Skip to content
2000
image of Capsaicin: Unveiling its Therapeutic Potential and Pharmacological Actions

Abstract

This article offers in-depth information on the pharmacological effects, historical background, and chemical makeup of capsaicin, the primary ingredient in chili peppers. Capsaicin was first discovered in Mexico about 5000 BC, and it has since changed from being a culinary spice to a substance with substantial medicinal potential. It covers the chemical characteristics of capsaicin, how it activates the sympathetic nervous system, and how to measure the heat level of capsaicin using the Scoville Heat Unit (SHU) scale. The production of capsaicin in plants, its connection to substance P and CGRP, and the TRPV1 receptor are all explained in further depth. The article discusses capsaicin's many pharmacological impacts, such as painkilling, anti-inflammatory, antioxidant, antibacterial, cardiovascular, and anti-obesity properties; the article also discusses the spice's pharmacokinetics and mechanisms of action. A summary of current clinical trials indicates continued interest in the possible medical applications of capsaicin. The wealth of data that this analysis concludes highlights capsaicin as a viable topic for more research and development in medicine and healthcare.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072338291241129095347
2024-12-06
2025-01-18
Loading full text...

Full text loading...

References

  1. Barboza G.E. García C.C. Bianchetti L.B. Romero M.V. Scaldaferro M. Monograph of wild and cultivated chili peppers (Capsicum L., Solanaceae). PhytoKeys 2022 200 1 423 10.3897/phytokeys.200.71667 36762372
    [Google Scholar]
  2. Conway S.J. TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1. Chem. Soc. Rev. 2008 37 8 1530 1545 10.1039/b610226n 18648679
    [Google Scholar]
  3. Basith S. Cui M. Hong S. Choi S. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases. Molecules 2016 21 8 966 10.3390/molecules21080966 27455231
    [Google Scholar]
  4. Chang A. Rosani A. Quick J. Capsaicin. StatPearls Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  5. Fattori V. Hohmann M. Rossaneis A. Pinho-Ribeiro F. Verri W. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 2016 21 7 844 10.3390/molecules21070844 27367653
    [Google Scholar]
  6. Szolcsányi J. Capsaicin and sensory neurones: A historical perspective. Prog. Drug Res. 2014 68 1 37 10.1007/978‑3‑0348‑0828‑6_1 24941663
    [Google Scholar]
  7. Frias B. Merighi A. Capsaicin, Nociception and Pain. Molecules 2016 21 6 797 10.3390/molecules21060797 27322240
    [Google Scholar]
  8. Dulmes E. Gasao C. Mershon T. Osman I. Schraml A. Ravi S. The physiological effects of anticipating spicy food. Lab Thesis, University of Wisconsin-Madison, 2018.
    [Google Scholar]
  9. Basharat S. Capsaicin: Plants of the genus Capsicum and positive effect of oriental spice on skin health. Skin Pharmacol. Physiol. 2020 33 6 331 341 10.1159/000512196 33401283
    [Google Scholar]
  10. Othman Z.A.A. Ahmed Y.B.H. Habila M.A. Ghafar A.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules 2011 16 10 8919 8929 10.3390/molecules16108919 22024959
    [Google Scholar]
  11. Batiha G.E.S. Alqahtani A. Ojo O.A. Shaheen H.M. Wasef L. Elzeiny M. Ismail M. Shalaby M. Murata T. Zaragoza-Bastida A. Rivero-Perez N. Magdy Beshbishy A. Kasozi K.I. Jeandet P. Hetta H.F. Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum spp. and Capsaicinoids. Int. J. Mol. Sci. 2020 21 15 5179 10.3390/ijms21155179 32707790
    [Google Scholar]
  12. Adepoju A.O. Omotoso I.O. Femi-Adepoju A.G. Karim A.B. Comparative studies on the antimicrobial, chemical and biochemical contents of the foliar extracts of Capsicum fructescens L. varieties. Afr. J. Biotechnol. 2020 19 12 836 845 10.5897/AJB2020.17258
    [Google Scholar]
  13. Gupta A. Jain P. Nagori K. Adnan M. Ajazuddin Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine. Pharmacol. Res. Mod. Chin. Med. 2024 12 100463 10.1016/j.prmcm.2024.100463
    [Google Scholar]
  14. Rastogi V. Porwal M. Sikarwar M.S. Singh B. Choudhar P. Mohanta B.C. A review on phytochemical and pharmacological potential of Bhut Jolokia (a cultivar of Capsicum chinense Jacq.). J. Appl. Pharm. Sci. 2014 ••• 10.7324/JAPS.2024.175359
    [Google Scholar]
  15. Von Borowski R.G. Zimmer K.R. Leonardi B.F. Trentin D.S. Silva R.C. de Barros M.P. Macedo A.J. Gnoatto S.C.B. Gosmann G. Zimmer A.R. Red pepper Capsicum baccatum: source of antiadhesive and antibiofilm compounds against nosocomial bacteria. Ind. Crops Prod. 2019 127 148 157 10.1016/j.indcrop.2018.10.011
    [Google Scholar]
  16. Nelson E.K. The constitution of capsaicin, the pungent principle of capsicum. J. Am. Chem. Soc. 1919 41 7 1115 1121 10.1021/ja02228a011
    [Google Scholar]
  17. Suresh D. Srinivasan K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res. 2010 131 682 691 20516541
    [Google Scholar]
  18. Yao J. An investigation of capsaicinoids and bioactive compounds in’Scotch Bonnet’and seven other cultivars of pepper (Capsicum annuum). 1993
    [Google Scholar]
  19. Reyes-Escogido M.L. Gonzalez-Mondragon E.G. Vazquez-Tzompantzi E. Chemical and pharmacological aspects of capsaicin. Molecules 2011 16 2 1253 1270 10.3390/molecules16021253 21278678
    [Google Scholar]
  20. Baas-Espinola F. Castro-Concha L. Vázquez-Flota F. Miranda-Ham M. Capsaicin Synthesis Requires in Situ Phenylalanine and Valine Formation in in Vitro Maintained Placentas from Capsicum chinense. Molecules 2016 21 6 799 10.3390/molecules21060799 27338325
    [Google Scholar]
  21. Kehie M. Kumaria S. Tandon P. Ramchiary N. Biotechnological advances on in vitro capsaicinoids biosynthesis in capsicum: a review. Phytochem. Rev. 2015 14 2 189 201 10.1007/s11101‑014‑9344‑6
    [Google Scholar]
  22. Rather M.A. Khan A. Wang L. Jahan S. Rehman M.U. Makeen H.A. Mohan S. TRP channels: Role in neurodegenerative diseases and therapeutic targets. Heliyon 2023 9 6 e16910 10.1016/j.heliyon.2023.e16910 37332910
    [Google Scholar]
  23. Xiao T. Sun M. Zhao C. Kang J. TRPV1: A promising therapeutic target for skin aging and inflammatory skin diseases. Front. Pharmacol. 2023 14 1037925 10.3389/fphar.2023.1037925 36874007
    [Google Scholar]
  24. McCarty M.F. DiNicolantonio J.J. O’Keefe J.H. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart 2015 2 1 e000262 10.1136/openhrt‑2015‑000262 26113985
    [Google Scholar]
  25. Vangeel L. Voets T. Transient receptor potential channels and calcium signaling. Cold Spring Harb. Perspect. Biol. 2019 11 6 a035048 10.1101/cshperspect.a035048 30910771
    [Google Scholar]
  26. Wood B.M. A study of the spatiotemporal regulation of calmodulin kinase superfamily members in cardiac myocytes. Thesis, University of California, 2017.
    [Google Scholar]
  27. Zhu Z. Jiang Y. Li Z. Du Y. Chen Q. Guo Q. Ban Y. Gong P. Sensory neuron transient receptor potential vanilloid-1 channel regulates angiogenesis through CGRP in vivo. Front. Bioeng. Biotechnol. 2024 12 1338504 10.3389/fbioe.2024.1338504 38576442
    [Google Scholar]
  28. Du Q. Liao Q. Chen C. Yang X. Xie R. Xu J. The role of transient receptor potential vanilloid 1 in common diseases of the digestive tract and the cardiovascular and respiratory system. Front. Physiol. 2019 10 1064 10.3389/fphys.2019.01064 31496955
    [Google Scholar]
  29. Yoshie K. Rajendran P.S. Massoud L. Kwon O. Tadimeti V. Salavatian S. Ardell J.L. Shivkumar K. Ajijola O.A. Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. Am. J. Physiol. Heart Circ. Physiol. 2018 314 5 H954 H966 10.1152/ajpheart.00593.2017 29351450
    [Google Scholar]
  30. Cao Y.Q. Mantyh P.W. Carlson E.J. Gillespie A.M. Epstein C.J. Basbaum A.I. Primary afferent tachykinins are required to experience moderate to intense pain. Nature 1998 392 6674 390 394 10.1038/32897 9537322
    [Google Scholar]
  31. Caterina M. Pang Z. TRP channels in skin biology and pathophysiology. Pharmaceuticals 2016 9 4 77 10.3390/ph9040077 27983625
    [Google Scholar]
  32. McCoy E.S. Taylor-Blake B. Street S.E. Pribisko A.L. Zheng J. Zylka M.J. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron 2013 78 1 138 151 10.1016/j.neuron.2013.01.030 23523592
    [Google Scholar]
  33. Zhang L. Hoff A.O. Wimalawansa S.J. Cote G.J. Gagel R.F. Westlund K.N. Arthritic calcitonin/α calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity. Pain 2001 89 2 265 273 10.1016/S0304‑3959(00)00378‑X 11166483
    [Google Scholar]
  34. Gustavsson N. Wu B. Han W. Calcium sensing in exocytosis. Adv. Exp. Med. Biol. 2012 740 731 757 10.1007/978‑94‑007‑2888‑2_32 22453967
    [Google Scholar]
  35. Devesa I. Ferrándiz-Huertas C. Mathivanan S. Wolf C. Luján R. Changeux J.P. Ferrer-Montiel A. αCGRP is essential for algesic exocytotic mobilization of TRPV1 channels in peptidergic nociceptors. Proc. Natl. Acad. Sci. USA 2014 111 51 18345 18350 10.1073/pnas.1420252111 25489075
    [Google Scholar]
  36. Russell F.A. King R. Smillie S.J. Kodji X. Brain S.D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 2014 94 4 1099 1142 10.1152/physrev.00034.2013 25287861
    [Google Scholar]
  37. Spekker E. Tanaka M. Szabó Á. Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research. Biomedicines 2021 10 1 76 10.3390/biomedicines10010076 35052756
    [Google Scholar]
  38. Arora V. Campbell J.N. Chung M.K. Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol. Ther. 2021 220 107743 10.1016/j.pharmthera.2020.107743 33181192
    [Google Scholar]
  39. Pershing L.K. Reilly C.A. Corlett J.L. Crouch D.J. Effects of vehicle on the uptake and elimination kinetics of capsaicinoids in human skin in vivo. Toxicol. Appl. Pharmacol. 2004 200 1 73 81 10.1016/j.taap.2004.03.019 15451310
    [Google Scholar]
  40. Chanda S. Bashir M. Babbar S. Koganti A. Bley K. In vitro hepatic and skin metabolism of capsaicin. Drug Metab. Dispos. 2008 36 4 670 675 10.1124/dmd.107.019240 18180272
    [Google Scholar]
  41. Benítez-Angeles M. Morales-Lázaro S.L. Juárez-González E. Rosenbaum T. TRPV1: Structure, Endogenous Agonists, and Mechanisms. Int. J. Mol. Sci. 2020 21 10 3421 10.3390/ijms21103421 32408609
    [Google Scholar]
  42. Cortright D.N. Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. Eur. J. Biochem. 2004 271 10 1814 1819 10.1111/j.1432‑1033.2004.04082.x 15128291
    [Google Scholar]
  43. Kárai L.J. Russell J.T. Iadarola M.J. Oláh Z. Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J. Biol. Chem. 2004 279 16 16377 16387 10.1074/jbc.M310891200 14963041
    [Google Scholar]
  44. Pingle S.C. Matta J.A. Ahern G.P. “Capsaicin receptor: TRPV1 a promiscuous TRP channel,” Transient Receptor Potential (TRP). Channels 2007 ••• 155 171
    [Google Scholar]
  45. Thapa Magar S. Shrestha R. ASSESSMENT OF ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF CAPSAICIN EXTRACTED FROM CHILI SAMPLES OF NEPAL. Int. J. Adv. Res. (Indore) 2023 11 6 988 1003 10.21474/IJAR01/17155
    [Google Scholar]
  46. Marini E. Magi G. Mingoia M. Pugnaloni A. Facinelli B. Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant, Cell-Invasive Group A Streptococci. Front. Microbiol. 2015 6 1281 10.3389/fmicb.2015.01281 26617603
    [Google Scholar]
  47. Li R. Lan Y. Chen C. Cao Y. Huang Q. Ho C.T. Lu M. Anti-obesity effects of capsaicin and the underlying mechanisms: a review. Food Funct. 2020 11 9 7356 7370 10.1039/D0FO01467B 32820787
    [Google Scholar]
  48. Thanh Duong H. Thuy Linh D.T. Xuan Duy L. Thanh Ha T. Cao Cuong N. Van Trung P. Minh Khoi N. Quang Thao L. Huu Nghi D. Tuan Hiep N. A modern purification by accelerated solvent extraction and centrifugal partition chromatography and biological evaluation of capsaicin from Capsicum chinense. Plant Sci. Today 2023 Dec 10.14719/pst.2684
    [Google Scholar]
  49. Knotkova H. Pappagallo M. Szallasi A. Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival? Clin. J. Pain 2008 24 2 142 154 10.1097/AJP.0b013e318158ed9e 18209521
    [Google Scholar]
  50. Sharma S.K. Vij A.S. Sharma M. Mechanisms and clinical uses of capsaicin. Eur. J. Pharmacol. 2013 720 1-3 55 62 10.1016/j.ejphar.2013.10.053 24211679
    [Google Scholar]
  51. Lo Vecchio S. Andersen H.H. Elberling J. Arendt-Nielsen L. Sensory defunctionalization induced by 8% topical capsaicin treatment in a model of ultraviolet-B-induced cutaneous hyperalgesia. Exp. Brain Res. 2021 239 9 2873 2886 10.1007/s00221‑021‑06170‑0 34302514
    [Google Scholar]
  52. Anand P. Bley K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011 107 4 490 502 10.1093/bja/aer260 21852280
    [Google Scholar]
  53. Luongo L. Costa B. D’Agostino B. Guida F. Comelli F. Gatta L. Matteis M. Sullo N. De Petrocellis L. de Novellis V. Maione S. Di Marzo V. Palvanil, a non-pungent capsaicin analogue, inhibits inflammatory and neuropathic pain with little effects on bronchopulmonary function and body temperature. Pharmacol. Res. 2012 66 3 243 250 10.1016/j.phrs.2012.05.005 22634607
    [Google Scholar]
  54. Shen C.L. Schuck A. Tompkins C. Dunn D.M. Neugebauer V. Bioactive Compounds for Fibromyalgia-like Symptoms: A Narrative Review and Future Perspectives. Int. J. Environ. Res. Public Health 2022 19 7 4148 10.3390/ijerph19074148 35409832
    [Google Scholar]
  55. Zhang Y. Liu Y. Sun J. Zhang W. Guo Z. Ma Q. Arachidonic acid metabolism in health and disease. MedComm 2023 4 5 e363 10.1002/mco2.363 37746665
    [Google Scholar]
  56. Srinivasan K. Biological Activities of Red Pepper ( Capsicum annuum ) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016 56 9 1488 1500 10.1080/10408398.2013.772090 25675368
    [Google Scholar]
  57. Srinivasan K. Antioxidant potential of spices and their active constituents. Crit. Rev. Food Sci. Nutr. 2014 54 3 352 372 10.1080/10408398.2011.585525 24188307
    [Google Scholar]
  58. Akhilender Naidu K. Thippeswamy N.B. Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol. Cell. Biochem. 2002 229 1/2 19 23 10.1023/A:1017930708099 11936843
    [Google Scholar]
  59. Kursunluoglu G. Taskiran D. Ayar Kayali H. The Investigation of the Antitumor Agent Toxicity and Capsaicin Effect on the Electron Transport Chain Enzymes, Catalase Activities and Lipid Peroxidation Levels in Lung, Heart and Brain Tissues of Rats. Molecules 2018 23 12 3267 10.3390/molecules23123267 30544766
    [Google Scholar]
  60. Kogure K. Goto S. Nishimura M. Yasumoto M. Abe K. Ohiwa C. Sassa H. Kusumi T. Terada H. Mechanism of potent antiperoxidative effect of capsaicin. Biochim. Biophys. Acta, Gen. Subj. 2002 1573 1 84 92 10.1016/S0304‑4165(02)00335‑5 12383946
    [Google Scholar]
  61. Ochi T. Takaishi Y. Kogure K. Yamauti I. Antioxidant activity of a new capsaicin derivative from Capsicum annuum. J. Nat. Prod. 2003 66 8 1094 1096 10.1021/np020465y 12932131
    [Google Scholar]
  62. Kempaiah R.K. Srinivasan K. Influence of dietary curcumin, capsaicin and garlic on the antioxidant status of red blood cells and the liver in high-fat-fed rats. Ann. Nutr. Metab. 2004 48 5 314 320 10.1159/000081198 15467281
    [Google Scholar]
  63. Kempaiah R.K. Srinivasan K. Antioxidant status of red blood cells and liver in hypercholesterolemic rats fed hypolipidemic spices. Int. J. Vitam. Nutr. Res. 2004 74 3 199 208 10.1024/0300‑9831.74.3.199 15296079
    [Google Scholar]
  64. Nakagawa H. Hiura A. Capsaicin, transient receptor potential (TRP) protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons. Kaibogaku Zasshi 2006 81 3 135 155 10.1111/j.1447‑073X.2006.00141.x 16955665
    [Google Scholar]
  65. Adetunji T.L. Olawale F. Olisah C. Adetunji A.E. Aremu A.O. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front. Oncol. 2022 12 908487 10.3389/fonc.2022.908487 35912207
    [Google Scholar]
  66. Füchtbauer S. Mousavi S. Bereswill S. Heimesaat M.M. Antibacterial properties of capsaicin and its derivatives and their potential to fight antibiotic resistance – A literature survey. Eur. J. Microbiol. Immunol. (Bp.) 2021 11 1 10 17 10.1556/1886.2021.00003 33764892
    [Google Scholar]
  67. Periferakis A.T. Periferakis A. Periferakis K. Caruntu A. Badarau I.A. Savulescu-Fiedler I. Scheau C. Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023 15 19 4097 10.3390/nu15194097 37836381
    [Google Scholar]
  68. Valera-Vera E.A. Reigada C. Sayé M. Digirolamo F.A. Galceran F. Miranda M.R. Pereira C.A. Effect of capsaicin on the protozoan parasite Trypanosoma cruzi. FEMS Microbiol. Lett. 2020 367 23 fnaa194 10.1093/femsle/fnaa194 33232444
    [Google Scholar]
  69. Saroj S. Saha S. Ali A. Gupta S.K. Bharadwaj A. Agrawal T. Pal S. Rakshit T. Plant Extracellular Nanovesicle-Loaded Hydrogel for Topical Antibacterial Wound Healing In Vivo. ACS Appl. Bio Mater. 2024 Oct acsabm.4c00992 10.1021/acsabm.4c00992 39377525
    [Google Scholar]
  70. Zahner M.R. Li D.P. Chen S.R. Pan H.L. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J. Physiol. 2003 551 Pt 2 515 523 10.1113/jphysiol.2003.048207
    [Google Scholar]
  71. Poblete I.M. Orliac M.L. Briones R. Graschinsky E. Toro J. P. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J. Physiol. 2005 568 Pt 2 539 551 10.1113/jphysiol.2005.094292
    [Google Scholar]
  72. Schultz H. Ustinova E.E. Capsaicin receptors mediate free radical-induced activation of cardiac afferent endings. Cardiovasc. Res. 1998 38 2 348 355 10.1016/S0008‑6363(98)00031‑5 9709395
    [Google Scholar]
  73. Pan H.L. Chen S.R. Sensing tissue ischemia: another new function for capsaicin receptors? Circulation 2004 110 13 1826 1831 10.1161/01.CIR.0000142618.20278.7A 15364816
    [Google Scholar]
  74. Steagall R.J. Sipe A.L. Williams C.A. Joyner W.L. Singh K. Substance P release in response to cardiac ischemia from rat thoracic spinal dorsal horn is mediated by TRPV1. Neuroscience 2012 214 106 119 10.1016/j.neuroscience.2012.04.023 22525132
    [Google Scholar]
  75. Ide R. Saiki C. Makino M. Matsumoto S. TRPV1 receptor expression in cardiac vagal afferent neurons of infant rats. Neurosci. Lett. 2012 507 1 67 71 10.1016/j.neulet.2011.11.055 22178141
    [Google Scholar]
  76. Jones W.K. Fan G.C. Liao S. Zhang J.M. Wang Y. Weintraub N.L. Kranias E.G. Schultz J.E. Lorenz J. Ren X. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 2009 120 11_suppl_1 Suppl. S1 S9 10.1161/CIRCULATIONAHA.108.843938 19752352
    [Google Scholar]
  77. Wang L. Wang D.H. TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 2005 112 23 3617 3623 10.1161/CIRCULATIONAHA.105.556274 16314376
    [Google Scholar]
  78. Sexton A. McDonald M. Cayla C. Thiemermann C. Ahluwalia A. 12‐Lipoxygenase‐derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1. FASEB J. 2007 21 11 2695 2703 10.1096/fj.06‑7828com 17470568
    [Google Scholar]
  79. Mittelstadt S.W. Nelson R.A. Daanen J.F. King A.J. Kort M.E. Kym P.R. Lubbers N.L. Cox B.F. Lynch J.J. III Capsaicin-induced inhibition of platelet aggregation is not mediated by transient receptor potential vanilloid type 1. Blood Coagul. Fibrinolysis 2012 23 1 94 97 10.1097/MBC.0b013e32834ddf18 22089942
    [Google Scholar]
  80. Adams M.J. Ahuja K.D.K. Geraghty D.P. Effect of capsaicin and dihydrocapsaicin on in vitro blood coagulation and platelet aggregation. Thromb Res. 2009 124 6 721 723 10.1016/j.thromres.2009.05.001
    [Google Scholar]
  81. Chen Q. Zhu H. Zhang Y. Zhang Y. Wang L. Zheng L. Vasodilating effect of capsaicin on rat mesenteric artery and its mechanism. Zhejiang Da Xue Xue Bao Yi Xue Ban 2013 42 2 177 183 10.3785/j.issn.1008‑9292.2013.02.008 23585004
    [Google Scholar]
  82. Yang D. Luo Z. Ma S. Wong W.T. Ma L. Zhong J. He H. Zhao Z. Cao T. Yan Z. Liu D. Arendshorst W.J. Huang Y. Tepel M. Zhu Z. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab. 2010 12 2 130 141 10.1016/j.cmet.2010.05.015 20674858
    [Google Scholar]
  83. Harper A.G.S. Brownlow S.L. Sage S.O. A role for TRPV1 in agonist‐evoked activation of human platelets. J. Thromb. Haemost. 2009 7 2 330 338 10.1111/j.1538‑7836.2008.03231.x 19036069
    [Google Scholar]
  84. Aranda F.J. Villalaín J. Gómez-Fernández J.C. Capsaicin affects the structure and phase organization of phospholipid membranes. Biochim. Biophys. Acta Biomembr. 1995 1234 2 225 234 10.1016/0005‑2736(94)00293‑X 7696298
    [Google Scholar]
  85. Meddings J.B. Hogaboam C.M. Tran K. Reynolds J.D. Wallace J.L. Capsaicin effects on non-neuronal plasma membranes. Biochim. Biophys. Acta Biomembr. 1991 1070 1 43 50 10.1016/0005‑2736(91)90144‑W 1751537
    [Google Scholar]
  86. Sylvester D.M. LaHann T.R. Effects of capsaicinoids on platelet aggregation. Proc. West. Pharmacol. Soc. 1989 32 95 100 2780623
    [Google Scholar]
  87. Raghavendra R.H. Naidu K.A. Spice active principles as the inhibitors of human platelet aggregation and thromboxane biosynthesis. Prostaglandins Leukot. Essent. Fatty Acids 2009 81 1 73 78 10.1016/j.plefa.2009.04.009 19501497
    [Google Scholar]
  88. Akabori H. Yamamoto H. Tsuchihashi H. Mori T. Fujino K. Shimizu T. Endo Y. Tani T. Transient receptor potential vanilloid 1 antagonist, capsazepine, improves survival in a rat hemorrhagic shock model. Ann. Surg. 2007 245 6 964 970 10.1097/01.sla.0000255577.80800.e1 17522523
    [Google Scholar]
  89. Yoshioka M. St-Pierre S. Suzuki M. Tremblay A. Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br. J. Nutr. 1998 80 6 503 510 10.1017/S0007114598001597 10211048
    [Google Scholar]
  90. Kang J.H. Tsuyoshi G. Le Ngoc H. Kim H.M. Tu T.H. Noh H.J. Kim C.S. Choe S.Y. Kawada T. Yoo H. Yu R. Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice. J. Med. Food 2011 14 3 310 315 10.1089/jmf.2010.1367 21332406
    [Google Scholar]
  91. Josse A.R. Sherriffs S.S. Holwerda A.M. Andrews R. Staples A.W. Phillips S.M. Effects of capsinoid ingestion on energy expenditure and lipid oxidation at rest and during exercise. Nutr. Metab. (Lond.) 2010 7 1 65 10.1186/1743‑7075‑7‑65 20682072
    [Google Scholar]
  92. Lejeune M.P.G.M. Kovacs E.M.R. Westerterp-Plantenga M.S. Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. Br. J. Nutr. 2003 90 3 651 659 10.1079/BJN2003938 13129472
    [Google Scholar]
  93. Wang Y. Zhou Y. Fu J. Advances in antiobesity mechanisms of capsaicin. Curr. Opin. Pharmacol. 2021 61 1 5 10.1016/j.coph.2021.08.012 34537583
    [Google Scholar]
  94. Okumura T. Tsukui T. Hosokawa M. Miyashita K. Effect of caffeine and capsaicin on the blood glucose levels of obese/diabetic KK-A(y) mice. J. Oleo Sci. 2012 61 9 515 523 10.5650/jos.61.515 22975786
    [Google Scholar]
  95. Lee G.R. Shin M.K. Yoon D.J. Kim A.R. Yu R. Park N.H. Han I.S. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high‐fat diet‐induced obese mice. Obesity (Silver Spring) 2013 21 1 115 122 10.1002/oby.20246 23505175
    [Google Scholar]
  96. Hu W. Bian Q. Zhou Y. Gao J. Pain management with transdermal drug administration: A review. Int. J. Pharm. 2022 618 121696 10.1016/j.ijpharm.2022.121696 35337906
    [Google Scholar]
  97. Park J.Y. Kawada T. Han I.S. Kim B.S. Goto T. Takahashi N. Fushiki T. Kurata T. Yu R. Capsaicin inhibits the production of tumor necrosis factor α by LPS‐stimulated murine macrophages, RAW 264.7: a PPARγ ligand‐like action as a novel mechanism. FEBS Lett. 2004 572 1-3 266 270 10.1016/j.febslet.2004.06.084 15304360
    [Google Scholar]
  98. Telleria-Diaz A. Schmidt M. Kreusch S. Neubert A.K. Schache F. Vazquez E. Vanegas H. Schaible H.G. Ebersberger A. Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: Involvement of prostaglandins and endocannabinoids. Pain 2010 148 1 26 35 10.1016/j.pain.2009.08.013 19879047
    [Google Scholar]
  99. Merritt J.C. Richbart S.D. Moles E.G. Cox A.J. Brown K.C. Miles S.L. Finch P.T. Hess J.A. Tirona M.T. Valentovic M.A. Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol. Ther. 2022 238 108177 10.1016/j.pharmthera.2022.108177 35351463
    [Google Scholar]
  100. Yeom J. Ma S. Kim J.K. Lim Y.H. Oxyresveratrol ameliorates dextran sulfate sodium-induced colitis in rats by suppressing inflammation. Molecules 2021 26 9 2630 10.3390/molecules26092630 33946346
    [Google Scholar]
  101. Rogers J. Urbina S.L. Taylor L.W. Wilborn C.D. Purpura M. Jäger R. Juturu V. Capsaicinoids supplementation decreases percent body fat and fat mass: adjustment using covariates in a post hoc analysis. BMC Obes. 2018 5 1 22 10.1186/s40608‑018‑0197‑1 30123516
    [Google Scholar]
  102. Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023 13 9 1291 10.3390/biom13091291 37759691
    [Google Scholar]
  103. Gangabhagirathi R. Joshi R. Antioxidant activity of capsaicin on radiation-induced oxidation of murine hepatic mitochondrial membrane preparation. Res. Rep. Biochem. 2015 2015 163 171
    [Google Scholar]
  104. Ahmed R.A. Alam M.F. Alshahrani S. Jali A.M. Qahl A.M. Khalid M. Muzafar H.M.A. Alhamami H.N. Anwer T. Capsaicin ameliorates the cyclophosphamide-induced cardiotoxicity by inhibiting free radicals generation, inflammatory cytokines, and apoptotic pathway in rats. Life 2023 13 3 786 10.3390/life13030786 36983940
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072338291241129095347
Loading
/content/journals/cbc/10.2174/0115734072338291241129095347
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Capsaicin ; mechanism of action ; CGRP ; clinical trials ; pharmacological profile ; TRPV1 receptor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test