Skip to content
2000
image of Synthesis, Crystal Structure, Spectroscopic Characterization, In Vitro and In Silico Molecular Docking Studies of Benzyl Tetrazole-N-Isobutyl Acetamide Hybrid

Abstract

Background

Tetrazole-based compounds are of significant interest due to their potential pharmacological applications. The current study focuses on the synthesis and analysis of such a compound.

Objective

This research aims to synthesize the title compound N-(3-methyl-1-phenyl-2-(1H-tetrazol-1-yl) butyl) acetamide, analyze its crystal structure, perform computational studies, and evaluate its potential pharmacological activities and it’s and supports, specifically antidiabetic and anti-inflammatory properties.

Methods

The title compound, CHNO, was synthesized, and its crystal structure was confirmed using single-crystal X-ray diffraction analysis by default parameters. Density Functional Theory (DFT) calculations were performed using the Gaussian 09W software package with the B3LYP/6-311++G (d,p) method to optimize the compound's structure and calculate its HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP), and Mulliken charge distribution. , antidiabetic and anti-inflammatory activities were assessed and compared with standard drugs by using reported protocols. Additionally, molecular docking studies were conducted with enzymes related to diabetes and inflammation with default parameters, and Auto-Dock 4.2 software was used.

Results

The X-ray diffraction analysis confirmed the crystal structure, and the Density Functional Theory (DFT) calculations provided insights into the molecular properties of the compound. Molecular docking experiments with relevant enzymes further supported the significant antidiabetic and anti-inflammatory activities demonstrated in the tests.

Conclusion

The synthesized tetrazole-based compound exhibits promising antidiabetic and anti-inflammatory activities, supported by both experimental and theoretical studies, suggesting its potential for further pharmacological investigation.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072343177241101103244
2024-11-07
2025-01-18
Loading full text...

Full text loading...

References

  1. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  2. Daniels D.L. Riching K.M. Urh M. Monitoring and deciphering protein degradation pathways inside cells. Drug Discov. Today. Technol. 2019 31 61 68 10.1016/j.ddtec.2018.12.001 31200861
    [Google Scholar]
  3. Scott D.E. Bayly A.R. Abell C. Skidmore J. Small molecules, big targets: Drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 2016 15 8 533 550 10.1038/nrd.2016.29 27050677
    [Google Scholar]
  4. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  5. Kleemann A. Engel J. Pharmaceutical substances: Syntheses, patents, applications. of the Most Relevant APIs. 3rd ed Thieme Medical New York, NY, USA 1999
    [Google Scholar]
  6. Jawad A.A. Jber N.R. Rasool B.S. Abbas A.K. Tetrazole derivatives and role of tetrazole in medicinal chemistry: An article review. Al-Nahrain Journal of Science 2023 26 1 1 7 10.22401/ANJS.26.1.01
    [Google Scholar]
  7. Wei C.X. Bian M. Gong G.H. Tetrazolium compounds: Synthesis and applications in medicine. Molecules 2015 20 4 5528 5553 10.3390/molecules20045528 25826789
    [Google Scholar]
  8. Elwood J.M.L. Henry M.C. Lopez-Fernandez J.D. Mowat J.M. Boyle M. Buist B. Livingstone K. Jamieson C. Functionalized tetrazoles as latent active esters in the synthesis of amide bonds. Org. Lett. 2022 24 51 9491 9496 10.1021/acs.orglett.2c03971 36524745
    [Google Scholar]
  9. Definition, diagnosis and classification of diabetes mellitus and its complications : Report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. 1999 Available from: https://iris.who.int/handle/10665/66040
  10. Tran N. Pham B. Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel) 2020 9 9 252 10.3390/biology9090252 32872226
    [Google Scholar]
  11. Kay J. Thadhani E. Samson L. Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst.) 2019 83 102673 10.1016/j.dnarep.2019.102673 31387777
    [Google Scholar]
  12. Plewczynski D. Łaźniewski M. Augustyniak R. Ginalski K. Can we trust docking results? evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem. 2011 32 4 742 755 10.1002/jcc.21643 20812323
    [Google Scholar]
  13. Englebienne P. Moitessier N. Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins? J. Chem. Inf. Model. 2009 49 6 1568 1580 10.1021/ci8004308 19445499
    [Google Scholar]
  14. Warren G.L. Andrews C.W. Capelli A.M. Clarke B. LaLonde J. Lambert M.H. Lindvall M. Nevins N. Semus S.F. Senger S. Tedesco G. Wall I.D. Woolven J.M. Peishoff C.E. Head M.S. A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006 49 20 5912 5931 10.1021/jm050362n 17004707
    [Google Scholar]
  15. Huang Q. Li L.L. Yang S.Y. PhDD: A new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. J. Mol. Graph. Model. 2010 28 8 775 787 10.1016/j.jmgm.2010.02.002 20206562
    [Google Scholar]
  16. Jacobsson M. Karlén A. Ligand bias of scoring functions in structure-based virtual screening. J. Chem. Inf. Model. 2006 46 3 1334 1343 10.1021/ci050407t 16711752
    [Google Scholar]
  17. Geetha S. Yuva Priya M.K. Chandralekha K. Thennarasu S. Lakshmi S. N -[3-Methyl-1-phenyl-1-(1 H -tetrazol-1-yl)butan-2-yl]acetamide. IUCrdata 2016 1 11 x161810 10.1107/S2414314616018101
    [Google Scholar]
  18. Al-Zuhair S. Dowaidar A. Kamal H. Inhibitory effect of dates-extract on α-Amylase and α-glucosidase enzymes relevant to non-insulin dependent diabetes mellitus. J. Biochem. Technol. 2010 2 2 158 160
    [Google Scholar]
  19. Nithyabalaji R. Krishnan H. Subha J. Sribalan R. Synthesis, molecular structure, in vitro and in silico studies of 4-phenylmorpholine-heterocyclic amides. J. Mol. Struct. 2020 1204 127563 10.1016/j.molstruc.2019.127563
    [Google Scholar]
  20. Kansız S. Dege N. Synthesis, crystallographic structure, DFT calculations and Hirshfeld surface analysis of a fumarate bridged Co(II) coordination polymer. J. Mol. Struct. 2018 1173 42 51 10.1016/j.molstruc.2018.06.071
    [Google Scholar]
  21. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015 71 1 3 8 10.1107/S2053229614024218 25567568
    [Google Scholar]
  22. Usón I. Sheldrick G.M. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr. D Struct. Biol. 2018 74 2 106 116 10.1107/S2059798317015121 29533236
    [Google Scholar]
  23. Sheldrick G.M. Schneider T.R. [16] SHELXL: High-resolution refinement Methods in enzymology Academic Press 1997 277 319 343 10.1016/S0076‑6879(97)77018‑6
    [Google Scholar]
  24. Farrugia L.J. WinGX and ORTEP for Windows : An update. J. Appl. Cryst. 2012 45 4 849 854 10.1107/S0021889812029111
    [Google Scholar]
  25. Spek A.L. checkCIF validation ALERTS: What they mean and how to respond. Acta Crystallogr. E Crystallogr. Commun. 2020 76 1 1 11 10.1107/S2056989019016244 31921444
    [Google Scholar]
  26. McConkey B.J. Sobolev V. Edelman M. The performance of current methods in ligand–protein docking. Curr. Sci. 2002 83 7 845 856
    [Google Scholar]
  27. Nithyabalaji R. Krishnan H. Sribalan R. Synthesis, molecular structure and multiple biological activities of N-(3-methoxyphenyl)-3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide. J. Mol. Struct. 2019 1186 1 10 10.1016/j.molstruc.2019.02.095
    [Google Scholar]
  28. Calder P.C. Albers R. Antoine J.M. Blum S. Bourdet-Sicard R. Ferns G.A. Folkerts G. Friedmann P.S. Frost G.S. Guarner F. Løvik M. Macfarlane S. Meyer P.D. M’Rabet L. Serafini M. van Eden W. van Loo J. Vas Dias W. Vidry S. Winklhofer-Roob B.M. Zhao J. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 2009 101 S1 Suppl. 1 1 45 10.1017/S0007114509377867 19586558
    [Google Scholar]
  29. Ferreira L. Dos Santos R. Oliva G. Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015 20 7 13384 13421 10.3390/molecules200713384 26205061
    [Google Scholar]
  30. Kerru N. Gummidi L. Bhaskaruni S.V.H.S. Maddila S.N. Singh P. Jonnalagadda S.B. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Sci. Rep. 2019 9 1 19280 10.1038/s41598‑019‑55793‑5 31848439
    [Google Scholar]
  31. Kumar S. Arumugam S.M. Sharma S. Mahala S. Devi B. Elumalai S. Insights into the kinetics and mechanism of spermine (base)-catalyzed D-fructose interconversion to low-calorie D-allulose. Molecular Catalysis 2022 533 112757 10.1016/j.mcat.2022.112757
    [Google Scholar]
  32. Senthil Murugan A. Abel Noelson E.R. Annaraj J. Solvent dependent colorimetric, ratiometric dual sensor for copper and fluoride ions: Real sample analysis, cytotoxicity and computational studies. Inorg. Chim. Acta 2016 450 131 139 10.1016/j.ica.2016.04.022
    [Google Scholar]
  33. Nishat S.S. Hossain M.J. Mullick F.E. Kabir A. Chowdhury S. Islam S. Hossain M. Performance analysis of perovskite solar cells using DFT-extracted parameters of metal-doped TiO2 electron transport layer. J. Phys. Chem. C 2021 125 24 13158 13166 10.1021/acs.jpcc.1c02302
    [Google Scholar]
  34. Sakkiah S. Meganathan C. Sohn Y.S. Namadevan S. Lee K.W. Identification of important chemical features of 11β-hydroxysteroid dehydrogenase type1 inhibitors: Application of ligand based virtual screening and density functional theory. Int. J. Mol. Sci. 2012 13 4 5138 5162 10.3390/ijms13045138 22606035
    [Google Scholar]
  35. Suresh C.H. Remya G.S. Anjalikrishna P.K. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 5 e1601 10.1002/wcms.1601
    [Google Scholar]
  36. Lakshminarayanan S. Jeyasingh V. Murugesan K. Selvapalam N. Dass G. Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions. Journal of Photochemistry and Photobiology 2021 6 100022 10.1016/j.jpap.2021.100022
    [Google Scholar]
  37. Geetha S. Sribalan R. Lakshmi S. Synthesis, crystal structure, spectroscopic characterization and anti-COVID-19 molecular docking investigation of 2-(2-Formylphenoxy)acetamide. Asian J. Chem. 2023 35 10 2389 2398 10.14233/ajchem.2023.28232
    [Google Scholar]
  38. Geetha S. Sribalan R. Lakshmi S. Crystal structure, spectral characterization, in vitro, molecular docking and DFT studies of pyranopyrazole derivatives. Chemical Physics Impact 2024 8 100608 10.1016/j.chphi.2024.100608
    [Google Scholar]
  39. Geetha S. Sribalan R. Lakshmi S. Synthesis, crystal structure, spectroscopic characterization, in vitro and in silico studies of water-soluble (Z)-N′-Hydroxy-2-Morpholinonicotinimidamide. J. Struct. Chem. 2024 65 4 740 759 10.1134/S0022476624040103
    [Google Scholar]
  40. Geetha S. Sribalan R. Lakshmi S. Synthesis, crystal structure, spectroscopic characterization, in vitro, molecular docking and DFT studies of 1- (Tert-Butyl) 2-methyl (2S, 4R)-4-hydroxy pyrrolidine-1,2-dicarboxylate. Chemical Physics Impact 2024 9 100660 10.1016/j.chphi.2024.100660
    [Google Scholar]
  41. Mulliken R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955 23 10 1833 1840 10.1063/1.1740588
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072343177241101103244
Loading
/content/journals/cbc/10.2174/0115734072343177241101103244
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: mulliken charge distribution ; molecular docking ; DFT ; Crystal structure ; MEP ; in vitro
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test