Skip to content
2000
image of Current Bioactive Compounds in the Treatment of Alzheimer's Disease

Abstract

Worldwide, more than 44 million individuals are living with Alzheimer's disease (AD), making it the most common type of dementia. Because neuroinflammation is so important in the development of AD, anti-inflammatory tactics may be a promising avenue for treatment. Searches were conducted in Scopus, the Web of Science, and PubMed using the following keywords: phytoconstituents, AD, traditional medicine, and Chinese herbs. Therefore, the purpose of this review was to summarise the known phytochemistry and current state of the chosen plant species. However, there has been limited effectiveness in clinical trials for AD with currently available anti-inflammatory medicines. This study brings together the latest findings in the treatment of AD using natural substances, specifically phytochemicals, which have anti-inflammatory, antioxidant, and neuroprotective characteristics. Although there has been little success with existing anti-inflammatory medications, there is hope for targeting molecular pathways associated with AD, including Aβ overproduction, apoptosis, oxidative stress, and mitochondrial dysfunction, through the use of natural bioactive chemicals such alkaloids, polyphenols, and terpenes. The promise of natural compounds as safer alternatives or supplementary therapies to current treatments for Alzheimer's disease is highlighted in this study, which focuses on their ability to alleviate major pathogenic processes in the disease. Their medicinal potential and effectiveness can be enhanced with additional research.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072340846241025144431
2024-11-01
2025-01-18
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  2. Santiago J.A. Potashkin J.A. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Front. Aging Neurosci. 2023 15 1185671 10.3389/fnagi.2023.1185671 37304072
    [Google Scholar]
  3. Shin J.H. Dementia epidemiology fact sheet 2022. Ann. Rehabil. Med. 2022 46 2 53 59 10.5535/arm.22027 35508924
    [Google Scholar]
  4. Kumar A. Sidhu J. Goyal A. Alzheimer Disease. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  5. Ratan Y. Rajput A. Maleysm S. Pareek A. Jain V. Pareek A. Kaur R. Singh G. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s Disease. Biomedicines 2023 11 5 1398 10.3390/biomedicines11051398 37239068
    [Google Scholar]
  6. Gao W. Guo L. Yang Y. Wang Y. Xia S. Gong H. Zhang B-K. Yan M. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front. Cell Dev. Biol. 2022 9 809952 10.3389/fcell.2021.809952
    [Google Scholar]
  7. von Bernhardi R. Neurodegenerative Diseases – MAPK Signalling Pathways in Neuroinflammation BT - Encyclopedia of Neuroscience. Binder M.D. Hirokawa N. Windhorst U. Berlin, Heidelberg Springer Berlin Heidelberg 2009 2614 2620
    [Google Scholar]
  8. Wojtunik-Kulesza K. Rudkowska M. Orzeł-Sajdłowska A. Aducanumab—hope or disappointment for Alzheimer’s Disease. Int. J. Mol. Sci. 2023 24 5 4367 10.3390/ijms24054367 36901797
    [Google Scholar]
  9. Passeri E. Elkhoury K. Morsink M. Broersen K. Linder M. Tamayol A. Malaplate C. Yen F.T. Arab-Tehrany E. Alzheimer’s Disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  10. Huang J. Huang N. Mao Q. Shi J. Qiu Y. Natural bioactive compounds in Alzheimer’s disease: From the perspective of type 3 diabetes mellitus. Front. Aging Neurosci. 2023 15 1130253 10.3389/fnagi.2023.1130253 37009462
    [Google Scholar]
  11. Hu D. Jin Y. Hou X. Zhu Y. Chen D. Tai J. Chen Q. Shi C. Ye J. Wu M. Zhang H. Lu Y. Application of marine natural products against Alzheimer’s Disease: Past, present and future. Mar. Drugs 2023 21 1 43 10.3390/md21010043 36662216
    [Google Scholar]
  12. Vrabec R. Blunden G. Cahlíková L. Natural alkaloids as multi-target compounds towards factors implicated in Alzheimer’s Disease. Int. J. Mol. Sci. 2023 24 5 4399 10.3390/ijms24054399 36901826
    [Google Scholar]
  13. Bhat B.A. Almilaibary A. Mir R.A. Aljarallah B.M. Mir W.R. Ahmad F. Mir M.A. Natural therapeutics in aid of treating Alzheimer’s Disease: A green gateway toward ending quest for treating neurological disorders. Front. Neurosci. 2022 16 884345 10.3389/fnins.2022.884345 35651632
    [Google Scholar]
  14. Vrânceanu M. Galimberti D. Banc R. Dragoş O. Cozma-Petruţ A. Hegheş S.C. Voştinaru O. Cuciureanu M. Stroia C.M. Miere D. Filip L. The anticancer potential of plant-derived nutraceuticals via the modulation of gene expression. Plants 2022 11 19 2524 10.3390/plants11192524 36235389
    [Google Scholar]
  15. Ahmed M.H. Vasas D. Hassan A. Molnár J. The impact of functional food in prevention of malnutrition. PharmaNutrition 2022 19 100288 10.1016/j.phanu.2022.100288
    [Google Scholar]
  16. Zhang M. Tang Z. Therapeutic potential of natural molecules against Alzheimer’s disease via SIRT1 modulation. Biomed. Pharmacother. 2023 161 114474 10.1016/j.biopha.2023.114474 36878051
    [Google Scholar]
  17. Majeed M. Pirzadah T.B. Mir M.A. Hakeem K.R. Alharby H.F. Alsamadany H. Bamagoos A.A. Rehman R.U. Comparative study on phytochemical profile and antioxidant activity of an epiphyte, Viscum album L. (White Berry Mistletoe), derived from different host trees. Plants 2021 10 6 1191 10.3390/plants10061191 34208051
    [Google Scholar]
  18. Atlante A. Amadoro G. Bobba A. Latina V. Functional foods: an approach to modulate molecular mechanisms of Alzheimer’s disease. Cells 2020 9 11 2347 10.3390/cells9112347 33114170
    [Google Scholar]
  19. Mir M. Shabir N. Mehraj U. Rather Y. Farhat S. Study on the quality control analysis of antiepileptic drugs using high-performance liquid chromatography. Int. J. Pharm. Investig. 2018 8 3 115 121 10.4103/jphi.JPHI_45_18
    [Google Scholar]
  20. Mir R.H. Shah A.J. Mohi-Ud-Din R. Pottoo F.H. Dar M.A. Jachak S.M. Masoodi M.H. Natural Anti-inflammatory compounds as Drug candidates in Alzheimer’s disease. Curr. Med. Chem. 2021 28 23 4799 4825 10.2174/1875533XMTA4aNzUBx 32744957
    [Google Scholar]
  21. Stelzmann R.A. Norman Schnitzlein H. Reed Murtagh F. Murtagh F.R. An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde”. Clin. Anat. 1995 8 6 429 431 10.1002/ca.980080612 8713166
    [Google Scholar]
  22. Dong Y. Li X. Cheng J. Hou L. Drug development for Alzheimer’s disease: microglia induced neuroinflammation as a target? Int. J. Mol. Sci. 2019 20 3 558 10.3390/ijms20030558 30696107
    [Google Scholar]
  23. Liu Y. Cong L. Han C. Li B. Dai R. Recent progress in the drug development for the treatment of Alzheimer’s disease especially on inhibition of amyloid-peptide aggregation. Mini Rev. Med. Chem. 2021 21 8 969 990 10.2174/1389557520666201127104539 33245270
    [Google Scholar]
  24. Paroni G. Bisceglia P. Seripa D. Understanding the amyloid hypothesis in Alzheimer’s disease. J. Alzheimers Dis. 2019 68 2 493 510 10.3233/JAD‑180802 30883346
    [Google Scholar]
  25. Rahman M.A. Rahman M.S. Uddin M.J. Mamum-Or-Rashid A.N.M. Pang M.G. Rhim H. Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases. Environ. Sci. Pollut. Res. Int. 2020 27 36 44659 44672 10.1007/s11356‑020‑08243‑z 32201908
    [Google Scholar]
  26. Rahman M. Hannan M. Uddin M. Rahman M. Rashid M. Kim B. Exposure to environmental arsenic and emerging risk of alzheimer’s disease: perspective mechanisms, management strategy, and future directions. Toxics 2021 9 8 188 10.3390/toxics9080188 34437506
    [Google Scholar]
  27. Mangialasche F. Solomon A. Winblad B. Mecocci P. Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010 9 7 702 716 10.1016/S1474‑4422(10)70119‑8 20610346
    [Google Scholar]
  28. Arendt T. Stieler J.T. Holzer M. Tau and tauopathies. Brain Res. Bull. 2016 126 Pt 3 238 292 10.1016/j.brainresbull.2016.08.018 27615390
    [Google Scholar]
  29. Iqbal K. Liu F. Gong C.X. Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 2010 7 8 656 664 10.2174/156720510793611592 20678074
    [Google Scholar]
  30. Villaflores O.B. Chen Y.J. Chen C.P. Yeh J.M. Wu T.Y. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan. J. Obstet. Gynecol. 2012 51 4 515 525 10.1016/j.tjog.2012.09.005 23276553
    [Google Scholar]
  31. Lin A.J. Koike M.A. Green K.N. Kim J.G. Mazhar A. Rice T.B. LaFerla F.M. Tromberg B.J. Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease. Ann. Biomed. Eng. 2011 39 4 1349 1357 10.1007/s10439‑011‑0269‑6 21331663
    [Google Scholar]
  32. Selkoe D.J. The molecular pathology of Alzheimer’s disease. Neuron 1991 6 4 487 498 10.1016/0896‑6273(91)90052‑2 1673054
    [Google Scholar]
  33. Savelieff M.G. Nam G. Kang J. Lee H.J. Lee M. Lim M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev. 2019 119 2 1221 1322 10.1021/acs.chemrev.8b00138 30095897
    [Google Scholar]
  34. Gallardo G. Holtzman D.M. Amyloid-β and Tau at the Crossroads of Alzheimer’s Disease. Adv. Exp. Med. Biol. 2019 1184 187 203 10.1007/978‑981‑32‑9358‑8_16 32096039
    [Google Scholar]
  35. Hampel H. Mesulam M.M. Cuello A.C. Farlow M.R. Giacobini E. Grossberg G.T. Khachaturian A.S. Vergallo A. Cavedo E. Snyder P.J. Khachaturian Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018 141 7 1917 1933 10.1093/brain/awy132 29850777
    [Google Scholar]
  36. Barage S.H. Sonawane K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015 52 1 18 10.1016/j.npep.2015.06.008 26149638
    [Google Scholar]
  37. Graham W.V. Bonito-Oliva A. Sakmar T.P. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med. 2017 68 1 413 430 10.1146/annurev‑med‑042915‑103753 28099083
    [Google Scholar]
  38. Karran E. Mercken M. Strooper B.D. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011 10 9 698 712 10.1038/nrd3505 21852788
    [Google Scholar]
  39. Vassallo N. Polyphenols and health: New and recent advances. Hauppauge Nova Publishers 2008
    [Google Scholar]
  40. Newman D.J. Cragg G.M. Naturalproductsassources ofnewdrugsfrom1981to2014. J. Nat. Prod. 2016 79 3 629 661 10.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  41. Mir M.A. Bhat B.A. Sheikh B.A. Rather G.A. Mehraj S. Mir W.R. Nanomedicine in human health therapeutics and drug delivery: Nanobiotechnology and nanobiomedicine Applications of Nanomaterials in Agriculture, Food Science, and Medicine IGI Global 2021
    [Google Scholar]
  42. Silva T. Reis J. Teixeira J. Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 2014 15 116 145 10.1016/j.arr.2014.03.008 24726823
    [Google Scholar]
  43. Yang H.D. Kim D.H. Lee S.B. Young L.D. History of Alzheimer’s Disease. Dement. Neurocognitive Disord. 2016 15 4 115 121 10.12779/dnd.2016.15.4.115 30906352
    [Google Scholar]
  44. Tariq L. Bhat B.A. Hamdani S.S. Mir R.A. Phytochemistry, pharmacology and toxicity of medicinal plants. Medicinal and Aromatic Plants. Aftab T. Hakeem K.R. Cham Springer 2021 217 240 10.1007/978‑3‑030‑58975‑2_8
    [Google Scholar]
  45. Maccioni R.B. Farías G. Morales I. Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch. Med. Res. 2010 41 3 226 231 10.1016/j.arcmed.2010.03.007 20682182
    [Google Scholar]
  46. Mir M.A. Mehraj U. Sheikh B.A. Recent advances in chemotherapeutic implications of deguelin: a plant-derived retinoid. Nat. Prod. J. 2021 b 11 169 181
    [Google Scholar]
  47. Nomoto D. Tsunoda T. Shigemori H. Effects of clovamide and its related compounds on the aggregations of amyloid polypeptides. J. Nat. Med. 2021 75 2 299 307 10.1007/s11418‑020‑01467‑w 33389592
    [Google Scholar]
  48. Wainwright C.L. Teixeira M.M. Adelson D.L. Buenz E.J. David B. Glaser K.B. Future Directions for the Discovery of Natural ProductDerived Immunomodulating Drugs. Pharmacol. Res. 2022 177 106076 10.1016/j.phrs.2022.106076 35074524
    [Google Scholar]
  49. Fujiwara H. Iwasaki K. Furukawa K. Seki T. He M. Maruyama M. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s β-amyloid proteins. J. Neurosci. Res. 2006 84 427 433
    [Google Scholar]
  50. Fujiwara H. Tabuchi M. Yamaguchi T. Iwasaki K. Furukawa K. Sekiguchi K. Ikarashi Y. Kudo Y. Higuchi M. Saido T.C. Maeda S. Takashima A. Hara M. Yaegashi N. Kase Y. Arai H. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6‐penta‐ O ‐galloyl‐β‐ d ‐glucopyranose have potent anti‐aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo. J. Neurochem. 2009 109 6 1648 1657 10.1111/j.1471‑4159.2009.06069.x 19457098
    [Google Scholar]
  51. Papandreou M.A. Kanakis C.D. Polissiou M.G. Efthimiopoulos S. Cordopatis P. Margarity M. Lamari F.N. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 2006 54 23 8762 8768 10.1021/jf061932a 17090119
    [Google Scholar]
  52. Durairajan S.S.K. Yuan Q. Xie L. Chan W.S. Kum W.F. Koo I. Liu C. Song Y. Huang J.D. Klein W.L. Li M. Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicty. Neurochem. Int. 2008 52 4-5 741 750 10.1016/j.neuint.2007.09.006 17964692
    [Google Scholar]
  53. Kang I.J. Jeon Y.E. Yin X.F. Nam J.S. You S.G. Hong M.S. Jang B.G. Kim M.J. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death. Food Chem. Toxicol. 2011 49 9 2252 2259 10.1016/j.fct.2011.06.023 21693162
    [Google Scholar]
  54. Ziegler J. Facchini P.J. Alkaloid biosynthesis: metabolism and trafficking. Annu. Rev. Plant Biol. 2008 59 1 735 769 10.1146/annurev.arplant.59.032607.092730 18251710
    [Google Scholar]
  55. Nahar L. Sarker S.D. Chemistry for Pharmacy Students. 2nd ed UK Wiley 2019
    [Google Scholar]
  56. Rosa E.A.S. Bennett R.N. Aires A. Levels and potential health impacts of nutritionally relevant phytochemicals in organic and conventional food production systems. Handbook of organic food safety and quality. Cooper J. Niggli U. Carlo Leifert C. Amsterdam Elsevier 2007 10.1533/9781845693411.3.297
    [Google Scholar]
  57. Olajide O.A. Ajayi A.M. Wright C.W. Anti‐inflammatory properties of cryptolepine. Phytother. Res. 2009 23 10 1421 1425 10.1002/ptr.2794 19288476
    [Google Scholar]
  58. Gopalan R.C. Emerce E. Wright C.W. Karahalil B. Karakaya A.E. Anderson D. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the Comet assay. Toxicol. Lett. 2011 207 3 322 325 10.1016/j.toxlet.2011.09.010 21946165
    [Google Scholar]
  59. He F.Q. Qiu B.Y. Li T.K. Xie Q. Cui D.J. Huang X.L. Gan H.T. Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-κB pathway in murine BV2 microglial cells. Int. Immunopharmacol. 2011 a 11 9 1220 1225 10.1016/j.intimp.2011.03.023 21496499
    [Google Scholar]
  60. Chen Y. Tsai Y.H. Tseng S.H. The potential of tetrandrine as a protective agent for ischemic stroke. Molecules 2011 16 9 8020 8032 10.3390/molecules16098020 21926947
    [Google Scholar]
  61. King V.F. Garcia M.L. Himmel D. Reuben J.P. Lam Y.K. Pan J.X. Han G.Q. Kaczorowski G.J. Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin. J. Biol. Chem. 1988 263 5 2238 2244 10.1016/S0021‑9258(18)69196‑3 2448307
    [Google Scholar]
  62. Neag M.A. Mocan A. Echeverría J. Pop R.M. Bocsan C.I. Crişan G. Buzoianu A.D. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018 9 557 10.3389/fphar.2018.00557 30186157
    [Google Scholar]
  63. Wang S. He B. Hang W. Wu N. Xia L. Wang X. Zhang Q. Zhou X. Feng Z. Chen Q. Chen J. Berberine alleviates tau hyperphosphorylation and axonopathy-associated with diabetic encephalopathy via restoring PI3K/Akt/GSK3β pathway. J. Alzheimers Dis. 2018 65 4 1385 1400 10.3233/JAD‑180497 30175975
    [Google Scholar]
  64. Di S. Han L. An X. Kong R. Gao Z. Yang Y. Wang X. Zhang P. Ding Q. Wu H. Wang H. Zhao L. Tong X. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications. J. Ethnopharmacol. 2021 276 114180 10.1016/j.jep.2021.114180 33957209
    [Google Scholar]
  65. Li J. Du H. Zhang M. Zhang Z. Teng F. Zhao Y. Zhang W. Yu Y. Feng L. Cui X. Zhang M. Lu T. Guan F. Chen L. Amorphous solid dispersion of Berberine mitigates apoptosis via iPLA 2 β/Cardiolipin/Opa1 pathway in db/db mice and in Palmitate-treated MIN6 β-cells. Int. J. Biol. Sci. 2019 15 7 1533 1545 10.7150/ijbs.32020 31337982
    [Google Scholar]
  66. Shan Y.Q. Zhu Y.P. Pang J. Wang Y.X. Song D.Q. Kong W.J. Jiang J.D. Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function. Biol. Pharm. Bull. 2013 36 10 1562 1569 10.1248/bpb.b13‑00272 23924821
    [Google Scholar]
  67. Park S.E. Sapkota K. Kim S. Kim H. Kim S.J. Kaempferol acts through mitogen‐activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br. J. Pharmacol. 2011 164 3 1008 1025 10.1111/j.1476‑5381.2011.01389.x 21449918
    [Google Scholar]
  68. Velagapudi R. Aderogba M. Olajide O.A. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 12 3311 3319 10.1016/j.bbagen.2014.08.008 25152356
    [Google Scholar]
  69. Velagapudi R. Ajileye O.O. Okorji U. Jain P. Aderogba M.A. Olajide O.A. Agathisflavone isolated from Anacardium occidentale suppresses SIRT1 ‐mediated neuroinflammation in BV2 microglia and neurotoxicity in APPS we‐transfected SH‐SY5Y cells. Phytother. Res. 2018 a 32 10 1957 1966 10.1002/ptr.6122 29786910
    [Google Scholar]
  70. Velagapudi R. El-Bakoush A. Olajide O.A. Activation of nrf2 pathway contributes to neuroprotection by the dietary flavonoid tiliroside. Mol. Neurobiol. 2018 b 55 10 8103 8123 10.1007/s12035‑018‑0975‑2 29508282
    [Google Scholar]
  71. Choi J.S. Nurul Islam M. Yousof Ali M. Kim E.J. Kim Y.M. Jung H.A. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem. Toxicol. 2014 64 27 33 10.1016/j.fct.2013.11.020 24291393
    [Google Scholar]
  72. Liu R. Zhang T. Yang H. Lan X. Ying J. Du G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice. J. Alzheimers Dis. 2011 24 1 85 100 10.3233/JAD‑2010‑101593 21297270
    [Google Scholar]
  73. Kang C.H. Choi Y.H. Moon S.K. Kim W.J. Kim G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol. 2013 17 3 808 813 10.1016/j.intimp.2013.09.009
    [Google Scholar]
  74. Sun G.Y. Chen Z. Jasmer K.J. Chuang D.Y. Gu Z. Hannink M. Simonyi A. Quercetin attenuates infammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One 2015 10 10 e0141509 10.1371/journal.pone.0141509 26505893
    [Google Scholar]
  75. Lv M. Yang S. Cai L. Qin L. Li B. Wan Z. Efects of quercetin intervention on cognition function in app/ps1 mice was afected by vitamin D status. Mol. Nutr. Food Res. 2018 62 24 1800621 10.1002/mnfr.201800621 30328681
    [Google Scholar]
  76. Lee Y.J. Choi D.Y. Yun Y.P. Han S.B. Oh K.W. Hong J.T. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J. Nutr. Biochem. 2013 24 1 298 310 10.1016/j.jnutbio.2012.06.011 22959056
    [Google Scholar]
  77. Moussa C. Hebron M. Huang X. Ahn J. Rissman R.A. Aisen P.S. Turner R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation 2017 14 1 1 10.1186/s12974‑016‑0779‑0 28086917
    [Google Scholar]
  78. Anton S.D. Ebner N. Dzierzewski J.M. Zlatar Z.Z. Gurka M.J. Dotson V.M. Kirton J. Mankowski R.T. Marsiske M. Manini T.M. Efects of 90 days of resveratrol supplementation on cognitive function in elders: a pilot study. J. Altern. Complement. Med. 2018 24 7 725 732 10.1089/acm.2017.0398 29583015
    [Google Scholar]
  79. Huang J. Huang N. Xu S. Luo Y. Li Y. Jin H. Yu C. Shi J. Jin F. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J. Nutr. Biochem. 2021 88 108552 10.1016/j.jnutbio.2020.108552 33220405
    [Google Scholar]
  80. Szkudelska K. Deniziak M. Sassek M. Szkudelski I. Noskowiak W. Szkudelski T. Resveratrol affects insulin signaling in type 2 diabetic goto-kakizaki rats. Int. J. Mol. Sci. 2021 22 5 2469 10.3390/ijms22052469 33671110
    [Google Scholar]
  81. Bhatt J.K. Thomas S. Nanjan M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 2012 32 7 537 541 10.1016/j.nutres.2012.06.003 22901562
    [Google Scholar]
  82. Asadi S. Moradi M.N. Khyripour N. Goodarzi M.T. Mahmoodi M. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in type 2 diabetic rats. Biol. Trace Elem. Res. 2017 177 1 132 138 10.1007/s12011‑016‑0861‑6 27744600
    [Google Scholar]
  83. Khare P. Datusalia A.K. Sharma S.S. Parthenolide, an NF-κB inhibitor ameliorates diabetes-induced behavioural defcit, neurotransmitter imbalance and neuroinfammation in type 2 diabetes rat model. Neuromolecular Med. 2017 19 1 101 112 10.1007/s12017‑016‑8434‑6 27553015
    [Google Scholar]
  84. Wang J. Tong M. Zhao B. Zhu G. Xi D. Yang J. Parthenolide ameliorates intracerebral hemorrhage‐induced brain injury in rats. Phytother. Res. 2020 34 1 153 160 10.1002/ptr.6510 31497910
    [Google Scholar]
  85. Zhu C. Xiong Z. Chen X. Peng F. Hu X. Chen Y. Wang Q. Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells. PLoS One 2012 7 4 e35125 10.1371/journal.pone.0035125 22514713
    [Google Scholar]
  86. Qiang W. Cai W. Yang Q. Yang L. Dai Y. Zhao Z. Yin J. Li Y. Li Q. Wang Y. Weng X. Zhang D. Chen Y. Zhu X. Artemisinin B improves learning and memory impairment in ad dementia mice by suppressing neuroinfammation. Neuroscience 2018 395 1 12 10.1016/j.neuroscience.2018.10.041 30399421
    [Google Scholar]
  87. Leone S. Recinella L. Chiavaroli A. Orlando G. Ferrante C. Leporini L. Brunetti L. Menghini L. Phytotherapic use of theCrocus sativus L. (Saffron) and its potential applications: A brief overview. Phytother. Res. 2018 32 12 2364 2375 10.1002/ptr.6181 30136324
    [Google Scholar]
  88. Nam K.N. Park Y.M. Jung H.J. Lee J.Y. Min B.D. Park S.U. Jung W.S. Cho K.H. Park J.H. Kang I. Hong J.W. Lee E.H. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol. 2010 648 1-3 110 116 10.1016/j.ejphar.2010.09.003 20854811
    [Google Scholar]
  89. Zhang L. Previn R. Lu L. Liao R.F. Jin Y. Wang R.K. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Res. Bull. 2018 142 352 359 10.1016/j.brainresbull.2018.08.021 30179677
    [Google Scholar]
  90. Hosseinzadeh H. Sadeghnia H.R. Ghaeni F.A. Motamedshariaty V.S. Mohajeri S.A. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother. Res. 2012 26 3 381 386 10.1002/ptr.3566 21774008
    [Google Scholar]
  91. Asadi F. Jamshidi A.H. Khodagholi F. Yans A. Azimi L. Faizi M. Vali L. Abdollahi M. Ghahremani M.H. Sharifzadeh M. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol. Biochem. Behav. 2015 139 Pt A 47 58 10.1016/j.pbb.2015.10.011 26484504
    [Google Scholar]
  92. Mazumder A.G. Sharma P. Patial V. Singh D. Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species-mediated NF-κB activation. Basic Clin. Pharmacol. Toxicol. 2017 120 5 426 433 10.1111/bcpt.12694 27800651
    [Google Scholar]
  93. Akhondzadeh S. Sabet M.S. Harirchian M.H. Togha M. Cheraghmakani H. Razeghi S. Hejazi S.S. Yousefi M.H. Alimardani R. Jamshidi A. Zare F. Moradi A. ORIGINAL ARTICLE: Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 2010 a 35 5 581 588 10.1111/j.1365‑2710.2009.01133.x 20831681
    [Google Scholar]
  94. Akhondzadeh S. Shafiee Sabet M. Harirchian M.H. Togha M. Cheraghmakani H. Razeghi S. Hejazi S.S. Yousefi M.H. Alimardani R. Jamshidi A. Rezazadeh S.A. Yousefi A. Zare F. Moradi A. Vossoughi A. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology (Berl.) 2010 b 207 4 637 643 10.1007/s00213‑009‑1706‑1 19838862
    [Google Scholar]
  95. Farokhnia M. Shafiee Sabet M. Iranpour N. Gougol A. Yekehtaz H. Alimardani R. Farsad F. Kamalipour M. Akhondzadeh S. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum. Psychopharmacol. 2014 29 4 351 359 10.1002/hup.2412 25163440
    [Google Scholar]
  96. Tsolaki M. Karathanasi E. Lazarou I. Dovas K. Verykouki E. Karakostas A. Georgiadis K. Tsolaki A. Adam K. Kompatsiaris I. Sinakos Z. efcacy and safety of Crocus sativus L. in patients with mild cognitive impairment: one year single-blind randomized, with parallel groups, clinical trial. J. Alzheimers Dis. 2016 54 1 129 133 10.3233/JAD‑160304 27472878
    [Google Scholar]
  97. Choi S.K. Park Y.S. Choi D.K. Chang H.I. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J. Microbiol. Biotechnol. 2008 18 12 1990 1996 19131704
    [Google Scholar]
  98. Kim J.E. You D.J. Lee C. Ahn C. Seong J.Y. Hwang J.I. Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cell. Signal. 2010 a 22 11 1645 1654 10.1016/j.cellsig.2010.06.004 20600852
    [Google Scholar]
  99. Kim Y.H. Koh H.K. Kim D.S. Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-κB-mediated signals in activated microglia. Int. Immunopharmacol. 2010 b 10 12 1560 1572 10.1016/j.intimp.2010.09.007 20932499
    [Google Scholar]
  100. Zhou X. Zhang F. Hu X. Chen J. Wen X. Sun Y. Liu Y. Tang R. Zheng K. Song Y. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice. Physiol. Behav. 2015 151 412 420 10.1016/j.physbeh.2015.08.015 26272354
    [Google Scholar]
  101. Zhang X.S. Zhang X. Wu Q. Li W. Wang C.X. Xie G.B. Zhou X.M. Shi J.X. Zhou M.L. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J. Surg. Res. 2014 192 1 206 213 10.1016/j.jss.2014.05.029 24948541
    [Google Scholar]
  102. Satoh A. Tsuji S. Okada Y. Murakami N. Urami M. Nakagawa K. Ishikura M. Katagiri M. Koga Y. Shirasawa T. Preliminary clinical evaluation of toxicity and efcacy of a new astaxanthin-rich Haematococcus pluvialis extract. J. Clin. Biochem. Nutr. 2009 44 3 280 284 10.3164/jcbn.08‑238 19430618
    [Google Scholar]
  103. Katagiri M. Satoh A. Tsuji S. Shirasawa T. Effects of astaxanthin-rich Haematococcus pluvialis extract on cognitive function: a randomised, double-blind, placebo-controlled study. J. Clin. Biochem. Nutr. 2012 51 2 102 107 10.3164/jcbn.D‑11‑00017 22962526
    [Google Scholar]
  104. Veerendra Kumar M.H. Gupta Y.K. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin. Exp. Pharmacol. Physiol. 2003 30 5-6 336 342 10.1046/j.1440‑1681.2003.03842.x 12859423
    [Google Scholar]
  105. Calcul L. Zhang B. Jinwal U.K. Dickey C.A. Baker B.J. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med. Chem. 2012 4 13 1751 1761 10.4155/fmc.12.124 22924511
    [Google Scholar]
  106. Mathew M. Subramanian S. In vitro evaluation of anti-Alzheimer effects of dry ginger (Zingiber officinale Roscoe) extract. Indian J. Exp. Biol. 2014 52 6 606 612 24956891
    [Google Scholar]
  107. Iuvone T. De Filippis D. Esposito G. D’Amico A. Izzo A.A. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-β peptide-induced neurotoxicity. J. Pharmacol. Exp. Ther. 2006 317 3 1143 1149 10.1124/jpet.105.099317 16495207
    [Google Scholar]
  108. Youdim K.A. Shukitt-Hale B. Martin A. Wang H. Denisova N. Bickford P.C. Joseph J.A. Short-term dietary supplementation of blueberry polyphenolics: beneficial effects on aging brain performance and peripheral tissue function. Nutr. Neurosci. 2000 3 6 383 397 10.1080/1028415X.2000.11747338
    [Google Scholar]
  109. Kumar A. Prakash A. Dogra S. Centella asiatica attenuates D-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Int. J. Alzheimers Dis. 2011 2011 1 347569 10.4061/2011/347569 21629743
    [Google Scholar]
  110. Casadesus G. Shukitt-Hale B. Stellwagen H.M. Zhu X. Lee H.G. Smith M.A. Joseph J.A. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr. Neurosci. 2004 7 5-6 309 316 10.1080/10284150400020482 15682927
    [Google Scholar]
  111. Krikorian R. Shidler M.D. Nash T.A. Kalt W. Vinqvist-Tymchuk M.R. Shukitt-Hale B. Joseph J.A. Blueberry supplementation improves memory in older adults. J. Agric. Food Chem. 2010 58 7 3996 4000 10.1021/jf9029332 20047325
    [Google Scholar]
  112. Shukitt-Hale B. Carey A.N. Jenkins D. Rabin B.M. Joseph J.A. Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging. Neurobiol. Aging 2007 28 8 1187 1194 10.1016/j.neurobiolaging.2006.05.031 16837106
    [Google Scholar]
  113. Andres-Lacueva C. Shukitt-Hale B. Galli R.L. Jauregui O. Lamuela-Raventos R.M. Joseph J.A. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr. Neurosci. 2005 8 2 111 120 10.1080/10284150500078117 16053243
    [Google Scholar]
  114. Spangler E.L. Duffy K. Devan B. Guo Z. Bowker J. Shukitt-Hale B. Rats Fed a Blueberry-Enriched Diet Exhibit Greater Protection against a Kainate-induced Learning Impairment. Washington, DC Society for Neuroscience 2003
    [Google Scholar]
  115. Essa M.M. Vijayan R.K. Castellano-Gonzalez G. Memon M.A. Braidy N. Guillemin G.J. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res. 2012 37 9 1829 1842 10.1007/s11064‑012‑0799‑9 22614926
    [Google Scholar]
  116. Chen C. Mohamad Razali U.H. Saikim F.H. Mahyudin A. Mohd Noor N.Q.I. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient. Foods 2021 10 3 689 10.3390/foods10030689 33807100
    [Google Scholar]
  117. Rioux Bilan A. Freyssin A. Page G. Fauconneau B. Natural stilbenes effects in animal models of Alzheimer’s disease. Neural Regen. Res. 2020 15 5 843 849 10.4103/1673‑5374.268970 31719245
    [Google Scholar]
  118. Remington R. Chan A. Lepore A. Kotlya E. Shea T.B. Apple juice improved behavioral but not cognitive symptoms in moderate-to-late stage Alzheimer’s disease in an open-label pilot study. Am. J. Alzheimers Dis. Other Demen. 2010 25 4 367 371 10.1177/1533317510363470 20338990
    [Google Scholar]
  119. Tripathi S. Mazumder P.M. Apple cider vinegar (ACV) and their pharmacological approach towards Alzheimer’s disease (AD): A review. Indian Journal of Pharmaceutical Education and Research 2020 54 2s s67 s74 10.5530/ijper.54.2s.62
    [Google Scholar]
  120. Chan A. Shea T.B. Supplementation with apple juice attenuates presenilin-1 overexpression during dietary and genetically-induced oxidative stress. J. Alzheimers Dis. 2006 10 4 353 358 10.3233/JAD‑2006‑10401 17183144
    [Google Scholar]
  121. Ichwan M. Walker T.L. Nicola Z. Ludwig-Müller J. Böttcher C. Overall R.W. Adusumilli V.S. Bulut M. Sykes A.M. Hübner N. Ramirez-Rodriguez G. Ortiz-López L. Lugo-Hernández E.A. Kempermann G. Apple peel and flesh contain pro-neurogenic compounds. Stem Cell Reports 2021 16 3 548 565 10.1016/j.stemcr.2021.01.005 33577796
    [Google Scholar]
  122. Chauhan N. Wang K. Wegiel J. Malik M. Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr. Alzheimer Res. 2004 1 3 183 188 10.2174/1567205043332144 15975066
    [Google Scholar]
  123. Muthaiyah B. Essa M.M. Chauhan V. Chauhan A. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem. Res. 2011 36 11 2096 2103 10.1007/s11064‑011‑0533‑z 21706234
    [Google Scholar]
  124. Hussain S.Z. Naseer B. Qadri T. Fatima T. Bhat T.A. Walnut (Juglans Regia)-Morphology, taxonomy, composition and health benefits. Fruits Grown in Highland Regions of the Himalayas Hussain S.Z. Naseer B. Qadri T. Fatima T. Cham Springer 2021 269 281 10.1007/978‑3‑030‑75502‑7_21
    [Google Scholar]
  125. Bano G. Amla V. Raina R. Zutshi U. Chopra C. The effect of piperine on pharmacokinetics of phenytoin in healthy volunteers. Planta Med. 1987 53 6 568 569 10.1055/s‑2006‑962814 3444866
    [Google Scholar]
  126. Wattanathorn J. Chonpathompikunlert P. Muchimapura S. Priprem A. Tankamnerdthai O. Piperine, the potential functional food for mood and cognitive disorders. Food Chem. Toxicol. 2008 46 9 3106 3110 10.1016/j.fct.2008.06.014 18639606
    [Google Scholar]
  127. Luca S.V. Gaweł-Bęben K. Strzępek-Gomółka M. Czech K. Trifan A. Zengin G. Korona-Glowniak I. Minceva M. Gertsch J. Skalicka-Woźniak K. Insights into the phytochemical and multifunctional biological profile of spices from the genus Piper. Antioxidants 2021 10 10 1642 10.3390/antiox10101642 34679776
    [Google Scholar]
  128. Selvendiran K. Singh J.P.V. Krishnan K.B. Sakthisekaran D. Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia 2003 74 1-2 109 115 10.1016/S0367‑326X(02)00304‑0 12628402
    [Google Scholar]
  129. Khan A.U. Talucder M.S.A. Das M. Noreen S. Pane Y.S. Prospect of The Black Pepper (Piper nigrum L.) as Natural Product Used to an Herbal Medicine. Open Access Maced. J. Med. Sci. 2021 9 F 563 573 10.3889/oamjms.2021.7113
    [Google Scholar]
  130. Hua S. Wang B. Chen R. Zhang Y. Zhang Y. Li T. Dong L. Fu X. Neuroprotective effect of dichloromethane extraction from piper nigrum L. and piper longum L. on permanent focal cerebral ischemia injury in rats. J. Stroke Cerebrovasc. Dis. 2019 28 3 751 760 10.1016/j.jstrokecerebrovasdis.2018.11.018 30528673
    [Google Scholar]
  131. Chauhan N.B. Sandoval J. Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice. Phytother. Res. 2007 21 7 629 640 10.1002/ptr.2122 17380553
    [Google Scholar]
  132. Joshi T. Singh L. Jantwal A. Durgapal S. Upadhyay J. Kumar A. Zingiber officinale. Naturally Occurring Chemicals Against Alzheimer’s Disease Belwal T. Nabavi S. Nabavi S. Dehpour A. Shirooie Amsterdam S. Elsevier 2021 481 494 10.1016/B978‑0‑12‑819212‑2.00041‑4
    [Google Scholar]
  133. Zhang M. Zhao R. Wang D. Wang L. Zhang Q. Wei S. Lu F. Peng W. Wu C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res. 2021 35 2 711 742 10.1002/ptr.6858 32954562
    [Google Scholar]
  134. Talebi M. İlgün S. Ebrahimi V. Talebi M. Farkhondeh T. Ebrahimi H. Samarghandian S. Zingiber officinale ameliorates Alzheimer’s disease and Cognitive Impairments: Lessons from preclinical studies. Biomed. Pharmacother. 2021 a 133 111088 10.1016/j.biopha.2020.111088 33378982
    [Google Scholar]
  135. Talebi M. Kakouri E. Talebi M. Tarantilis P.A. Farkhondeh T. İlgün S. Pourbagher-Shahri A.M. Samarghandian S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer’s disease. Expert Rev. Neurother. 2021 b 21 6 625 642 10.1080/14737175.2021.1923479 33910446
    [Google Scholar]
  136. Kappally S. Shirwaikar A. Shirwaikar A. Coconut oil–a review of potential applications. Hygeia JD Med. 2015 7 34 41
    [Google Scholar]
  137. Chatterjee P. Fernando M. Fernando B. Dias C.B. Shah T. Silva R. Williams S. Pedrini S. Hillebrandt H. Goozee K. Barin E. Sohrabi H.R. Garg M. Cunnane S. Martins R.N. Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease. Mech. Ageing Dev. 2020 186 111209 10.1016/j.mad.2020.111209 31953123
    [Google Scholar]
  138. Alghamdi B.S.A. Possible prophylactic anti-excitotoxic and anti-oxidant effects of virgin coconut oil on aluminium chloride-induced Alzheimer’s in rat models. J. Integr. Neurosci. 2018 17 3-4 593 607 10.3233/JIN‑180089 30010139
    [Google Scholar]
  139. Mirzaei F. Khazaei M. Komaki A. Amiri I. Jalili C. Virgin coconut oil (VCO) by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced toxicity and high-fat diet fed rat. Food Chem. Toxicol. 2018 118 68 83 10.1016/j.fct.2018.04.064 29729307
    [Google Scholar]
  140. Abdul Manap A.S. Vijayabalan S. Madhavan P. Chia Y.Y. Arya A. Wong E.H. Rizwan F. Bindal U. Koshy S. Bacopa monnieri, a neuroprotective lead in Alzheimer disease: a review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights 2019 13 10.1177/1177392819866412 31391778
    [Google Scholar]
  141. Uabundit N. Wattanathorn J. Mucimapura S. Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol. 2010 127 1 26 31 10.1016/j.jep.2009.09.056 19808086
    [Google Scholar]
  142. Choi S.J. Lee J.H. Heo H.J. Cho H.Y. Kim H.K. Kim C.J. Kim M.O. Suh S.H. Shin D.H. Punica granatum protects against oxidative stress in PC12 cells and oxidative stress-induced Alzheimer’s symptoms in mice. J. Med. Food 2011 14 7-8 695 701 10.1089/jmf.2010.1452 21631359
    [Google Scholar]
  143. Ma Q. Ruan Y. Xu H. Shi X. Wang Z. Hu Y. Safflower yellow reduces lipid peroxidation, neuropathology, tau phosphorylation and ameliorates amyloid β-induced impairment of learning and memory in rats. Biomed. Pharmacother. 2015 76 153 164 10.1016/j.biopha.2015.10.004 26653563
    [Google Scholar]
  144. Zeng P. Shi Y. Wang X.M. Lin L. Du Y.J. Tang N. Wang Q. Fang Y.Y. Wang J.Z. Zhou X.W. Lu Y. Tian Q. Emodin rescued hyperhomocysteinemiainduced dementia and Alzheimer’s disease-like features in rats. Int. J. Neuropsychopharmacol. 2019 22 1 57 70 10.1093/ijnp/pyy090 30407508
    [Google Scholar]
  145. Zhang H. Su Y. Sun Z. Chen M. Han Y. Li Y. Dong X. Ding S. Fang Z. Li W. Li W. Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice. J. Ginseng Res. 2021 45 6 665 675 10.1016/j.jgr.2021.03.003 34764721
    [Google Scholar]
  146. Li G. Yu J. Zhang L. Wang Y. Wang C. Chen Q. Onjisaponin B prevents cognitive impairment in a rat model of D-galactose-induced aging. Biomed. Pharmacother. 2018 99 113 120 10.1016/j.biopha.2018.01.006 29329033
    [Google Scholar]
  147. Yin C. Deng Y. Liu Y. Gao J. Yan L. Gong Q. Icariside II ameliorates cognitive impairments induced by chronic cerebral hypoperfusion by inhibiting the amyloidogenic pathway: involvement of BDNF/TrkB/CREB signaling and upregulation of PPARα and PPARγ in Rats. Front. Pharmacol. 2018 9 1211 10.3389/fphar.2018.01211 30405422
    [Google Scholar]
  148. Zhao H. Wang S.L. Qian L. Jin J.L. Li H. Xu Y. Zhu X.L. Diammonium glycyrrhizinate attenuates Aβ(1-42) -induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo. CNS Neurosci. Ther. 2013 19 2 117 124 10.1111/cns.12043 23279783
    [Google Scholar]
  149. Zhu H. Wang Z. Ma C. Tian J. Fu F. Li C. Guo D. Roeder E. Liu K. Neuroprotective effects of hydroxysafflor yellow A: in vivo and in vitro studies. Planta Med. 2003 69 5 429 433 10.1055/s‑2003‑39714 12802724
    [Google Scholar]
  150. Ye S.Y. Gao W.Y. Hydroxysafflor yellow a protects neuron against hypoxia injury and suppresses inflammatory responses following focal ischemia reperfusion in rats. Arch. Pharm. Res. 2008 31 8 1010 1015 10.1007/s12272‑001‑1261‑y 18787790
    [Google Scholar]
  151. Cai H. Liang Q. Ge G. Gypenoside attenuates β amyloid-induced inflammation in N9 microglial cells via SOCS1 signaling. Neural Plast. 2016 2016 1 10 10.1155/2016/6362707 27213058
    [Google Scholar]
  152. He H. Jiang H. Chen Y. Ye J. Wang A. Wang C. Liu Q. Liang G. Deng X. Jiang W. Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 2018 9 1 2550 10.1038/s41467‑018‑04947‑6 29959312
    [Google Scholar]
  153. Wang S. Yang H. Yu L. Jin J. Qian L. Zhao H. Xu Y. Zhu X. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway. PLoS One 2014 9 8 e104745 10.1371/journal.pone.0104745 25121593
    [Google Scholar]
  154. Cui Y. Wang Y. Zhao D. Feng X. Zhang L. Liu C. Loganin prevents BV‐2 microglia cells from Aβ 1‐42 ‐induced inflammation via regulating TLR4/TRAF6/NF‐κB axis. Cell Biol. Int. 2018 42 12 1632 1642 10.1002/cbin.11060 30288860
    [Google Scholar]
  155. Cui L. Cai Y. Cheng W. Liu G. Zhao J. Cao H. Tao H. Wang Y. Yin M. Liu T. Liu Y. Huang P. Liu Z. Li K. Zhao B. A novel, multi-target natural drug candidate, matrine, improves cognitive deficits in Alzheimer’s disease transgenic mice by inhibiting Aβ aggregation and blocking the RAGE/Aβ axis. Mol. Neurobiol. 2017 54 3 1939 1952 10.1007/s12035‑016‑9783‑8 26899576
    [Google Scholar]
  156. Ding J. Huang J. Yin D. Liu T. Ren Z. Hu S. Ye Y. Le C. Zhao N. Zhou H. Li Z. Qi X. Huang J. Trilobatin alleviates cognitive deficits and pathologies in an Alzheimer’s disease mouse model. Oxid. Med. Cell. Longev. 2021 2021 1 3298400 10.1155/2021/3298400 34777683
    [Google Scholar]
  157. Huang X.W. Xu Y. Sui X. Lin H. Xu J.M. Han D. Ye D.D. Lv G.F. Liu Y.X. Qu X.B. Duan M.H. Scutellarein suppresses Aβ‑induced memory impairment via inhibition of the NF‑κB pathway in�vivo and in�vitro. Oncol. Lett. 2019 17 6 5581 5589 10.3892/ol.2019.10274 31186780
    [Google Scholar]
  158. Zhao F. Dang Y. Zhang R. Jing G. Liang W. Xie L. Li Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2019 75 105697 10.1016/j.intimp.2019.105697 31352326
    [Google Scholar]
  159. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  160. Soares T.B. Loureiro L. Carvalho A. Oliveira M.E.C.D.R. Dias A. Sarmento B. Lúcio M. Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases? Prog. Neurobiol. 2018 168 21 41 10.1016/j.pneurobio.2018.04.004 29641983
    [Google Scholar]
  161. Aggarwal B.B. Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol. Sci. 2009 30 2 85 94 10.1016/j.tips.2008.11.002 19110321
    [Google Scholar]
  162. Kumar A. Ahuja A. Ali J. Baboota S. Conundrum and therapeutic potential of curcumin in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2010 27 4 279 312 10.1615/CritRevTherDrugCarrierSyst.v27.i4.10 20932240
    [Google Scholar]
  163. Di Meo F. Margarucci S. Galderisi U. Crispi S. Peluso G. Curcumin, gut microbiota, and neuroprotection. Nutrients 2019 11 10 2426 10.3390/nu11102426 31614630
    [Google Scholar]
  164. Chimento A. De Amicis F. Sirianni R. Sinicropi M.S. Puoci F. Casaburi I. Saturnino C. Pezzi V. Progress to improve oral bioavailability and benefcial efects of resveratrol. Int. J. Mol. Sci. 2019 20 6 1381 10.3390/ijms20061381 30893846
    [Google Scholar]
  165. Lúcio M. Lima J.L.F.C. Reis S. Drug-membrane interactions: significance for medicinal chemistry. Curr. Med. Chem. 2010 17 17 1795 1809 10.2174/092986710791111233 20345343
    [Google Scholar]
  166. Mutoh T. Mutoh T. Taki Y. Ishikawa T. Therapeutic potential of natural product-based oral nanomedicines for stroke prevention. J. Med. Food 2016 19 6 521 527 10.1089/jmf.2015.3644 27136062
    [Google Scholar]
  167. Hagl S. Kocher A. Schiborr C. Kolesova N. Frank J. Eckert G.P. Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice – Impact on bioavailability. Neurochem. Int. 2015 89 234 242 10.1016/j.neuint.2015.07.026 26254982
    [Google Scholar]
  168. Mourtas S. Lazar A.N. Markoutsa E. Duyckaerts C. Antimisiaris S.G. Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem. 2014 80 175 183 10.1016/j.ejmech.2014.04.050 24780594
    [Google Scholar]
  169. Sood S. Jain K. Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces 2014 113 330 337 10.1016/j.colsurfb.2013.09.030 24121076
    [Google Scholar]
  170. Kakkar V. Kaur I.P. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem. Toxicol. 2011 49 11 2906 2913 10.1016/j.fct.2011.08.006 21889563
    [Google Scholar]
  171. Puglia C. Frasca G. Musumeci T. Rizza L. Puglisi G. Bonina F. Chiechio S. Curcumin loaded NLC induces histone hypoacetylation in the CNS after intraperitoneal administration in mice. Eur. J. Pharm. Biopharm. 2012 81 2 288 293 10.1016/j.ejpb.2012.03.015 22504443
    [Google Scholar]
  172. Barras A. Mezzetti A. Richard A. Lazzaroni S. Roux S. Melnyk P. Betbeder D. Monfilliette-Dupont N. Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int. J. Pharm. 2009 379 2 270 277 10.1016/j.ijpharm.2009.05.054 19501139
    [Google Scholar]
  173. Smith A. Giunta B. Bickford P.C. Fountain M. Tan J. Shytle R.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int. J. Pharm. 2010 389 1-2 207 212 10.1016/j.ijpharm.2010.01.012 20083179
    [Google Scholar]
  174. Dang H. Meng M.H.W. Zhao H. Iqbal J. Dai R. Deng Y. Lv F. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies. J. Nanopart. Res. 2014 16 4 2347 10.1007/s11051‑014‑2347‑9
    [Google Scholar]
  175. Zhao G. Zang S.Y. Jiang Z.H. Chen Y.Y. Ji X.H. Lu B.F. Wu J.H. Qin G.W. Guo L.H. Postischemic administration of liposome-encapsulated luteolin prevents against ischemia-reperfusion injury in a rat middle cerebral artery occlusion model. J. Nutr. Biochem. 2011 22 10 929 936 10.1016/j.jnutbio.2010.07.014 21190830
    [Google Scholar]
  176. Ahmad N. Ahmad R. Alam M.A. Samim M. Iqbal Z. Ahmad F.J. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol. 2016 88 320 332 10.1016/j.ijbiomac.2016.03.019 26976069
    [Google Scholar]
  177. Ramachandran S. Thangarajan S. A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitroproponic acid induced Huntington’s disease-like symptoms in wistar rats. Chem. Biol. Interact. 2016 256 25 36 10.1016/j.cbi.2016.05.020 27206696
    [Google Scholar]
  178. Wang Y. Xu H. Fu Q. Ma R. Xiang J. Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. J. Neurol. Sci. 2011 304 1-2 29 34 10.1016/j.jns.2011.02.025 21376343
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072340846241025144431
Loading
/content/journals/cbc/10.2174/0115734072340846241025144431
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: polyphenols ; terpenes ; pathological process ; NF-κB ; alkaloids ; Marine natural products
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test