Skip to content
2000
image of Chrysin: Chemistry, Occurrence, Pharmacokinetics, Toxicity, Molecular Targets, and Medicinal Properties of a Naturally Occurring Flavone

Abstract

The impact of naturally occurring flavonoids on human health and illnesses is crucial, as they are closely linked to dietary components and human health. Flavonoids may be able to shield people against disease in both and research settings. The flavonoid chrysin has demonstrated several intriguing pharmacological properties, including immune modulation, anti-cancer, anti-diabetic, antidepressant, and anti-asthmatic effects. Furthermore, it showed possible defenses against various toxins in the liver, brain, kidney, and heart, among other organs. Numerous investigations have been carried out to investigate potential targets for its potential mechanism of action. However, because of its low oral bioavailability, its medicinal uses have been restricted. Its broad first-pass metabolism is the leading cause of its low bioavailability. There hasn't been a thorough discussion of the pharmacological characteristics of chrysin and the molecular targets that are related to it yet. Therefore, this review aims to provide a comprehensive overview of chrysin, focusing on its chemical structure, natural sources, pharmacokinetics, toxicity profile, molecular targets, and medicinal properties. By synthesizing current research findings, this paper aims to highlight the therapeutic potential of chrysin, discuss its safety and efficacy, and identify areas for future research.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072341901241121185020
2024-12-04
2025-01-18
Loading full text...

Full text loading...

References

  1. Pichichero E. Cicconi R. Mattei M. Muzi M.G. Canini A. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. Int. J. Oncol. 2010 37 4 973 981 20811719
    [Google Scholar]
  2. Chaudhary A.K. Harminder Singh V. A Review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum vent. Indian J. Pharm. Sci. 2011 73 5 483 490 10.4103/0250‑474X.98981 22923859
    [Google Scholar]
  3. Bajgai S.P. Prachyawarakorn V. Mahidol C. Ruchirawat S. Kittakoop P. Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry 2011 72 16 2062 2067 10.1016/j.phytochem.2011.07.002 21802698
    [Google Scholar]
  4. Mamadalieva N.Z. Herrmann F. El-Readi M.Z. Tahrani A. Hamoud R. Egamberdieva D.R. Azimova S.S. Wink M. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J. Pharm. Pharmacol. 2011 63 10 1346 1357 10.1111/j.2042‑7158.2011.01336.x 21899551
    [Google Scholar]
  5. Pereira O.R. Silva A.M. Domingues M.R. Cardoso SMJFC Identification of phenolic constituents of Cytisus multiflorus. 2012 131 2 652 659 10.1016/j.foodchem.2011.09.045
    [Google Scholar]
  6. Stompor-Gorący M. Bajek-Bil A. Machaczka M. Chrysin: Perspectives on Contemporary Status and Future Possibilities as Pro-Health Agent. Nutrients 2021 13 6 2038 10.3390/nu13062038 34198618
    [Google Scholar]
  7. Cho H. Yun C.W. Park W.K. Kong J.Y. Kim K.S. Park Y. Lee S. Kim B.K. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 2004 49 1 37 43 10.1016/S1043‑6618(03)00248‑2 14597150
    [Google Scholar]
  8. Lapidot T. Walker M.D. Kanner J. Antioxidant and prooxidant effects of phenolics on pancreatic beta-cells in vitro. J. Agric. Food Chem. 2002 50 25 7220 7225 10.1021/jf020615a 12452635
    [Google Scholar]
  9. Woo K.J. Jeong Y.J. Inoue H. Park J.W. Kwon T.K. Chrysin suppresses lipopolysaccharide‐induced cyclooxygenase‐2 expression through the inhibition of nuclear factor for IL‐6 (NF‐IL6) DNA‐binding activity. FEBS Lett. 2005 579 3 705 711 10.1016/j.febslet.2004.12.048 15670832
    [Google Scholar]
  10. Lirdprapamongkol K. Sakurai H. Abdelhamed S. Yokoyama S. Athikomkulchai S. Viriyaroj A. Awale S. Ruchirawat S. Svasti J. Saiki I. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int. J. Oncol. 2013 43 1 329 337 10.3892/ijo.2013.1926 23636231
    [Google Scholar]
  11. Dou W. Zhang J. Zhang E. Sun A. Ding L. Chou G. Wang Z. Mani S. Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-κB signaling pathway. J. Pharmacol. Exp. Ther. 2013 345 3 473 482 10.1124/jpet.112.201863 23536316
    [Google Scholar]
  12. Bae Y. Lee S. Kim S.H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol. Appl. Pharmacol. 2011 254 1 56 64 10.1016/j.taap.2011.04.008 21515303
    [Google Scholar]
  13. Lee J.K. Kim S.Y. Kim Y.S. Lee W.H. Hwang D.H. Lee J.Y. Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin. Biochem. Pharmacol. 2009 77 8 1391 1400 10.1016/j.bcp.2009.01.009 19426678
    [Google Scholar]
  14. Del Fabbro L. de Gomes M.G. Souza L.C. Goes A.R. Boeira S.P. Oliveira M.S. Furian A.F. Jesse C.R. Chrysin suppress immune responses and protects from experimental autoimmune encephalomyelitis in mice. J. Neuroimmunol. 2019 335 577007 10.1016/j.jneuroim.2019.577007 31376787
    [Google Scholar]
  15. Wadibhasme P.G. Ghaisas M.M. Thakurdesai P.A. Anti-asthmatic potential of chrysin on ovalbumin-induced bronchoalveolar hyperresponsiveness in rats. Pharm. Biol. 2011 49 5 508 515 10.3109/13880209.2010.521754 21501099
    [Google Scholar]
  16. Du Q. Gu X. Cai J. Huang M. Su M. Chrysin attenuates allergic airway inflammation by modulating the transcription factors T-bet and GATA-3 in mice. Mol. Med. Rep. 2012 6 1 100 104 22552848
    [Google Scholar]
  17. Fu B. Xue J. Li Z. Shi X. Jiang B.H. Fang J. Chrysin inhibits expression of hypoxia-inducible factor-1α through reducing hypoxia-inducible factor-1α stability and inhibiting its protein synthesis. Mol. Cancer Ther. 2007 6 1 220 226 10.1158/1535‑7163.MCT‑06‑0526 17237281
    [Google Scholar]
  18. Sun L.P. Chen A.L. Hung H.C. Chien Y.H. Huang J.S. Huang C.Y. Chen Y.W. Chen C.N. Chrysin: A histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J. Agric. Food Chem. 2012 60 47 11748 11758 10.1021/jf303261r 23134323
    [Google Scholar]
  19. Russo P. Del Bufalo A. Cesario A. Flavonoids acting on DNA topoisomerases: recent advances and future perspectives in cancer therapy. Curr. Med. Chem. 2012 19 31 5287 5293 10.2174/092986712803833272 22998568
    [Google Scholar]
  20. Nabavi S.F. Braidy N. Habtemariam S. Orhan I.E. Daglia M. Manayi A. Gortzi O. Nabavi S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int. 2015 90 224 231 10.1016/j.neuint.2015.09.006 26386393
    [Google Scholar]
  21. Kang M.K. Park S.H. Choi Y.J. Shin D. Kang Y.H. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J. Mol. Med. (Berl.) 2015 93 7 759 772 10.1007/s00109‑015‑1301‑3 26062793
    [Google Scholar]
  22. Premalatha M. Parameswari C.S. Renoprotective effect of chrysin (5,7 dihydro flavone) in Streptozotocin induced diabetic nephropathy in rats. Int. J. Pharm. Pharm. Sci. 2012 4 241 247
    [Google Scholar]
  23. Ahad A. Ganai A.A. Mujeeb M. Siddiqui W.A. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol. Appl. Pharmacol. 2014 279 1 1 7 10.1016/j.taap.2014.05.007 24848621
    [Google Scholar]
  24. Testai L. Martelli A. Cristofaro M. Breschi M.C. Calderone V. Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in Langendorff-perfused rat hearts. J. Pharm. Pharmacol. 2013 65 5 750 756 10.1111/jphp.12032 23600393
    [Google Scholar]
  25. Dias M.C. Pinto D.C.G.A. Silva A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021 26 17 5377 10.3390/molecules26175377 34500810
    [Google Scholar]
  26. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013 2013 1 162750 10.1155/2013/162750 24470791
    [Google Scholar]
  27. Hostetler G.L. Ralston R.A. Schwartz S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutrit. 2017 8 3 423 435
    [Google Scholar]
  28. Madureira M.B. Concato V.M. Cruz E.M.S. Bitencourt de Morais J.M. Inoue F.S.R. Concimo Santos N. Gonçalves M.D. Cremer de Souza M. Basso Scandolara T. Fontana Mezoni M. Galvani M. Rodrigues Ferreira Seiva F. Panis C. Miranda-Sapla M.M. Pavanelli W.R. Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants 2023 12 3 586 10.3390/antiox12030586 36978836
    [Google Scholar]
  29. Villar I.C. Jiménez R. Galisteo M. Garcia-Saura M.F. Zarzuelo A. Duarte J. Effects of chronic chrysin treatment in spontaneously hypertensive rats. Planta Med. 2002 68 9 847 850 10.1055/s‑2002‑34400 12357404
    [Google Scholar]
  30. Chen C.C. Chow M.P. Huang W.C. Lin Y.C. Chang Y.J. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Mol. Pharmacol. 2004 66 3 683 693 15322261
    [Google Scholar]
  31. Charlton N.C. Mastyugin M. Török B. Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023 28 3 1057 10.3390/molecules28031057 36770724
    [Google Scholar]
  32. Lotito S.B. Frei B. Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J. Biol. Chem. 2006 281 48 37102 37110 10.1074/jbc.M606804200 16987811
    [Google Scholar]
  33. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  34. Yao L.H. Jiang Y.M. Shi J. Tomás-Barberán F.A. Datta N. Singanusong R. Chen S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004 59 3 113 122 10.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  35. Morin B. Nichols L.A. Zalasky K.M. Davis J.W. Manthey J.A. Holland L.J. The citrus flavonoids hesperetin and nobiletin differentially regulate low density lipoprotein receptor gene transcription in HepG2 liver cells. J. Nutr. 2008 138 7 1274 1281 10.1093/jn/138.7.1274 18567747
    [Google Scholar]
  36. Crespy V. Morand C. Besson C. Manach C. Démigné C. Rémésy C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. 2001 131 8 2109 2114 10.1093/jn/131.8.2109 11481403
    [Google Scholar]
  37. Heim K.E. Tagliaferro A.R. Bobilya D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002 13 10 572 584 10.1016/S0955‑2863(02)00208‑5 12550068
    [Google Scholar]
  38. Liu Z. Hu M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol. 2007 3 3 389 406 10.1517/17425255.3.3.389 17539746
    [Google Scholar]
  39. Walle T. Otake Y. Brubaker J.A. Walle U.K. Halushka P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol. 2001 51 2 143 146 10.1111/j.1365‑2125.2001.01317.x 11259985
    [Google Scholar]
  40. Farkhondeh T. Samarghandian S. Roshanravan B. Impact of chrysin on the molecular mechanisms underlying diabetic complications. J. Cell. Physiol. 2019 234 10 17144 17158 10.1002/jcp.28488 30916403
    [Google Scholar]
  41. Setchell K.D.R. Brown N.M. Desai P. Zimmer-Nechemias L. Wolfe B.E. Brashear W.T. Kirschner A.S. Cassidy A. Heubi J.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 2001 131 4 Suppl. 1362S 1375S 10.1093/jn/131.4.1362S 11285356
    [Google Scholar]
  42. Walle U.K. French K.L. Walgren R.A. Walle T. Transport of genistein-7-glucoside by human intestinal CACO-2 cells: potential role for MRP2. Res. Commun. Mol. Pathol. Pharmacol. 1999 103 1 45 56 10440570
    [Google Scholar]
  43. Adachi Y. Suzuki H. Schinkel A.H. Sugiyama Y. Role of breast cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and sulfate conjugates from enterocytes to intestinal lumen. Mol. Pharmacol. 2005 67 3 923 928 10.1124/mol.104.007393 15598971
    [Google Scholar]
  44. Walle U.K. Galijatovic A. Walle T. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem. Pharmacol. 1999 58 3 431 438 10.1016/S0006‑2952(99)00133‑1 10424761
    [Google Scholar]
  45. Ge S. Gao S. Yin T. Hu M. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method. J. Agric. Food Chem. 2015 63 11 2902 2910 10.1021/jf5056979 25715997
    [Google Scholar]
  46. Naz S. Imran M. Rauf A. Orhan I.E. Shariati M.A. Iahtisham-Ul-Haq IqraYasmin Shahbaz M. Qaisrani T.B. Shah Z.A. Plygun S. Heydari M. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019 235 116797 10.1016/j.lfs.2019.116797 31472146
    [Google Scholar]
  47. Noh K. Oh D.G. Nepal M.R. Jeong K.S. Choi Y. Kang M.J. Kang W. Jeong H.G. Jeong T.C. Pharmacokinetic Interaction of Chrysin with Caffeine in Rats. Biomol. Ther. (Seoul) 2016 24 4 446 452 10.4062/biomolther.2015.197 27098862
    [Google Scholar]
  48. Harasstani O.A. Moin S. Tham C.L. Liew C.Y. Ismail N. Rajajendram R. Flavonoid combinations cause synergistic inhibition of pro-inflammatory mediator secretion from lipopolysaccharide-induced RAW 264.7 cells. Inflamm. Res. Off. J. Eur. Histamine Res. 2010 59 9 711 721
    [Google Scholar]
  49. Fernández-Real J.M. Vendrell J. García I. Ricart W. Vallès M. Structural damage in diabetic nephropathy is associated with TNF-α system activity. Acta Diabetol. 2012 49 4 301 305 10.1007/s00592‑011‑0349‑y 22042131
    [Google Scholar]
  50. Gardner I. Popović M. Zahid N. Uetrecht J.P. A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo. Chem. Res. Toxicol. 2005 18 9 1384 1394 10.1021/tx050095o 16167830
    [Google Scholar]
  51. Fonseca V. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr. Med. Res. Opin. 2003 19 7 635 631 10.1185/030079903125002351 14606987
    [Google Scholar]
  52. Benković V. Orsolić N. Knežević A.H. Ramić S. Ðikić D. Bašić I. Kopjar N. Evaluation of the radioprotective effects of propolis and flavonoids in gamma-irradiated mice: the alkaline comet assay study. Biol. Pharm. Bull. 2008 31 1 167 172 10.1248/bpb.31.167 18175964
    [Google Scholar]
  53. Ha S.K. Moon E. Kim S.Y. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci. Lett. 2010 485 3 143 147 10.1016/j.neulet.2010.08.064 20813161
    [Google Scholar]
  54. Zhang T. Chen X. Qu L. Wu J. Cui R. Zhao Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem. 2004 12 23 6097 6105 10.1016/j.bmc.2004.09.013 15519155
    [Google Scholar]
  55. Garg A. Chaturvedi S. A Comprehensive Review on Chrysin: Emphasis on Molecular Targets, Pharmacological Actions and Bio-pharmaceutical Aspects. Curr. Drug Targets 2022 23 4 420 436 10.2174/1389450122666210824141044 34431464
    [Google Scholar]
  56. Pushpavalli G. Kalaiarasi P. Veeramani C. Pugalendi K.V. Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats. Eur. J. Pharmacol. 2010 631 1-3 36 41 10.1016/j.ejphar.2009.12.031 20056116
    [Google Scholar]
  57. Dewi R.M. Megawati M. Antika L.D. Antidiabetic Properties of Dietary Chrysin: A Cellular Mechanism Review. Mini Rev. Med. Chem. 2022 22 10 1450 1457 10.2174/1389557521666211101162449 34720081
    [Google Scholar]
  58. Zanoli P. Avallone R. Baraldi M. Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia 2000 71 Suppl. 1 S117 S123 10.1016/S0367‑326X(00)00186‑6 10930722
    [Google Scholar]
  59. El-Bassossy H.M. Abo-Warda S.M. Fahmy A. Chrysin and luteolin attenuate diabetes-induced impairment in endothelial-dependent relaxation: effect on lipid profile, AGEs and NO generation. Phytother. Res. 2013 27 11 1678 1684 10.1002/ptr.4917 23296950
    [Google Scholar]
  60. Wong W.T. Ng C.H. Tsang S.Y. Huang Y. Chen Z.Y. Relative contribution of individual oxidized components in ox-LDL to inhibition on endothelium-dependent relaxation in rat aorta. Nutr. Metab. Cardiovasc. Dis. 2011 21 3 157 164 10.1016/j.numecd.2008.12.017 20005687
    [Google Scholar]
  61. Qian L.B. Wang H.P. Chen Y. Chen F.X. Ma Y.Y. Bruce I.C. Xia Q. Luteolin reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta by reducing oxidative stress. Pharmacol. Res. 2010 61 4 281 287 10.1016/j.phrs.2009.10.004 19892019
    [Google Scholar]
  62. Zhou Y. Tao H. Xu N. Zhou S. Peng Y. Zhu J. Liu S. Chang Y. Chrysin improves diabetic nephropathy by regulating the AMPK ‐mediated lipid metabolism in HFD / STZ ‐induced DN mice. J. Food Biochem. 2022 46 12 e14379 10.1111/jfbc.14379 35976957
    [Google Scholar]
  63. Pathak R. Sachan N. Kabra A. Alanazi A.S. Alanazi M.M. Alsaif N.A. Chandra P. Isolation, characterization, development and evaluation of phytoconstituent based formulation for diabetic neuropathy. Saudi Pharm. J. 2023 31 8 101687 10.1016/j.jsps.2023.06.020 37448840
    [Google Scholar]
  64. Pathak R. Sachan N. Chandra P. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review. Biomed. Pharmacother. 2022 150 113025 10.1016/j.biopha.2022.113025
    [Google Scholar]
  65. Villar I.C. Vera R. Galisteo M. O’Valle F. Romero M. Zarzuelo A. Duarte J. Endothelial nitric oxide production stimulated by the bioflavonoid chrysin in rat isolated aorta. Planta Med. 2005 71 9 829 834 10.1055/s‑2005‑871296 16206037
    [Google Scholar]
  66. DiPetrillo K. Gesek F.A. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am. J. Nephrol. 2004 24 3 352 359 10.1159/000079121 15205554
    [Google Scholar]
  67. Hanhineva K. Törrönen R. Bondia-Pons I. Pekkinen J. Kolehmainen M. Mykkänen H. Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010 11 4 1365 1402 10.3390/ijms11041365 20480025
    [Google Scholar]
  68. Satyanarayana K. Sravanthi K. Shaker I. Ponnulakshmi R. Selvaraj J. Role of chrysin on expression of insulin signaling molecules. J. Ayurveda Integr. Med. 2015 6 4 248 258 10.4103/0975‑9476.157951 26834424
    [Google Scholar]
  69. Rehman M.U. Tahir M. Khan A.Q. Khan R. Lateef A. Oday-O-Hamiza Qamar W. Ali F. Sultana S. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: Plausible role of NF-κB. Toxicol. Lett. 2013 216 2-3 146 158 10.1016/j.toxlet.2012.11.013 23194824
    [Google Scholar]
  70. Kim J.E. Lee M.H. Nam D.H. Song H.K. Kang Y.S. Lee J.E. Kim H.W. Cha J.J. Hyun Y.Y. Han S.Y. Han K.H. Han J.Y. Cha D.R. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One 2013 8 4 e62068 10.1371/journal.pone.0062068 23637966
    [Google Scholar]
  71. Mezzano S. Aros C. Droguett A. Burgos M.E. Ardiles L. Flores C. Schneider H. Ruiz-Ortega M. Egido J. NF- B activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol. Dial. Transplant. 2004 19 10 2505 2512 10.1093/ndt/gfh207 15280531
    [Google Scholar]
  72. Fitzgerald D.C. Meade K.G. McEvoy A.N. Lillis L. Murphy E.P. MacHugh D.E. Baird A.W. Tumour necrosis factor-α (TNF-α) increases nuclear factor κB (NFκB) activity in and interleukin-8 (IL-8) release from bovine mammary epithelial cells. Vet. Immunol. Immunopathol. 2007 116 1-2 59 68 10.1016/j.vetimm.2006.12.008 17276517
    [Google Scholar]
  73. Sirovina D. Oršolić N. Končić M.Z. Kovačević G. Benković V. Gregorović G. Quercetin vs chrysin. Hum. Exp. Toxicol. 2013 32 10 1058 1066 10.1177/0960327112472993 23357962
    [Google Scholar]
  74. Abo-Salem O.M. El-Edel R.H. Harisa G.E. El-Halawany N. Ghonaim M.M. Experimental diabetic nephropathy can be prevented by propolis: Effect on metabolic disturbances and renal oxidative parameters. Pak. J. Pharm. Sci. 2009 22 2 205 210 19339234
    [Google Scholar]
  75. Samarghandian S. Azimi-Nezhad M. Samini F. Farkhondeh T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol. 2016 94 4 388 393 10.1139/cjpp‑2014‑0412 26863330
    [Google Scholar]
  76. Barcelos G.R.M. Angeli J.P.F. Serpeloni J.M. Grotto D. Rocha B.A. Bastos J.K. Knasmüller S. Júnior F.B. Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2011 726 2 109 115 10.1016/j.mrgentox.2011.05.011 21820078
    [Google Scholar]
  77. Serpeloni J.M. Barcelos G.R. Angeli J.P. Mercadante A.Z. Bianchi M. Antunes L.M. Dietary carotenoid lutein protects against DNA damage and alterations of the redox status induced by cisplatin in human derived HepG2 cells. Toxicol In Vitro. 2012 26 2 288 294 10.1016/j.tiv.2011.11.011
    [Google Scholar]
  78. Lukačínová A. Mojžiš J. Beňačka R. Keller J. Maguth T. Kurila P. Vaško L. Rácz O. Ništiar F. Preventive Effects of Flavonoids on Alloxan-Induced Diabetes Mellitus in Rats. Acta Vet. Brno 2008 77 2 175 182 10.2754/avb200877020175
    [Google Scholar]
  79. Benkovic V. Horvat Knezevic A. Dikic D. Lisicic D. Orsolic N. Basic I. Kosalec I. Kopjar N. Radioprotective effects of propolis and quercetin in γ-irradiated mice evaluated by the alkaline comet assay. Phytomedicine 2008 15 10 851 858 10.1016/j.phymed.2008.02.010 18424105
    [Google Scholar]
  80. Ciftci O. Ozdemir I. Vardi N. Beytur A. Oguz F. Ameliorating effects of quercetin and chrysin on 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced nephrotoxicity in rats. Toxicol. Ind. Health 2012 28 10 947 954 10.1177/0748233711430978 22173955
    [Google Scholar]
  81. Zhang Y. Gao Z. Liu J. Xu Z. Protective effects of baicalin and quercetin on an iron-overloaded mouse: comparison of liver, kidney and heart tissues. Nat. Prod. Res. 2011 25 12 1150 1160 10.1080/14786419.2010.495070 21740280
    [Google Scholar]
  82. Anand K.V. Mohamed Jaabir M.S. Thomas P.A. Geraldine P. Protective role of chrysin against oxidative stress in d ‐galactose‐induced aging in an experimental rat model. Geriatr. Gerontol. Int. 2012 12 4 741 750 10.1111/j.1447‑0594.2012.00843.x 22469068
    [Google Scholar]
  83. Breinholt V. Lauridsen S.T. Dragsted L.O. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica 1999 29 12 1227 1240 10.1080/004982599237903 10647909
    [Google Scholar]
  84. Ahmed Ismail T. Mohamed Soliman M. Abdo Nassan M. Ibrahim Mohamed D. Antihypercholesterolemic Effects of Mushroom, Chrysin, Curcumin and Omega-3 in Experimental Hypercholesterolemic Rats. J. Food Nutr. Res. (Newark) 2015 3 2 77 87 10.12691/jfnr‑3‑2‑1
    [Google Scholar]
  85. Zarzecki M.S. Araujo S.M. Bortolotto V.C. de Paula M.T. Jesse C.R. Prigol M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol. Rep. 2014 1 200 208 10.1016/j.toxrep.2014.02.003 28962239
    [Google Scholar]
  86. Talebi M. Talebi M. Farkhondeh T. Simal-Gandara J. Kopustinskiene D.M. Bernatoniene J. Pourbagher-Shahri A.M. Samarghandian S. Promising Protective Effects of Chrysin in Cardiometabolic Diseases. Curr. Drug Targets 2022 23 5 458 470 10.2174/1389450122666211005113234 34636295
    [Google Scholar]
  87. Farkhondeh T. Samarghandian S. Bafandeh F. The Cardiovascular Protective Effects of Chrysin: A Narrative Review on Experimental Researches. Cardiovasc. Hematol. Agents Med. Chem. 2019 17 1 17 27 10.2174/1871525717666190114145137 30648526
    [Google Scholar]
  88. Choi J.H. Yun J.W. Chrysin induces brown fat–like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition 2016 32 9 1002 1010 10.1016/j.nut.2016.02.007 27133810
    [Google Scholar]
  89. Lee J. Park W. Anti-Inflammatory Effect of Wogonin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid. Molecules 2015 20 4 6888 6900 10.3390/molecules20046888 25913928
    [Google Scholar]
  90. Caivano M. Cohen P. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J. Immunol. 2000 164 3018 3025
    [Google Scholar]
  91. Jiang H. Xia Q. Wang X. Song J. Bruce I.C. Luteolin induces vasorelaxion in rat thoracic aorta via calcium and potassium channels. Pharmazie 2005 60 6 444 447 10.1002/ardp.201100373 15997834
    [Google Scholar]
  92. Zhou C. Tabb M.M. Nelson E.L. Grün F. Verma S. Sadatrafiei A. Lin M. Mallick S. Forman B.M. Thummel K.E. Blumberg B. Mutual repression between steroid and xenobiotic receptor and NF- B signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Invest. 2006 116 8 2280 2289 10.1172/JCI26283 16841097
    [Google Scholar]
  93. Shah Y.M. Ma X. Morimura K. Kim I. Gonzalez F.J. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-κB target gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2007 292 4 G1114 G1122 10.1152/ajpgi.00528.2006 17170021
    [Google Scholar]
  94. Kachadourian R. Leitner H. Day B. Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: A role for glutathione depletion. Int. J. Oncol. 2007 31 1 161 168 10.3892/ijo.31.1.161 17549417
    [Google Scholar]
  95. Ganai S.A. Sheikh F.A. Baba Z.A. Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic‐based anticancer therapy. Phytother. Res. 2021 35 2 823 834 10.1002/ptr.6869 32930436
    [Google Scholar]
  96. Vasudevan M. Gunnam K.K. Parle M. Antinociceptive and anti-inflammatory effects of Thespesia populnea bark extract. J. Ethnopharmacol. 2007 109 2 264 270 10.1016/j.jep.2006.07.025 16949778
    [Google Scholar]
  97. Li X. Huang Q. Ong C.N. Yang X.F. Shen H.M. Chrysin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB. Cancer Lett. 2010 293 1 109 116 10.1016/j.canlet.2010.01.002 20133051
    [Google Scholar]
  98. Moghadam E.R. Ang H.L. Asnaf S.E. Zabolian A. Saleki H. Yavari M. Esmaeili H. Zarrabi A. Ashrafizadeh M. Kumar A.P. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives. Biomolecules 2020 10 10 1374 10.3390/biom10101374 32992587
    [Google Scholar]
  99. Yu X.M. Phan T. Patel P.N. Jaskula-Sztul R. Chen H. Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer 2013 119 4 774 781 10.1002/cncr.27742 22991264
    [Google Scholar]
  100. Khoo B.Y. Chua S.L. Balaram P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci. 2010 11 5 2188 2199 10.3390/ijms11052188 20559509
    [Google Scholar]
  101. Cárdenas M. Marder M. Blank V.C. Roguin L.P. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg. Med. Chem. 2006 14 9 2966 2971 10.1016/j.bmc.2005.12.021 16412650
    [Google Scholar]
  102. Li L. Wei D.Q. Wang J.F. Chou K.C. Computational studies of the binding mechanism of calmodulin with chrysin. Biochem. Biophys. Res. Commun. 2007 358 4 1102 1107 10.1016/j.bbrc.2007.05.053 17521610
    [Google Scholar]
  103. He L. He F. Bi H. Li J. Zeng S. Luo H.B. Huang M. Isoform-selective inhibition of chrysin towards human cytochrome P450 1A2. Kinetics analysis, molecular docking, and molecular dynamics simulations. Bioorg. Med. Chem. Lett. 2010 20 20 6008 6012 10.1016/j.bmcl.2010.08.072 20832301
    [Google Scholar]
  104. Maione F. Cantone V. Chini M.G. De Feo V. Mascolo N. Bifulco G. Molecular mechanism of tanshinone IIA and cryptotanshinone in platelet anti-aggregating effects: An integrated study of pharmacology and computational analysis. Fitoterapia 2015 100 174 178 10.1016/j.fitote.2014.11.024 25497578
    [Google Scholar]
  105. Rauf A. Khan R. Raza M. Khan H. Pervez S. De Feo V. Maione F. Mascolo N. Suppression of inflammatory response by chrysin, a flavone isolated from Potentilla evestita Th. Wolf. In silico predictive study on its mechanistic effect. Fitoterapia 2015 103 129 135 10.1016/j.fitote.2015.03.019 25819005
    [Google Scholar]
  106. Li Y. Li Y. He J. Liu D. Zhang Q. Li K. Zheng X. Tang G.T. Guo Y. Liu Y. The relationship between pharmacological properties and structure- activity of chrysin derivatives. Mini Rev. Med. Chem. 2019 19 7 555 568 10.2174/1389557518666180424094821 29692242
    [Google Scholar]
  107. Harris G.K. Qian Y. Leonard S.S. Sbarra D.C. Shi X. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J. Nutr. 2006 136 6 1517 1521 10.1093/jn/136.6.1517 16702314
    [Google Scholar]
  108. Tsuji P.A. Walle T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem. Biol. Interact. 2008 171 1 37 44 10.1016/j.cbi.2007.08.007 17884029
    [Google Scholar]
  109. Rana R. Chemistry and pharmacology of flavonoids- A review. Indian J. Pharmaceut. Edu. Res. 2019 53 1 8 20 10.5530/ijper.53.1.3
    [Google Scholar]
  110. Mani R. Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018 145 187 196 10.1016/j.phytochem.2017.09.016 29161583
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072341901241121185020
Loading
/content/journals/cbc/10.2174/0115734072341901241121185020
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: toxicity ; pharmacological activity ; flavone ; Chrysin ; pharmacokinetics ; molecular mechanism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test