.Cah Magellanes-NS.20246243284389
    [Google Scholar]
  139. ChandraP. SharmaH. Phosphodiesterase inhibitors for treatment of Alzheimer’s disease.Indian Drugs202461772210.53879/id.61.07.14382
    [Google Scholar]
  140. PathakR. SharmaS. BhandariM. NogaiL. MishraR. SaxenaA. Reena KmS.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions.J. Exp. Zool. India20242122447246110.59467/jez.2024.27.2.2447
    [Google Scholar]
  141. SharmaH. PathakR. BiswasD. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: A comprehensive exploration, review and future perspectives on intervention strategies.Curr. Psychiatry Rev.20242010.2174/0126660822304321240520075036
    [Google Scholar]
  142. ChandraP. AliZ. FatimaN. SharmaH. SachanN. SharmaK.K. VermaA. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders.Curr. Bioact. Compd.20242010.2174/0115734072292339240416095600
    [Google Scholar]
  143. SharmaH. ChandraP. Effects of natural remedies on memory loss and Alzheimer’s disease.Afr. J. Bio. Sc.20246718721110.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  144. HalagaliP. InamdarA. SinghJ. AnandA. SadhuP. PathakR. SharmaH. BiswasD. Phytochemicals, herbal extracts, and dietary supplements for metabolic disease management.Endocr. Metab. Immune Disord. Drug Targets20242410.2174/0118715303287911240409055710 38676520
    [Google Scholar]
  145. DasS. MukherjeeT. MohantyS. NayakN. MalP. AshiqueS. PalR. MohantoS. SharmaH. Impact of NF-κB signaling and sirtuin-1 protein for targeted inflammatory intervention.Curr. Pharm. Biotechnol.20242510.2174/0113892010301469240409082212 38638042
    [Google Scholar]
  146. AshiqueS. PalR. SharmaH. MishraN. GargA. Unraveling the emerging niche role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI).CNS Neurol. Disord. Drug Targets202423111357137010.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  147. SharmaH. ChandraP. VermaA. PandeyS.N. KumarP. SighA. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders.2023
    [Google Scholar]
  148. SharmaH. ChandraP. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease.Int. J. Pharm. Investig.202314111712610.5530/ijpi.14.1.15
    [Google Scholar]
  149. SharmaH. PathakR. JainS. BhandariM. MishraR. ReenaK. VarshneyP. Ficus racemosa L.: A review on its important medicinal uses, phytochemicals and biological activities.J. Popul. Ther. Clin. Pharmacol.2023301721322710.47750/jptcp.2023.30.17.018
    [Google Scholar]
  150. SharmaH. PathakR. KumarN. NogaiL. MishraR. BhandariM. KoliM. PandeyP. Endocannabinoid system: Role in depression, recompense, and pain control.J. Surv. Fish. Sci.2023104S2743275110.17762/sfs.v10i4S.1655
    [Google Scholar]
  151. SharmaH. RachamallaH.K. MishraN. ChandraP. PathakR. AshiqueS. Introduction to exosome and its role in brain disorders BT - exosomes based drug delivery strategies for brain disorders.SingaporeSpringer Nature Singapore202413510.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  152. SharmaH. TyagiS.J. ChandraP. VermaA. KumarP. AshiqueS. Role of exosomes in Parkinson’s and Alzheimer’s diseases BT - exosomes based drug delivery strategies for brain disorders.SingaporeSpringer Nature Singapore202414718210.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  153. KumarP. SharmaH. SinghA. PandeyS.N. ChandraP. Correlation between exosomes and neuro-inflammation in various brain disorders BT - exosomes based drug delivery strategies for brain disorders.SingaporeSpringer Nature Singapore202427330210.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
  154. SharmaH. RaniT. KhanS. An insight into neuropathic pain: A systemic and up-to-date review.Int. J. Pharm. Sci. Res.202314260762110.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  155. PathakR. SharmaH. KumarN. A brief review on Anthocephalus cadamba.Acta Sci. Pharmacol.202235714
    [Google Scholar]
  156. SharmaH. PathakR. A review on prelimenary phytochemical screening of Curcuma longa linn.J. Pharma. Herbal Med. Res.2021722427
    [Google Scholar]
  157. SharmaH. AnandA. HalagaliP. InamdarA. PathakR. Taghizadeh-HesaryF. AshiqueS. Advancement of nanoengineered flavonoids for chronic metabolic diseases.Role of flavonoids in chronic metabolic diseases202445951010.1002/9781394238071.ch13
    [Google Scholar]
  158. PathakR. SharmaH. A review on medicinal uses of Cinnamomum verum (Cinnamon).J. Drug Deliv. Ther.2021116-S16116610.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  159. SharmaH. HalagaliP. MajumderA. SharmaV. PathakR. Natural compounds targeting signaling pathways in breast cancer therapy.African J. Biol. Sci.202461054305479
    [Google Scholar]
  160. PathakR. KaurV. SharmaS. BhandariM. MishraR. SaxenaA. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors.Afr. J. Bio. Sci.20246913111330
    [Google Scholar]
  161. KumarP. SharmaH. SinghA. DurgapalS. KukretiG. BhowmickM. BhowmickP. AshiqueS. Targeting the interplay of proteins through PROTACs for management cancer and associated disorders.Curr. Cancer Ther. Rev.2024202010.2174/0115733947304806240417092449
    [Google Scholar]
  162. AshiqueS. BhowmickM. PalR. KhatoonH. KumarP. SharmaH. GargA. KumarS. DasU. Multi drug resistance in colorectal cancer-approaches to overcome, advancements and future success.Adv. Cancer Biol. Metastasis20241010011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  163. KumarP. PandeyS. AhmadF. VermaA. SharmaH. AshiqueS. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.20239131
    [Google Scholar]
  164. SharmaH. PathakR. SachanN. ChandraP. Role of tumor antigens for cancer vaccine development.Cancer Vaccination and Challenges.New YorkApple Academic Press2024579410.1201/9781003501718‑3
    [Google Scholar]
  165. KaushikM. KumarS. SinghM. SharmaH. BhowmickM. BhowmickP. Bio-inspired nanomaterials in cancer theranostics.Nanotheranostics for Diagnosis and Therapy.SingaporeSpringer Nature20249512310.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072347775250129042526
Loading
/content/journals/cbc/10.2174/0115734072347775250129042526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test