Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

The impact of naturally occurring flavonoids on human health and illnesses is crucial, as they are closely linked to dietary components and human health. Flavonoids may be able to shield people against disease in both and research settings. The flavonoid chrysin has demonstrated several intriguing pharmacological properties, including immune modulation, anti-cancer, anti-diabetic, antidepressant, and anti-asthmatic effects. Furthermore, it showed possible defenses against various toxins in the liver, brain, kidney, and heart, among other organs. Numerous investigations have been carried out to investigate potential targets for its potential mechanism of action. However, because of its low oral bioavailability, its medicinal uses have been restricted. Its broad first-pass metabolism is the leading cause of its low bioavailability. There hasn't been a thorough discussion of the pharmacological characteristics of chrysin and the molecular targets that are related to it yet. Therefore, this review aims to provide a comprehensive overview of chrysin, focusing on its chemical structure, natural sources, pharmacokinetics, toxicity profile, molecular targets, and medicinal properties. By synthesizing current research findings, this paper aims to highlight the therapeutic potential of chrysin, discuss its safety and efficacy, and identify areas for future research.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072341901241121185020
2024-12-04
2025-12-19
Loading full text...

Full text loading...

References

  1. PichicheroE. CicconiR. MatteiM. MuziM.G. CaniniA. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression.Int. J. Oncol.2010374973981 20811719
    [Google Scholar]
  2. ChaudharyA.K.; Harminder; Singh, V. A Review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum vent.Indian J. Pharm. Sci.201173548349010.4103/0250‑474X.98981 22923859
    [Google Scholar]
  3. BajgaiS.P. PrachyawarakornV. MahidolC. RuchirawatS. KittakoopP. Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis.Phytochemistry201172162062206710.1016/j.phytochem.2011.07.002 21802698
    [Google Scholar]
  4. MamadalievaN.Z. HerrmannF. El-ReadiM.Z. TahraniA. HamoudR. EgamberdievaD.R. AzimovaS.S. WinkM. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity.J. Pharm. Pharmacol.201163101346135710.1111/j.2042‑7158.2011.01336.x 21899551
    [Google Scholar]
  5. PereiraO.R. SilvaA.M. DominguesM.R.; Cardoso, SMJFC Identification of phenolic constituents of Cytisus multiflorus.2012131265265910.1016/j.foodchem.2011.09.045
    [Google Scholar]
  6. Stompor-GorącyM. Bajek-BilA. MachaczkaM. Chrysin: Perspectives on Contemporary Status and future possibilities as pro-health agent.Nutrients2021136203810.3390/nu13062038 34198618
    [Google Scholar]
  7. ChoH. YunC.W. ParkW.K. KongJ.Y. KimK.S. ParkY. LeeS. KimB.K. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives.Pharmacol. Res.2004491374310.1016/S1043‑6618(03)00248‑2 14597150
    [Google Scholar]
  8. LapidotT. WalkerM.D. KannerJ. Antioxidant and prooxidant effects of phenolics on pancreatic beta-cells in vitro.J. Agric. Food Chem.200250257220722510.1021/jf020615a 12452635
    [Google Scholar]
  9. WooK.J. JeongY.J. InoueH. ParkJ.W. KwonT.K. Chrysin suppresses lipopolysaccharide‐induced cyclooxygenase‐2 expression through the inhibition of nuclear factor for IL‐6 (NF‐IL6) DNA‐binding activity.FEBS Lett.2005579370571110.1016/j.febslet.2004.12.048 15670832
    [Google Scholar]
  10. LirdprapamongkolK. SakuraiH. AbdelhamedS. YokoyamaS. AthikomkulchaiS. ViriyarojA. AwaleS. RuchirawatS. SvastiJ. SaikiI. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation.Int. J. Oncol.201343132933710.3892/ijo.2013.1926 23636231
    [Google Scholar]
  11. DouW. ZhangJ. ZhangE. SunA. DingL. ChouG. WangZ. ManiS. Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-κB signaling pathway.J. Pharmacol. Exp. Ther.2013345347348210.1124/jpet.112.201863 23536316
    [Google Scholar]
  12. BaeY. LeeS. KimS.H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB.Toxicol. Appl. Pharmacol.20112541566410.1016/j.taap.2011.04.008 21515303
    [Google Scholar]
  13. LeeJ.K. KimS.Y. KimY.S. LeeW.H. HwangD.H. LeeJ.Y. Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin.Biochem. Pharmacol.20097781391140010.1016/j.bcp.2009.01.009 19426678
    [Google Scholar]
  14. Del FabbroL. de GomesM.G. SouzaL.C. GoesA.R. BoeiraS.P. OliveiraM.S. FurianA.F. JesseC.R. Chrysin suppress immune responses and protects from experimental autoimmune encephalomyelitis in mice.J. Neuroimmunol.201933557700710.1016/j.jneuroim.2019.577007 31376787
    [Google Scholar]
  15. WadibhasmeP.G. GhaisasM.M. ThakurdesaiP.A. Anti-asthmatic potential of chrysin on ovalbumin-induced bronchoalveolar hyperresponsiveness in rats.Pharm. Biol.201149550851510.3109/13880209.2010.521754 21501099
    [Google Scholar]
  16. DuQ. GuX. CaiJ. HuangM. SuM. Chrysin attenuates allergic airway inflammation by modulating the transcription factors T-bet and GATA-3 in mice.Mol. Med. Rep.201261100104 22552848
    [Google Scholar]
  17. FuB. XueJ. LiZ. ShiX. JiangB.H. FangJ. Chrysin inhibits expression of hypoxia-inducible factor-1α through reducing hypoxia-inducible factor-1α stability and inhibiting its protein synthesis.Mol. Cancer Ther.20076122022610.1158/1535‑7163.MCT‑06‑0526 17237281
    [Google Scholar]
  18. SunL.P. ChenA.L. HungH.C. ChienY.H. HuangJ.S. HuangC.Y. ChenY.W. ChenC.N. Chrysin: A histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis.J. Agric. Food Chem.20126047117481175810.1021/jf303261r 23134323
    [Google Scholar]
  19. RussoP. Del BufaloA. CesarioA. Flavonoids acting on DNA topoisomerases: recent advances and future perspectives in cancer therapy.Curr. Med. Chem.201219315287529310.2174/092986712803833272 22998568
    [Google Scholar]
  20. NabaviS.F. BraidyN. HabtemariamS. OrhanI.E. DagliaM. ManayiA. GortziO. NabaviS.M. Neuroprotective effects of chrysin: From chemistry to medicine.Neurochem. Int.20159022423110.1016/j.neuint.2015.09.006 26386393
    [Google Scholar]
  21. KangM.K. ParkS.H. ChoiY.J. ShinD. KangY.H. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition.J. Mol. Med. (Berl.)201593775977210.1007/s00109‑015‑1301‑3 26062793
    [Google Scholar]
  22. PremalathaM. ParameswariC.S. Renoprotective effect of chrysin (5,7 dihydro flavone) in Streptozotocin induced diabetic nephropathy in rats.Int. J. Pharm. Pharm. Sci.20124241247
    [Google Scholar]
  23. AhadA. GanaiA.A. MujeebM. SiddiquiW.A. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats.Toxicol. Appl. Pharmacol.201427911710.1016/j.taap.2014.05.007 24848621
    [Google Scholar]
  24. TestaiL. MartelliA. CristofaroM. BreschiM.C. CalderoneV. Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in Langendorff-perfused rat hearts.J. Pharm. Pharmacol.201365575075610.1111/jphp.12032 23600393
    [Google Scholar]
  25. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules26175377 34500810
    [Google Scholar]
  26. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.ScientificWorldJournal20132013116275010.1155/2013/162750 24470791
    [Google Scholar]
  27. HostetlerG.L. RalstonR.A. SchwartzS.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity.Adv. Nutr.201783423435
    [Google Scholar]
  28. MadureiraM.B. ConcatoV.M. CruzE.M.S. Bitencourt de MoraisJ.M. InoueF.S.R. Concimo SantosN. GonçalvesM.D. Cremer de SouzaM. Basso ScandolaraT. Fontana MezoniM. GalvaniM. Rodrigues Ferreira SeivaF. PanisC. Miranda-SaplaM.M. PavanelliW.R. Naringenin and hesperidin as promising alternatives for prevention and co-adjuvant therapy for breast cancer.Antioxidants202312358610.3390/antiox12030586 36978836
    [Google Scholar]
  29. VillarI.C. JiménezR. GalisteoM. Garcia-SauraM.F. ZarzueloA. DuarteJ. Effects of chronic chrysin treatment in spontaneously hypertensive rats.Planta Med.200268984785010.1055/s‑2002‑34400 12357404
    [Google Scholar]
  30. ChenC.C. ChowM.P. HuangW.C. LinY.C. ChangY.J. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships.Mol. Pharmacol.2004663683693 15322261
    [Google Scholar]
  31. CharltonN.C. MastyuginM. TörökB. TörökM. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity.Molecules2023283105710.3390/molecules28031057 36770724
    [Google Scholar]
  32. LotitoS.B. FreiB. Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism.J. Biol. Chem.200628148371023711010.1074/jbc.M606804200 16987811
    [Google Scholar]
  33. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  34. YaoL.H. JiangY.M. ShiJ. Tomás-BarberánF.A. DattaN. SinganusongR. ChenS.S. Flavonoids in food and their health benefits.Plant Foods Hum. Nutr.200459311312210.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  35. MorinB. NicholsL.A. ZalaskyK.M. DavisJ.W. MantheyJ.A. HollandL.J. The citrus flavonoids hesperetin and nobiletin differentially regulate low density lipoprotein receptor gene transcription in HepG2 liver cells.J. Nutr.200813871274128110.1093/jn/138.7.1274 18567747
    [Google Scholar]
  36. CrespyV. MorandC. BessonC. ManachC. DémignéC. RémésyC. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats.J. Nutr.200113182109211410.1093/jn/131.8.2109 11481403
    [Google Scholar]
  37. HeimK.E. TagliaferroA.R. BobilyaD.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships.J. Nutr. Biochem.2002131057258410.1016/S0955‑2863(02)00208‑5 12550068
    [Google Scholar]
  38. LiuZ. HuM. Natural polyphenol disposition via coupled metabolic pathways.Expert Opin. Drug Metab. Toxicol.20073338940610.1517/17425255.3.3.389 17539746
    [Google Scholar]
  39. WalleT. OtakeY. BrubakerJ.A. WalleU.K. HalushkaP.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers.Br. J. Clin. Pharmacol.200151214314610.1111/j.1365‑2125.2001.01317.x 11259985
    [Google Scholar]
  40. FarkhondehT. SamarghandianS. RoshanravanB. Impact of chrysin on the molecular mechanisms underlying diabetic complications.J. Cell. Physiol.201923410171441715810.1002/jcp.28488 30916403
    [Google Scholar]
  41. SetchellK.D.R. BrownN.M. DesaiP. Zimmer-NechemiasL. WolfeB.E. BrashearW.T. KirschnerA.S. CassidyA. HeubiJ.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements.J. Nutr.20011314Suppl.1362S1375S10.1093/jn/131.4.1362S 11285356
    [Google Scholar]
  42. WalleU.K. FrenchK.L. WalgrenR.A. WalleT. Transport of genistein-7-glucoside by human intestinal CACO-2 cells: potential role for MRP2.Res. Commun. Mol. Pathol. Pharmacol.199910314556 10440570
    [Google Scholar]
  43. AdachiY. SuzukiH. SchinkelA.H. SugiyamaY. Role of breast cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and sulfate conjugates from enterocytes to intestinal lumen.Mol. Pharmacol.200567392392810.1124/mol.104.007393 15598971
    [Google Scholar]
  44. WalleU.K. GalijatovicA. WalleT. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2.Biochem. Pharmacol.199958343143810.1016/S0006‑2952(99)00133‑1 10424761
    [Google Scholar]
  45. GeS. GaoS. YinT. HuM. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and Bcrp1 knockout mice using a validated LC-MS/MS method.J. Agric. Food Chem.201563112902291010.1021/jf5056979 25715997
    [Google Scholar]
  46. NazS. ImranM. RaufA. OrhanI.E. ShariatiM.A. Iahtisham-Ul-Haq; IqraYasmin; Shahbaz, M.; Qaisrani, T.B.; Shah, Z.A.; Plygun, S.; Heydari, M. Chrysin: Pharmacological and therapeutic properties.Life Sci.201923511679710.1016/j.lfs.2019.116797 31472146
    [Google Scholar]
  47. NohK. OhD.G. NepalM.R. JeongK.S. ChoiY. KangM.J. KangW. JeongH.G. JeongT.C. Pharmacokinetic Interaction of Chrysin with Caffeine in Rats.Biomol. Ther. (Seoul)201624444645210.4062/biomolther.2015.197 27098862
    [Google Scholar]
  48. HarasstaniO.A. MoinS. ThamC.L. LiewC.Y. IsmailN. RajajendramR. Flavonoid combinations cause synergistic inhibition of pro-inflammatory mediator secretion from lipopolysaccharide-induced RAW 264.7 cells.Inflamm. Res. Off. J. Eur. Histamine Res.2010599711721
    [Google Scholar]
  49. Fernández-RealJ.M. VendrellJ. GarcíaI. RicartW. VallèsM. Structural damage in diabetic nephropathy is associated with TNF-α system activity.Acta Diabetol.201249430130510.1007/s00592‑011‑0349‑y 22042131
    [Google Scholar]
  50. GardnerI. PopovićM. ZahidN. UetrechtJ.P. A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo.Chem. Res. Toxicol.20051891384139410.1021/tx050095o 16167830
    [Google Scholar]
  51. FonsecaV. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus.Curr. Med. Res. Opin.200319763563110.1185/030079903125002351 14606987
    [Google Scholar]
  52. BenkovićV. OrsolićN. KneževićA.H. RamićS. ÐikićD. BašićI. KopjarN. Evaluation of the radioprotective effects of propolis and flavonoids in gamma-irradiated mice: the alkaline comet assay study.Biol. Pharm. Bull.200831116717210.1248/bpb.31.167 18175964
    [Google Scholar]
  53. HaS.K. MoonE. KimS.Y. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells.Neurosci. Lett.2010485314314710.1016/j.neulet.2010.08.064 20813161
    [Google Scholar]
  54. ZhangT. ChenX. QuL. WuJ. CuiR. ZhaoY. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells.Bioorg. Med. Chem.200412236097610510.1016/j.bmc.2004.09.013 15519155
    [Google Scholar]
  55. GargA. ChaturvediS. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects.Curr. Drug Targets202223442043610.2174/1389450122666210824141044 34431464
    [Google Scholar]
  56. PushpavalliG. KalaiarasiP. VeeramaniC. PugalendiK.V. Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats.Eur. J. Pharmacol.20106311-3364110.1016/j.ejphar.2009.12.031 20056116
    [Google Scholar]
  57. DewiR.M. MegawatiM. AntikaL.D. Antidiabetic properties of dietary chrysin: A cellular mechanism review.Mini Rev. Med. Chem.202222101450145710.2174/1389557521666211101162449 34720081
    [Google Scholar]
  58. ZanoliP. AvalloneR. BaraldiM. Behavioral characterisation of the flavonoids apigenin and chrysin.Fitoterapia200071Suppl. 1S117S12310.1016/S0367‑326X(00)00186‑6 10930722
    [Google Scholar]
  59. El-BassossyH.M. Abo-WardaS.M. FahmyA. Chrysin and luteolin attenuate diabetes-induced impairment in endothelial-dependent relaxation: effect on lipid profile, AGEs and NO generation.Phytother. Res.201327111678168410.1002/ptr.4917 23296950
    [Google Scholar]
  60. WongW.T. NgC.H. TsangS.Y. HuangY. ChenZ.Y. Relative contribution of individual oxidized components in ox-LDL to inhibition on endothelium-dependent relaxation in rat aorta.Nutr. Metab. Cardiovasc. Dis.201121315716410.1016/j.numecd.2008.12.017 20005687
    [Google Scholar]
  61. QianL.B. WangH.P. ChenY. ChenF.X. MaY.Y. BruceI.C. XiaQ. Luteolin reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta by reducing oxidative stress.Pharmacol. Res.201061428128710.1016/j.phrs.2009.10.004 19892019
    [Google Scholar]
  62. ZhouY. TaoH. XuN. ZhouS. PengY. ZhuJ. LiuS. ChangY. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice.J. Food Biochem.20224612e1437910.1111/jfbc.14379 35976957
    [Google Scholar]
  63. PathakR. SachanN. KabraA. AlanaziA.S. AlanaziM.M. AlsaifN.A. ChandraP. Isolation, characterization, development and evaluation of phytoconstituent based formulation for diabetic neuropathy.Saudi Pharm. J.202331810168710.1016/j.jsps.2023.06.020 37448840
    [Google Scholar]
  64. PathakR. SachanN. ChandraP. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review.Biomed. Pharmacother.202215011302510.1016/j.biopha.2022.113025
    [Google Scholar]
  65. VillarI.C. VeraR. GalisteoM. O’ValleF. RomeroM. ZarzueloA. DuarteJ. Endothelial nitric oxide production stimulated by the bioflavonoid chrysin in rat isolated aorta.Planta Med.200571982983410.1055/s‑2005‑871296 16206037
    [Google Scholar]
  66. DiPetrilloK. GesekF.A. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats.Am. J. Nephrol.200424335235910.1159/000079121 15205554
    [Google Scholar]
  67. HanhinevaK. TörrönenR. Bondia-PonsI. PekkinenJ. KolehmainenM. MykkänenH. PoutanenK. Impact of dietary polyphenols on carbohydrate metabolism.Int. J. Mol. Sci.20101141365140210.3390/ijms11041365 20480025
    [Google Scholar]
  68. SatyanarayanaK. SravanthiK. ShakerI. PonnulakshmiR. SelvarajJ. Role of chrysin on expression of insulin signaling molecules.J. Ayurveda Integr. Med.20156424825810.4103/0975‑9476.157951 26834424
    [Google Scholar]
  69. RehmanM.U. TahirM. KhanA.Q. KhanR. LateefA. Oday-O-Hamiza; Qamar, W.; Ali, F.; Sultana, S. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: Plausible role of NF-κB.Toxicol. Lett.20132162-314615810.1016/j.toxlet.2012.11.013 23194824
    [Google Scholar]
  70. KimJ.E. LeeM.H. NamD.H. SongH.K. KangY.S. LeeJ.E. KimH.W. ChaJ.J. HyunY.Y. HanS.Y. HanK.H. HanJ.Y. ChaD.R. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice.PLoS One201384e6206810.1371/journal.pone.0062068 23637966
    [Google Scholar]
  71. MezzanoS. ArosC. DroguettA. BurgosM.E. ArdilesL. FloresC. SchneiderH. Ruiz-OrtegaM. EgidoJ. NF- B activation and overexpression of regulated genes in human diabetic nephropathy.Nephrol. Dial. Transplant.200419102505251210.1093/ndt/gfh207 15280531
    [Google Scholar]
  72. FitzgeraldD.C. MeadeK.G. McEvoyA.N. LillisL. MurphyE.P. MacHughD.E. BairdA.W. Tumour necrosis factor-α (TNF-α) increases nuclear factor κB (NFκB) activity in and interleukin-8 (IL-8) release from bovine mammary epithelial cells.Vet. Immunol. Immunopathol.20071161-2596810.1016/j.vetimm.2006.12.008 17276517
    [Google Scholar]
  73. SirovinaD. OršolićN. KončićM.Z. KovačevićG. BenkovićV. GregorovićG. Quercetin vs chrysin.Hum. Exp. Toxicol.201332101058106610.1177/0960327112472993 23357962
    [Google Scholar]
  74. Abo-SalemO.M. El-EdelR.H. HarisaG.E. El-HalawanyN. GhonaimM.M. Experimental diabetic nephropathy can be prevented by propolis: Effect on metabolic disturbances and renal oxidative parameters.Pak. J. Pharm. Sci.2009222205210 19339234
    [Google Scholar]
  75. SamarghandianS. Azimi-NezhadM. SaminiF. FarkhondehT. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats.Can. J. Physiol. Pharmacol.201694438839310.1139/cjpp‑2014‑0412 26863330
    [Google Scholar]
  76. BarcelosG.R.M. AngeliJ.P.F. SerpeloniJ.M. GrottoD. RochaB.A. BastosJ.K. KnasmüllerS. JúniorF.B. Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2011726210911510.1016/j.mrgentox.2011.05.011 21820078
    [Google Scholar]
  77. SerpeloniJ.M. BarcelosG.R. AngeliJ.P. MercadanteA.Z. BianchiM. AntunesL.M. Dietary carotenoid lutein protects against DNA damage and alterations of the redox status induced by cisplatin in human derived HepG2 cells.Toxicol. In Vitro201226228829410.1016/j.tiv.2011.11.011
    [Google Scholar]
  78. LukačínováA. MojžišJ. BeňačkaR. KellerJ. MaguthT. KurilaP. VaškoL. RáczO. NištiarF. Preventive effects of flavonoids on alloxan-induced diabetes mellitus in rats.Acta Vet. Brno200877217518210.2754/avb200877020175
    [Google Scholar]
  79. BenkovicV. Horvat KnezevicA. DikicD. LisicicD. OrsolicN. BasicI. KosalecI. KopjarN. Radioprotective effects of propolis and quercetin in γ-irradiated mice evaluated by the alkaline comet assay.Phytomedicine2008151085185810.1016/j.phymed.2008.02.010 18424105
    [Google Scholar]
  80. CiftciO. OzdemirI. VardiN. BeyturA. OguzF. Ameliorating effects of quercetin and chrysin on 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced nephrotoxicity in rats.Toxicol. Ind. Health2012281094795410.1177/0748233711430978 22173955
    [Google Scholar]
  81. ZhangY. GaoZ. LiuJ. XuZ. Protective effects of baicalin and quercetin on an iron-overloaded mouse: comparison of liver, kidney and heart tissues.Nat. Prod. Res.201125121150116010.1080/14786419.2010.495070 21740280
    [Google Scholar]
  82. AnandK.V. Mohamed JaabirM.S. ThomasP.A. GeraldineP. Protective role of chrysin against oxidative stress in D ‐galactose‐induced aging in an experimental rat model.Geriatr. Gerontol. Int.201212474175010.1111/j.1447‑0594.2012.00843.x 22469068
    [Google Scholar]
  83. BreinholtV. LauridsenS.T. DragstedL.O. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat.Xenobiotica199929121227124010.1080/004982599237903 10647909
    [Google Scholar]
  84. Ahmed IsmailT. Mohamed SolimanM. Abdo NassanM. Ibrahim MohamedD. Antihypercholesterolemic effects of mushroom, chrysin, curcumin and omega-3 in experimental hypercholesterolemic rats.J. Food Nutr. Res. (Newark)201532778710.12691/jfnr‑3‑2‑1
    [Google Scholar]
  85. ZarzeckiM.S. AraujoS.M. BortolottoV.C. de PaulaM.T. JesseC.R. PrigolM. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice.Toxicol. Rep.2014120020810.1016/j.toxrep.2014.02.003 28962239
    [Google Scholar]
  86. TalebiM. TalebiM. FarkhondehT. Simal-GandaraJ. KopustinskieneD.M. BernatonieneJ. Pourbagher-ShahriA.M. SamarghandianS. Promising protective effects of chrysin in cardiometabolic diseases.Curr. Drug Targets202223545847010.2174/1389450122666211005113234 34636295
    [Google Scholar]
  87. FarkhondehT. SamarghandianS. BafandehF. The Cardiovascular Protective Effects of Chrysin: A narrative review on experimental researches.Cardiovasc. Hematol. Agents Med. Chem.2019171172710.2174/1871525717666190114145137 30648526
    [Google Scholar]
  88. ChoiJ.H. YunJ.W. Chrysin induces brown fat–like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes.Nutrition20163291002101010.1016/j.nut.2016.02.007 27133810
    [Google Scholar]
  89. LeeJ. ParkW. Anti-inflammatory effect of wogonin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid.Molecules20152046888690010.3390/molecules20046888 25913928
    [Google Scholar]
  90. CaivanoM. CohenP. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages.J. Immunol.200016430183025
    [Google Scholar]
  91. JiangH. XiaQ. WangX. SongJ. BruceI.C. Luteolin induces vasorelaxion in rat thoracic aorta via calcium and potassium channels.Pharmazie200560644444710.1002/ardp.201100373 15997834
    [Google Scholar]
  92. ZhouC. TabbM.M. NelsonE.L. GrünF. VermaS. SadatrafieiA. LinM. MallickS. FormanB.M. ThummelK.E. BlumbergB. Mutual repression between steroid and xenobiotic receptor and NF- B signaling pathways links xenobiotic metabolism and inflammation.J. Clin. Invest.200611682280228910.1172/JCI26283 16841097
    [Google Scholar]
  93. ShahY.M. MaX. MorimuraK. KimI. GonzalezF.J. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-κB target gene expression.Am. J. Physiol. Gastrointest. Liver Physiol.20072924G1114G112210.1152/ajpgi.00528.2006 17170021
    [Google Scholar]
  94. KachadourianR. LeitnerH. DayB. Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: A role for glutathione depletion.Int. J. Oncol.200731116116810.3892/ijo.31.1.161 17549417
    [Google Scholar]
  95. GanaiS.A. SheikhF.A. BabaZ.A. Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic‐based anticancer therapy.Phytother. Res.202135282383410.1002/ptr.6869 32930436
    [Google Scholar]
  96. VasudevanM. GunnamK.K. ParleM. Antinociceptive and anti-inflammatory effects of Thespesia populnea bark extract.J. Ethnopharmacol.2007109226427010.1016/j.jep.2006.07.025 16949778
    [Google Scholar]
  97. LiX. HuangQ. OngC.N. YangX.F. ShenH.M. Chrysin sensitizes tumor necrosis factor-α-induced apoptosis in human tumor cells via suppression of nuclear factor-kappaB.Cancer Lett.2010293110911610.1016/j.canlet.2010.01.002 20133051
    [Google Scholar]
  98. MoghadamE.R. AngH.L. AsnafS.E. ZabolianA. SalekiH. YavariM. EsmaeiliH. ZarrabiA. AshrafizadehM. KumarA.P. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives.Biomolecules20201010137410.3390/biom10101374 32992587
    [Google Scholar]
  99. YuX.M. PhanT. PatelP.N. Jaskula-SztulR. ChenH. Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo.Cancer2013119477478110.1002/cncr.27742 22991264
    [Google Scholar]
  100. KhooB.Y. ChuaS.L. BalaramP. Apoptotic effects of chrysin in human cancer cell lines.Int. J. Mol. Sci.20101152188219910.3390/ijms11052188 20559509
    [Google Scholar]
  101. CárdenasM. MarderM. BlankV.C. RoguinL.P. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines.Bioorg. Med. Chem.20061492966297110.1016/j.bmc.2005.12.021 16412650
    [Google Scholar]
  102. LiL. WeiD.Q. WangJ.F. ChouK.C. Computational studies of the binding mechanism of calmodulin with chrysin.Biochem. Biophys. Res. Commun.200735841102110710.1016/j.bbrc.2007.05.053 17521610
    [Google Scholar]
  103. HeL. HeF. BiH. LiJ. ZengS. LuoH.B. HuangM. Isoform-selective inhibition of chrysin towards human cytochrome P450 1A2. Kinetics analysis, molecular docking, and molecular dynamics simulations.Bioorg. Med. Chem. Lett.201020206008601210.1016/j.bmcl.2010.08.072 20832301
    [Google Scholar]
  104. MaioneF. CantoneV. ChiniM.G. De FeoV. MascoloN. BifulcoG. Molecular mechanism of tanshinone IIA and cryptotanshinone in platelet anti-aggregating effects: An integrated study of pharmacology and computational analysis.Fitoterapia201510017417810.1016/j.fitote.2014.11.024 25497578
    [Google Scholar]
  105. RaufA. KhanR. RazaM. KhanH. PervezS. De FeoV. MaioneF. MascoloN. Suppression of inflammatory response by chrysin, a flavone isolated from Potentilla evestita Th. Wolf. In silico predictive study on its mechanistic effect.Fitoterapia201510312913510.1016/j.fitote.2015.03.019 25819005
    [Google Scholar]
  106. LiY. LiY. HeJ. LiuD. ZhangQ. LiK. ZhengX. TangG.T. GuoY. LiuY. The relationship between pharmacological properties and structure- activity of chrysin derivatives.Mini Rev. Med. Chem.201919755556810.2174/1389557518666180424094821 29692242
    [Google Scholar]
  107. HarrisG.K. QianY. LeonardS.S. SbarraD.C. ShiX. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells.J. Nutr.200613661517152110.1093/jn/136.6.1517 16702314
    [Google Scholar]
  108. TsujiP.A. WalleT. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line.Chem. Biol. Interact.20081711374410.1016/j.cbi.2007.08.007 17884029
    [Google Scholar]
  109. RanaR. Chemistry and pharmacology of flavonoids- A review.Indian J. Pharmaceut. Edu. Res.201953182010.5530/ijper.53.1.3
    [Google Scholar]
  110. ManiR. NatesanV. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action.Phytochemistry201814518719610.1016/j.phytochem.2017.09.016 29161583
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072341901241121185020
Loading
/content/journals/cbc/10.2174/0115734072341901241121185020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test