Skip to content
2000
image of Isolation, Characterization, and Validation of Amide Alkaloids from Piper Guineense Seeds

Abstract

Introduction

Alkaloids are naturally occurring nitrogen-containing chemicals in plants, fungi, and mammals. These chemicals protect plants from herbivores and pathogens and have a wide range of biological actions, making them useful in pharmacology and medicine. Alkaloids offer potent therapeutic effects, including antifungal, local anaesthetic, anti-inflammatory, antineoplastic, pain-killing, neuropharmacological, and antibacterial properties. Morphine is commonly used to relieve pain, quinine for malaria, and vincristine for cancer. Because of their considerable therapeutic potential, alkaloids have become a focus of study in the development of medications to treat infections, inflammation, neurological diseases, and cancer.

Objective

The primary goal of this research is to isolate, purify, and validate amide alkaloids from the seeds of PIPER guineense, a West African species while contrasting traditional alkaloid extraction methods with novel techniques such as molecular distillation, membrane separation, molecular imprinting, and high-speed counter-current chromatography. The study aims to address the challenges posed by conventional methods' high cost and low yield, by providing insights into more efficient, scalable, and advanced technologies for alkaloid extraction and purification, which are critical for the advancement of complementary and Chinese medicine.

Materials and Methods

The seeds of Piper guineense were extracted using a Soxhlet device with methanol as the solvent. The extracted extract was purified and separated into amide alkaloids using column chromatography. Thin-layer chromatography (TLC) was used to confirm the presence of alkaloids. The isolated compounds were examined and characterized using an array ofspectrum methods, including Mass spectra, FTIR, and NMR spectroscopy. Natural substances with nitrogen in the exocyclic outlook, such as mescaline, serotonin, & dopamine, were recognized as amines rather than alkaloids in the investigation.

Results

The synthesized chemicals, including Piperine, Wisanine, Piperlonguminine, Propiverine, and Piperidine, were satisfactorily characterized using FTIR, NMR, mass spectrometry, and HPLC. The FTIR spectra showed distinct peaks whichwere consistent with conventional standards, demonstrating the effective synthesis. NMR research, performed with a BRUKER AVANCE NEO-500MHz spectrometer, revealed information on the chemical surroundings of the protons, confirming the molecular structure. Mass spectroscopy was done using a MICROMASS Q-TOF micro-mass spectrometer to precisely measure molecular weights and identify fragmentation patterns, verifying the existence of important functional groups and assuring the structural integrity of the compounds.

Conclusions

This work effectively extracted, purified, and characterized numerous amide alkaloids from Piper guineense seeds using modern chromatographic and spectroscopic methods. The compounds, which included Piperine, Wisanine, Piperlonguminine, Propiverine, and Piperidine, were validated using FTIR, NMR, mass spectroscopy, and HPLC to ensure structural integrity and composition. The study reveals the efficacy of contemporary extraction and analytical procedures, offering useful insights into how to improve alkaloid purification processes. These discoveries advance our understanding of alkaloid chemistry and have the potential for future uses in alternative medicine and pharmaceutical research.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072342018250104231522
2025-01-24
2025-04-24
Loading full text...

Full text loading...

References

  1. Kurek J. Introductory chapter: Alkaloids-their importance in nature and for human life InTech London, UK 2019 1 7 10.5772/intechopen.85400
    [Google Scholar]
  2. Kurek J. Alkaloids - Their importance in nature and human life IntechOpen 2019 88 10.5772/intechopen.73336
    [Google Scholar]
  3. Sánchez S.E. Alkaloids: Biosynthesis, biological roles and health benefits Nova Science Publishers, Incorporated 2015 260
    [Google Scholar]
  4. Dey P. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids) Recent Advances in Natural Products Analysis. 2020 505 567 10.1016/B978‑0‑12‑816455‑6.00015‑9
    [Google Scholar]
  5. Sasaki C. Shinozuka T. Satoh F. Screening method for 23 alkaloids in human serum using LC/MS/MS with a pentafluorophenyl column in dynamic multiple reaction monitoring mode. Am. J. Anal. Chem. 2022 13 11 399 414 10.4236/ajac.2022.1311027
    [Google Scholar]
  6. Ghosh B. Polyamines and plant alkaloids. Indian J. Exp. Biol. 2000 38 11 1086 1091 11395950
    [Google Scholar]
  7. Verpoorte R. Niessen W.M.A. Liquid chromatography coupled with mass spectrometry in the analysis of alkaloids. Phytochem. Anal. 1994 5 5 217 232 10.1002/pca.2800050502
    [Google Scholar]
  8. Thawabteh A. Juma S. Bader M. Karaman D. Scrano L. Bufo S. Karaman R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 2019 11 11 656 10.3390/toxins11110656 31717922
    [Google Scholar]
  9. Grygorenko O.O. Hutskalova V. Moskvina V.S. Bicyclic 6-6 systems with one bridgehead (Ring Junction) nitrogen atom: Three extra heteroatoms (2:1) Elsevier 2022 75 10.1016/B978‑0‑12‑409547‑2.14958‑3
    [Google Scholar]
  10. Bardasov I.N. Ievlev M.Y. Bicyclic 6-6 systems with one bridgehead (Ring Junction) nitrogen atom: No extra heteroatom Comprehensive Heterocyclic Chemistry IV 2022 1 61 10.1016/B978‑0‑12‑409547‑2.14916‑9
    [Google Scholar]
  11. Hermann M. Christensen H. Reubsaet J.L.E. Determination of atorvastatin and metabolites in human plasma with solid-phase extraction followed by LC–tandem MS. Anal. Bioanal. Chem. 2005 382 5 1242 1249 10.1007/s00216‑005‑3266‑5 15933849
    [Google Scholar]
  12. Sowińska D. Development and validation of an RP-HPLC method for determination of atorvastatin and its hydroxyl metabolites in human plasma. Curr. Pharm. Anal. 2020 16 238 245 10.2174/1573412914666180912110154
    [Google Scholar]
  13. Guillén D. Cofán F. Ros E. Millán O. Cofán M. Rimola A. Brunet M. Determination of atorvastatin and its metabolite ortho-hydroxyatorvastatin in human plasma by on-line anion-exchange solid-phase extraction and liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2009 394 6 1687 1696 10.1007/s00216‑009‑2852‑3 19506841
    [Google Scholar]
  14. Chomel M. Larchevêque G.M. Fernandez C. Gallet C. DesRochers A. Paré D. Jackson B.G. Baldy V. Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. J. Ecol. 2016 104 6 1527 1541 10.1111/1365‑2745.12644
    [Google Scholar]
  15. Barceloux D.G. Pepper and capsaicin (Capsicum and Piper species). Dis. Mon. 2009 55 6 380 390 10.1016/j.disamonth.2009.03.008 19446682
    [Google Scholar]
  16. Erk N. Development of electrochemical methods for determination of atorvastatin and analytical application to pharmaceutical products and spiked human plasma. Crit. Rev. Anal. Chem. 2004 34 1 1 7 10.1080/10408340490273717
    [Google Scholar]
  17. El-Gizawy S.M. Abdelmageed O.H. Omar M.A. Deryea S.M. Megied A.A.M. Development and validation of HPLC method for simultaneous determination of amlodipine, valsartan, hydrochlorothiazide in dosage form and spiked human plasma. Am. J. Anal. Chem. 2012 3 6 422 430 10.4236/ajac.2012.36055
    [Google Scholar]
  18. Sugiyama Y. Soda Y. Yoritate M. Tajima H. Takahashi Y. Shibuya K. Ogihara C. Yokoyama T. Oishi T. Sato T. Chida N. Lactam strategy using amide-selective nucleophilic addition for quick access to complex amines: Unified total synthesis of stemoamide-type alkaloids. Bull. Chem. Soc. Jpn. 2022 95 2 278 287 10.1246/bcsj.20210372
    [Google Scholar]
  19. Sato T. Nucleophilic addition to amides toward efficient total synthesis of complex alkaloids Springer Nature 2023 275 293 10.1007/978‑981‑99‑1714‑3_13
    [Google Scholar]
  20. Rajput A. Sharma R. Bharti R. Pharmacological activities and toxicities of alkaloids on human health. Elsevier BV 2021 1407 1415 10.1016/j.matpr.2021.09.189
    [Google Scholar]
  21. Mi L. Li Y-C. Sun M-R. Zhang P-L. Li Y. Yang H. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids. Chin. J. Nat. Med. 2021 19 7 505 520 10.1016/S1875‑5364(21)60050‑X
    [Google Scholar]
  22. Alamgir A.N.M. Therapeutic use of medicinal plants and their extracts. Springer Cham 2017 546 10.1007/978‑3‑319‑63862‑1
    [Google Scholar]
  23. Alamgir A.N.M. Progress in drug research: Therapeutic use of medicinal plants and their extracts. Springer International Publishing 2017 73 546
    [Google Scholar]
  24. Alamgir A.N.M. Drugs: Their natural, synthetic, and biosynthetic sources. Ther. Med. Plants Extr. 2017 1 105 123 10.1007/978‑3‑319‑63862‑1_4
    [Google Scholar]
  25. Semwal D.K. The essential guide to alkaloids. Chemistry Research and Applications 2023 KXUM3530 10.52305/KXUM3530
    [Google Scholar]
  26. Carlin M.G. Dean J.R. Ames J.M. Opium alkaloids in harvested and thermally processed poppy seeds. Front Chem. 2020 8 737 10.3389/fchem.2020.00737 33195013
    [Google Scholar]
  27. Kleinmeier D. Pettengill E. Redan B.W. Commentary: Opium alkaloids in harvested and thermally processed poppy seeds. Front Chem. 2021 8 622488 10.3389/fchem.2020.622488 33553107
    [Google Scholar]
  28. Nikolic M. Djordjevic S. Alkaloids in the pharmaceutical industry: Structure, isolation and application. Hem. Ind. 2003 57 10 471 478 10.2298/HEMIND0310471N
    [Google Scholar]
  29. Weissman A. On the definition of cannabinoids: Botanical? chemical? pharmacological? J. Clin. Pharmacol. 1981 21 S1 159S 165S 10.1002/j.1552‑4604.1981.tb02591.x 7298866
    [Google Scholar]
  30. Grijalva G.E.P. Martínez L.L.X. Angulo C.L.A. Romero E.C.A. Heredia J.B. Plant alkaloids: Structures and bioactive properties. Plant-derived Bioactives. Chemistry and Mode of Action 2020 85 117 10.1007/978‑981‑15‑2361‑8_5
    [Google Scholar]
  31. Câmara J.S. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 2020 10 1 37 10.3390/foods10010037 33374463
    [Google Scholar]
  32. Jan R. Asaf S. Numan M. Lubna Kim K-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 2021 11 5 968 10.3390/agronomy11050968
    [Google Scholar]
  33. Bhambhani S. Kondhare K.R. Giri A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules 2021 26 11 3374 10.3390/molecules26113374 34204857
    [Google Scholar]
  34. Karageorgis G. Foley D.J. Laraia L. Brakmann S. Waldmann H. Pseudo natural products—chemical evolution of natural product structure. Angewandte Chem. Int. Edi. 2021 60 29 15705 15723 10.1002/anie.202016575
    [Google Scholar]
  35. Gershenzon J. Alkaloids: Biochemistry, ecology, and medicinal applications. Crop Sci. 1999 39 4 1251 1252 10.2135/cropsci1999.0011183X003900040051x
    [Google Scholar]
  36. Schlauer J. Alkaloids — Biochemistry, ecology, and medicinal applications. Phytochemistry 1999 52 6 1179 10.1016/S0031‑9422(99)00396‑9
    [Google Scholar]
  37. Block E. Alkaloids: Biochemistry, ecology, and medicinal applications. Margaret F. Roberts, Michael Wink. Q. Rev. Biol. 1999 74 2 256 257 10.1086/393155
    [Google Scholar]
  38. Klotz J. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins 2015 7 8 2801 2821 10.3390/toxins7082801 26226000
    [Google Scholar]
  39. Potter D.A. Stokes T.J. Redmond C.T. Schardl C.L. Panaccione D.G. Contribution of ergot alkaloids to suppression of a grass‐feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomol. Exp. Appl. 2008 126 2 138 147 10.1111/j.1570‑7458.2007.00650.x
    [Google Scholar]
  40. Johannsen K.K.L. Kayser O. Tropane alkaloids: Chemistry, pharmacology, biosynthesis and production. Molecules 2019 24 4 796 10.3390/molecules24040796 30813289
    [Google Scholar]
  41. Floss H.G. Biosynthesis of ergot alkaloids and related compounds. Tetrahedron 1976 32 8 873 912 10.1016/0040‑4020(76)85047‑8
    [Google Scholar]
  42. Ziegler J. Facchini P.J. Alkaloid biosynthesis: Metabolism and trafficking. Annu. Rev. Plant Biol. 2008 59 1 735 769 10.1146/annurev.arplant.59.032607.092730 18251710
    [Google Scholar]
  43. Veeresham C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012 3 4 200 201 10.4103/2231‑4040.104709 23378939
    [Google Scholar]
  44. Zhang M. Zhao J. Dai X. Li X. Extraction and analysis of chemical compositions of natural products and plants. Separations 2023 10 12 598 10.3390/separations10120598
    [Google Scholar]
  45. Dung P.N.T. Extraction and analysis of chemical composition of Ocimum gratissimum L essential oil in the North of Vietnam. IOP Conf. Ser. Mater. Sci. Eng. 2021 1092 012092 10.1088/1757‑899X/1092/1/012092
    [Google Scholar]
  46. Cannavacciuolo C. Pagliari S. Frigerio J. Giustra C.M. Labra M. Campone L. Natural deep eutectic solvents (NADESs) combined with sustainable extraction techniques: A review of the green chemistry approach in food analysis. Foods 2022 12 1 56 10.3390/foods12010056 36613272
    [Google Scholar]
  47. Pérez R.A. Albero B. Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples. Trends Analyt. Chem. 2023 166 117204 10.1016/j.trac.2023.117204
    [Google Scholar]
  48. Shen L. Pang S. Zhong M. Sun Y. Qayum A. Liu Y. Rashid A. Xu B. Liang Q. Ma H. Ren X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023 101 106646 10.1016/j.ultsonch.2023.106646 37862945
    [Google Scholar]
  49. Bouhzam I. Cantero R. Balcells M. Margallo M. Aldaco R. Bala A. Palmer F.P. Puig R. Environmental and yield comparison of quick extraction methods for caffeine and chlorogenic acid from spent coffee grounds. Foods 2023 12 4 779 10.3390/foods12040779 36832852
    [Google Scholar]
  50. Ivanović M. Razboršek I.M. Kolar M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 2020 9 11 1428 10.3390/plants9111428 33114332
    [Google Scholar]
  51. Ji Y. Yu M. Wang B. Zhang Y. The extraction, separation and purification of alkaloids in the natural medicine. J. Chem. Pharm. Res. 2014 6 1 338 345
    [Google Scholar]
  52. Lu Q. Luo S. Shi Z. Yu M. Guo W. Li C. Nitidine chloride, a benzophenanthridine alkaloid from Zanthoxylum nitidum (Roxb.) DC., exerts multiple beneficial properties, especially in tumors and inflammation-related diseases. Front. Pharmacol. 2022 13 1046402 10.3389/fphar.2022.1046402 36506558
    [Google Scholar]
  53. Klein L.M. Gabler A.M. Rychlik M. Gottschalk C. Kaltner F. A sensitive LC–MS/MS method for isomer separation and quantitative determination of 51 pyrrolizidine alkaloids and two tropane alkaloids in cow’s milk. Anal. Bioanal. Chem. 2022 414 28 8107 8124 10.1007/s00216‑022‑04344‑5 36183043
    [Google Scholar]
  54. Dyer L.A. Richards J. Dodson C.D. Isolation, synthesis, and evolutionary ecology of piper amides. Springer Boston, MA 2004 117 139 10.1007/978‑0‑387‑30599‑8_7
    [Google Scholar]
  55. Kaiser D. Bauer A. Lemmerer M. Maulide N. Amide activation: An emerging tool for chemoselective synthesis. Chem. Soc. Rev. 2018 47 21 7899 7925 10.1039/C8CS00335A 30152510
    [Google Scholar]
  56. Maulide N. Kaiser D. Bauer A. Lemmerer M. Featuring work from the research group of professor amide activation: An emerging tool for chemoselective synthesis. Chem. Soc. Rev. 2018 47 7899 7925
    [Google Scholar]
  57. Sun X. Li C. Ma J. Zang Y. Huang J. Chen N. Wang X. Zhang D. New amide alkaloids and carbazole alkaloid from the stems of Clausena lansium. Fitoterapia 2021 154 104999 10.1016/j.fitote.2021.104999 34302918
    [Google Scholar]
  58. Du Y.Q. Liu H. Li C.J. Yang J.Z. Ma J. Zhang D. Sun H. Zhang D.M. Carbazole and amide alkaloids from the stems of Clausena lansium. J. Asian Nat. Prod. Res. 2015 17 11 1048 1053 10.1080/10286020.2015.1052414 26095884
    [Google Scholar]
  59. Long Z. Zhang Y. Guo Z. Wang L. Xue X. Zhang X. Wang S. Wang Z. Civelli O. Liang X. Amide alkaloids from Scopolia tangutica. Planta Med. 2014 80 13 1124 1130 10.1055/s‑0034‑1382961 25127021
    [Google Scholar]
  60. Du N. Liu Y. Zhang X. Wang J. Zhao J. He J. Zhou H. Mei L. Liang X. Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica. Sci. Rep. 2017 7 1 46067 10.1038/srep46067 28387362
    [Google Scholar]
  61. Wen H. Li Y. Liu X. Ye W. Yao X. Che Y. Fusagerins A–F, new alkaloids from the fungus Fusarium sp. Nat. Prod. Bioprospect. 2015 5 4 195 203 10.1007/s13659‑015‑0067‑1 26329590
    [Google Scholar]
  62. Huang K.P. Xu L.L. Li S. Wei Y.L. Yang L. Hao X.J. He H.P. Zhang Y. Uncarialines A-E, new alkaloids from Uncaria rhynchophylla and their anticoagulant activity. Nat. Prod. Bioprospect. 2023 13 1 13 10.1007/s13659‑023‑00377‑0 37043142
    [Google Scholar]
  63. Huang K.P. Xu L.L. Li S. Wei Y.L. Yang L. Hao X.J. He H.P. Zhang Y. Correction: Uncarialines A-E, new alkaloids from Uncaria rhynchophylla and their anticoagulant activity. Nat. Prod. Bioprospect. 2023 13 1 15 10.1007/s13659‑023‑00378‑z 37171499
    [Google Scholar]
  64. Li W.X. Wang H. Dong A.W. Systematic separation and purification of alkaloids from Euchresta tubulosa Dunn. by various chromatographic methods. Processes 2019 7 12 924 10.3390/pr7120924
    [Google Scholar]
  65. Liu Y.P. Guo J.M. Wang X.P. Liu Y.Y. Zhang W. Wang T. Qiang L. Fu Y.H. Geranylated carbazole alkaloids with potential neuroprotective activities from the stems and leaves of Clausena lansium. Bioorg. Chem. 2019 92 103278 10.1016/j.bioorg.2019.103278 31541802
    [Google Scholar]
  66. da Fonseca M.G. Airoldi C. Híbridos inorgânico-orgânicos derivados da reação de filossicatos com organossilanos. Quím. Nova. 2003 26 5 699 707
    [Google Scholar]
  67. Kumar G.M. Neelam I. Ajitha A. Rao V.U.M. Centrifugal partition chromatography: An overview Int. J. Pharm. Res. Anal. 2014 4 6 353 360
    [Google Scholar]
  68. Malviya R. Bansal V. Pal O.P. Sharma P.K. High performance liquid chromatography: A short review. J. Glob. Pharma Technol. 2010 2 5 22 26
    [Google Scholar]
  69. Juszczak A.M. Končić Z.M. Tomczyk M. Recent trends in the application of chromatographic techniques in the analysis of luteolin and its derivatives. Biomolecules 2019 9 11 731 10.3390/biom9110731 31726801
    [Google Scholar]
  70. Khaledi M.G. Micelles as separation media in high-performance liquid chromatography and high-performance capillary electrophoresis: Overview and perspective. J. Chromatogr. A 1997 780 1-2 3 40 10.1016/S0021‑9673(97)00610‑9
    [Google Scholar]
  71. Petrucci R. High performance liquid chromatography coupled with mass spectrometry for/and nanomaterials: An overview. AIP Conf. Proc. 2020 2257 020002 10.1063/5.0023801
    [Google Scholar]
  72. Ingale A. Wadher D.S.J. Bagul S. Gujrati P. Govande A. High performance liquid chromatography: An overview. Int. J. Pharm. Sci. Rev. Res. 2023 82 2 18 24 10.47583/ijpsrr.2023.v82i02.003
    [Google Scholar]
  73. Kirkland J.J. Schuster S.A. Johnson W.L. Boyes B.E. Fused-core particle technology in high-performance liquid chromatography: An overview. J. Pharm. Anal. 2013 3 5 303 312 10.1016/j.jpha.2013.02.005 29403832
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072342018250104231522
Loading
/content/journals/cbc/10.2174/0115734072342018250104231522
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: purification ; Extraction ; characterization ; alkaloids ; separation ; phytoconstituents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test