Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Bioactive compounds were isolated, characterized, but their efficacy, potency and mechanism of action to treat/prevent several diseases yet to defined. The present review provides the insight on the activity of nature derived bioactive compounds therapeutic potential against communicable and non-communicable disease by using approaches such as structure-based virtual screening, ligand-based virtual screening, quantitative structure activity relationships (QSAR) modeling, network-based methods (molecular networking) which could be a breakthrough for the novel bioactive drug development of personalized medicine toward the numerous diseases.

Methods

This study conducted a thorough literature search on various computational tools used for elucidation of bioactive compounds against communicable and non-communicable diseases. The search was performed using multiple search engines and the main keywords, and only English publications (Web of science, Pub med, Science direct .) published up to 2023 were included.

Results

The research presented the various computational tools used for elucidation of bioactive compounds against communicable and non-communicable diseases and possible mechanism of action of lead compounds. It also gives the brief how computational tools might be used in future for personalized medicine development with recently conducted studies outcome.

Conclusion

The present review concludes that computational tools help to narrow down the hit compounds computational tools (virtual screening) and in short period of the time millions of bioactive compounds could be investigated for their therapeutic potential. These review emphasize the potential impact of computational approaches on drug development and personalized medicine.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072327345241121185704
2024-12-04
2025-07-05
Loading full text...

Full text loading...

References

  1. BoutayebA. The double burden of communicable and non-communicable diseases in developing countries.Trans. R. Soc. Trop. Med. Hyg.2006100319119910.1016/j.trstmh.2005.07.02116274715
    [Google Scholar]
  2. WHO. Communicable and noncommunicable diseases, and mental health.2021Available from: https://www.who.int/our-work/communicable-and-noncommunicable-diseases-and-mental-health(accessed on 4-11-2024)
  3. EdemekongP.F. HuangB. Epidemiology of prevention of communicable diseases.StatPearlsTreasure Island (FL)StatPearls Publishing2022
    [Google Scholar]
  4. George KerryR. UkhureborK.E. KumariS. MauryaG.K. PatraS. PanigrahiB. MajhiS. RoutJ.R. Rodriguez-TorresM.P. DasG. ShinH.S. PatraJ.K. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection.Biomater. Sci.20219103576360210.1039/D0BM02164D34008586
    [Google Scholar]
  5. WagnerK.H. BrathH. A global view on the development of non- communicable diseases.Prevent. Med.201254S38S41
    [Google Scholar]
  6. DhawanD. SharmaS. Abdominal obesity, adipokines and non-communicable diseases.J. Steroid Biochem. Mol. Biol.202020310573710.1016/j.jsbmb.2020.10573732818561
    [Google Scholar]
  7. AzadnajafabadS. MohammadiE. AminorroayaA. FattahiN. RezaeiS. HaghshenasR. RezaeiN. NaderimaghamS. LarijaniB. FarzadfarF. Non-communicable diseases’ risk factors in Iran; a review of the present status and action plans.J. Diabetes Metab. Disord.20213321910.1007/s40200‑020‑00709‑833500879
    [Google Scholar]
  8. BiesalskiH.K. DragstedL.O. ElmadfaI. GrossklausR. MüllerM. SchrenkD. WalterP. WeberP. Bioactive compounds: Definition and assessment of activity.Nutrition20092511-121202120510.1016/j.nut.2009.04.02319695833
    [Google Scholar]
  9. LomartireS. GonçalvesA.M.M. An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications.Mar. Drugs202220214110.3390/md2002014135200670
    [Google Scholar]
  10. Kris-EthertonP.M. HeckerK.D. BonanomeA. CovalS.M. BinkoskiA.E. HilpertK.F. GrielA.E. EthertonT.D. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer.Am. J. Med.200211397188
    [Google Scholar]
  11. NewmanR. WaterlandN. MoonY. TouJ.C. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention–a review.Plant Foods Hum. Nutr.201974444946010.1007/s11130‑019‑00769‑z31522406
    [Google Scholar]
  12. GrodzickiW. DziendzikowskaK. The role of selected bioactive compounds in the prevention of Alzheimer’s disease.Antioxidants20209322910.3390/antiox903022932168776
    [Google Scholar]
  13. SharmaB.R. JaiswalS. RavindraP.V. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes.Biomed. Pharmacother.202215211314810.1016/j.biopha.2022.11314835665671
    [Google Scholar]
  14. TeixeiraC.S.S. VillaC. SousaS.F. CostaJ. FerreiraI.M.P.L.V.O. MafraI. An in silico approach to unveil peptides from Acheta domesticus with potential bioactivity against hypertension, diabetes, cardiac and pulmonary fibrosis.Food Res. Int.202316911284710.1016/j.foodres.2023.11284737254421
    [Google Scholar]
  15. ShaikA.H. ShaikS.R. DaddamJ.R. AliD. ManoharadasS. ArafahM.W. KodidhelaL.D. Maslinic acid and gallic acid protective efficacy on lipids, lipoproteins and lipid metabolizing enzymes against isoproterenol administered cardiotoxicity: An in vivo and in silico molecular docking evidences.J. King Saud Univ. Sci.202133110123010.1016/j.jksus.2020.101230
    [Google Scholar]
  16. de RuyckJ. BrysbaertG. BlosseyR. LensinkM. Molecular docking as a popular tool in drug design, an in silico travel.Adv. Appl. Bioinform. Chem.2016911110.2147/AABC.S10528927390530
    [Google Scholar]
  17. WangZ. SunH. ShenC. HuX. GaoJ. LiD. CaoD. HouT. Combined strategies in structure-based virtual screening.Phys. Chem. Chem. Phys.20202263149315910.1039/C9CP06303J31995074
    [Google Scholar]
  18. GhoshA.K. GemmaS. Structure-based design of drugs and other bioactive molecules: tools and strategies.John Wiley & Sons201410.1002/9783527665211
    [Google Scholar]
  19. De AzevedoW.Jr WalterF. MolDock applied to structure-based virtual screening.Curr. Drug Targets201011332733410.2174/13894501079071194120210757
    [Google Scholar]
  20. LabbéC.M. ReyJ. LagorceD. VavrušaM. BecotJ. SperandioO. VilloutreixB.O. TufféryP. MitevaM.A. MTiOpenScreen: a web server for structure-based virtual screening.Nucleic Acids Res.201543W1W448W45410.1093/nar/gkv30625855812
    [Google Scholar]
  21. SchellhammerI. RareyM. FlexX‐Scan: Fast, structure‐based virtual screening.Proteins200457350451710.1002/prot.2021715382244
    [Google Scholar]
  22. SchneiderC. BuchananA. TaddeseB. DeaneC.M. DLAB: deep learning methods for structure-based virtual screening of antibodies.Bioinformatics202238237738310.1093/bioinformatics/btab66034546288
    [Google Scholar]
  23. CraigI.R. EssexJ.W. SpiegelK. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments.J. Chem. Inf. Model.201050451152410.1021/ci900407c20222690
    [Google Scholar]
  24. ShinW.H. ZhuX. BuresM. KiharaD. Three-dimensional compound comparison methods and their application in drug discovery.Molecules2015207128411286210.3390/molecules20071284126193243
    [Google Scholar]
  25. Danishuddin KhanA.U. Descriptors and their selection methods in QSAR analysis: paradigm for drug design.Drug Discov. Today20162181291130210.1016/j.drudis.2016.06.01327326911
    [Google Scholar]
  26. Banegas-LunaA.J. Cerón-CarrascoJ.P. Pérez-SánchezH. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data.Future Med. Chem.201810222641265810.4155/fmc‑2018‑007630499744
    [Google Scholar]
  27. StahuraF. BajorathJ. New methodologies for ligand-based virtual screening.Curr. Pharm. Des.20051191189120210.2174/138161205350754915853666
    [Google Scholar]
  28. BaellJ.B. HollowayG.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.J. Med. Chem.20105372719274010.1021/jm901137j20131845
    [Google Scholar]
  29. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  30. HughesJ.D. BlaggJ. PriceD.A. BaileyS. DeCrescenzoG.A. DevrajR.V. EllsworthE. FobianY.M. GibbsM.E. GillesR.W. GreeneN. HuangE. Krieger-BurkeT. LoeselJ. WagerT. WhiteleyL. ZhangY. Physiochemical drug properties associated with in vivo toxicological outcomes.Bioorg. Med. Chem. Lett.200818174872487510.1016/j.bmcl.2008.07.07118691886
    [Google Scholar]
  31. BeckettA.H. BüchiJ. ChenK.K. LinT.M. HaasH. KunzW. OelkersH.A. BallyJ. BeckettA.H. Stereochemical factors in biological activity.Fortschr. Arzneimittelforsch.1959145553010.1007/978‑3‑0348‑7035‑1_6
    [Google Scholar]
  32. KierL.B. Molecular orbital calculation of preferred conformations of acetylcholine, muscarine, and muscarone.Molecular Pharmacol.196735487494
    [Google Scholar]
  33. ChoudhuryC. SastryN.G. Pharmacophore modelling and screening: concepts, recent developments and applications in rational drug design.Structural Bioinformatics: Applications in Preclinical Drug Discovery ProcessSpringer2019
    [Google Scholar]
  34. TropshaA. GolbraikhA. Predictive QSAR modeling workflow, model applicability domains, and virtual screening.Curr. Pharm. Des.200713343494350410.2174/13816120778279425718220786
    [Google Scholar]
  35. KatritzkyA.R. SlavovS.H. Stoyanova-SlavovaI.S. KahnI. KarelsonM. Quantitative structure-activity relationship (QSAR) modeling of EC50 of aquatic toxicities for Daphnia magna.J. Toxicol. Environ. Health A200972191181119010.1080/1528739090309186320077186
    [Google Scholar]
  36. PrachayasittikulV. WorachartcheewanA. ShoombuatongW. SongtaweeN. SimeonS. PrachayasittikulV. NantasenamatC. Computer-aided drug design of bioactive natural products.Curr. Top. Med. Chem.201515181780180010.2174/156802661566615050615110125961523
    [Google Scholar]
  37. HuangS. MuF. LiF. WangW. ChenH. LeiL. MaY. DingY. WangJ. A network-based approach to explore the mechanism and bioactive compounds of erzhi pill against metabolic dysfunction-associated fatty liver disease.J. Diabetes Res.202011510.1155/2020/786724532724826
    [Google Scholar]
  38. BaskiyarS. RenC. HeckK.L. HallA.M. GulfamM. PackerS. SealsC.D. CalderónA.I. Bioactive Natural Products Identification Using Automation of Molecular Networking Software.J. Chem. Inf. Model.202262246378638510.1021/acs.jcim.2c0030735947427
    [Google Scholar]
  39. ChenH.R. SherrD.H. HuZ. DeLisiC. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer.BMC Med. Genomics2016915110.1186/s12920‑016‑0212‑727475327
    [Google Scholar]
  40. AbdelrheemD.A. AhmedS.A. Abd El-MageedH.R. MohamedH.S. RahmanA.A. ElsayedK.N. AhmedS.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation.J. Environ. Sci. Heal.202055113731386
    [Google Scholar]
  41. KalhorH. SadeghiS. MarashiyanM. KalhorR. Aghaei GharehbolaghS. Akbari EidgahiM.R. RahimiH. Identification of new DNA gyrase inhibitors based on bioactive compounds from streptomyces: structure-based virtual screening and molecular dynamics simulations approaches.J. Biomol. Struct. Dyn.202038379180610.1080/07391102.2019.158878430916622
    [Google Scholar]
  42. ArefinA. Ismail EmaT. IslamT. Saddam HossenM. IslamT. Al AzadS. Nasir Uddin BadalM. Aminul IslamM. BiswasP. AlamN.U. IslamE. AnjumM. MasudA. Shaikh KamranM. RahmanA. Kumar PaulP. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach.J. Biomed. Res.202135645947310.7555/JBR.35.2021011134857680
    [Google Scholar]
  43. AnandanS. GowthamH.G. ShivakumaraC.S. ThampyA. SinghS.B. MuraliM. ShivamalluC. PradeepS. ShilpaN. ShatiA.A. AlfaifiM.Y. ElbehairiS.E.I. Ortega-CastroJ. FrauJ. Flores-HolguínN. KollurS.P. Glossman-MitnikD. Integrated approach for studying bioactive compounds from Cladosporium spp. against estrogen receptor alpha as breast cancer drug target.Sci. Rep.20221212244610.1038/s41598‑022‑22038‑x36575224
    [Google Scholar]
  44. BharadwajK.K. AhmadI. PatiS. GhoshA. SarkarT. RabhaB. PatelH. BaishyaD. EdinurH.A. Abdul KariZ. Ahmad Mohd ZainM.R. Wan RosliW.I. Potent bioactive compounds from seaweed waste to combat cancer through bioinformatics investigation.Front. Nutr.2022988927610.3389/fnut.2022.88927635529456
    [Google Scholar]
  45. HaribabuJ. GarisettiV. MalekshahR.E. SrividyaS. GayathriD. BhuvaneshN. MangalarajaR.V. EcheverriaC. KarvembuR. Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity.J. Mol. Struct.2022125013178210.1016/j.molstruc.2021.13178234697505
    [Google Scholar]
  46. SantosC.B.R. LobatoC.C. BragaF.S. MoraisS.S.S. SantosC.F. FernandesC.P. BrasilD.S.B. Hage-MelimL.I.S. MacêdoW.J.C. CarvalhoJ.C.T. Application of Hartree-Fock method for modeling of bioactive molecules using SAR and QSPR.Comput. Mol. Biosci.20144112410.4236/cmb.2014.41001
    [Google Scholar]
  47. IslamM.R. AwalM.A. KhamesA. AbourehabM.A.S. SamadA. HassanW.M.I. AlamR. OsmanO.I. NurS.M. MollaM.H.R. AbdulrahmanA.O. RajiaS. AhammadF. HasanM.N. QadriI. KimB. Computational identification of druggable bioactive compounds from Catharanthus roseus and Avicennia marina against colorectal cancer by targeting thymidylate synthase.Molecules2022277208910.3390/molecules2707208935408488
    [Google Scholar]
  48. ObernikhinaN. ZhuravlovaM. KachkovskyO. KobzarO. BrovaretsV. PavlenkoO. KulishM. DmytrenkoO. Stability of fullerene complexes with oxazoles as biologically active compounds.Appl. Nanosci.20201041345135310.1007/s13204‑019‑01225‑9
    [Google Scholar]
  49. ShengC. ZhangW. Fragment informatics and computational fragment-based drug design: an overview and update.Med. Res. Rev.201333355459810.1002/med.2125522430881
    [Google Scholar]
  50. HartenfellerM. ZettlH. WalterM. RuppM. ReisenF. ProschakE. WeggenS. StarkH. SchneiderG. DOGS: reaction-driven de novo design of bioactive compounds.PLOS Comput. Biol.201282e100238010.1371/journal.pcbi.100238022359493
    [Google Scholar]
  51. HaoG.F. JiangW. YeY.N. WuF.X. ZhuX.L. GuoF.B. YangG.F. ACFIS: a web server for fragment-based drug discovery.Nucleic Acids Res.201644W1W550W55610.1093/nar/gkw39327150808
    [Google Scholar]
  52. YangJ.F. WangF. JiangW. ZhouG.Y. LiC.Z. ZhuX.L. HaoG.F. YangG.F. PADFrag: a database built for the exploration of bioactive fragment space for drug discovery.J. Chem. Inf. Model.20185891725173010.1021/acs.jcim.8b0028530134653
    [Google Scholar]
  53. SellwoodM.A. AhmedM. SeglerM.H.S. BrownN. Artificial intelligence in drug discovery.Future Med. Chem.201810172025202810.4155/fmc‑2018‑021230101607
    [Google Scholar]
  54. StaszakM. StaszakK. WieszczyckaK. BajekA. RoszkowskiK. TylkowskiB. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022122e156810.1002/wcms.1568
    [Google Scholar]
  55. ShekharS. PrakashP. SinghaP. PrasadK. SinghS. Modeling and Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Allium sativum Leaves Using Response Surface Methodology and Artificial Neural Network Coupled with Genetic Algorithm.Foods2023129192510.3390/foods1209192537174462
    [Google Scholar]
  56. McKinneyJ.D. RichardA. WallerC. NewmanM.C. GerberickF. The practice of structure activity relationships (SAR) in toxicology.Toxicol. Sci.200056181710.1093/toxsci/56.1.810869449
    [Google Scholar]
  57. WassermannA.M. PeltasonL. BajorathJ. Computational analysis of multi-target structure-activity relationships to derive preference orders for chemical modifications toward target selectivity.ChemMedChem20105684785810.1002/cmdc.20100006420414918
    [Google Scholar]
  58. KęskaP. StadnikJ. Structure–activity relationships study on biological activity of peptides as dipeptidyl peptidase IV inhibitors by chemometric modeling.Chem. Biol. Drug Des.202095229130110.1111/cbdd.1364331709757
    [Google Scholar]
  59. BineshA. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends.Rev. Aquacult.202113155656610.1111/raq.12486
    [Google Scholar]
  60. SusantiE. In silico analysis of bioactive compounds of Hibiscus sabdariffa as potential agonists of LXR to inhibit the atherogenesis process.AIP Conf. Proceed.2019210802000810.1063/1.5109983
    [Google Scholar]
  61. LiC. ZhangW.Y. YuY. ChengC.S. HanJ.Y. YaoX.S. ZhouH. Discovery of the mechanisms and major bioactive compounds responsible for the protective effects of Gualou Xiebai Decoction on coronary heart disease by network pharmacology analysis.Phytomedicine20195626126810.1016/j.phymed.2018.11.01030668346
    [Google Scholar]
  62. SainiR.K. RanjitA. SharmaK. PrasadP. ShangX. GowdaK.G.M. KeumY.S. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes.Antioxidants (Basel)2022112239
    [Google Scholar]
  63. RamyaS. SooryaC. Grace Lydial PushpalathaG. ArunaD. LoganathanT. BalamuruganS. AbrahamG. PonrathyT. KandeepanC. JayakumararajR. Artificial Intelligence and Machine Learning approach based in-silico ADME-Tox and Pharmacokinetic Profile of α-Linolenic acid from Catharanthus roseus (L.) G. Don.J. Drug Deliv. Ther.2022122-S9610910.22270/jddt.v12i2‑S.5274
    [Google Scholar]
  64. SiegelR. NaishadhamD. JemalA. Cancer statistics, 2013.CA Cancer J. Clin.2013631113010.3322/caac.2116623335087
    [Google Scholar]
  65. RamakrishnanV. ArivuchelvanA. ParthibanM. ThangapandiyanM. PreethaS.P. Molecular docking study of fucoidan against cyclin-dependent kinase 2 in colorectal carcinoma.Pharma Innovation Journal2021101119621966
    [Google Scholar]
  66. LakshmananA. BalasubramanianB. MaluventhenV. MalaisamyA. BaskaranR. LiuW.C. ArumugamM. Extraction and Characterization of Fucoidan Derived from Sargassum ilicifolium and Its Biomedical Potential with In Silico Molecular Docking.Appl. Sci. (Basel)202212241301010.3390/app122413010
    [Google Scholar]
  67. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets.PLoS One2021167e025403510.1371/journal.pone.025403534260631
    [Google Scholar]
  68. PangastutiA. AminI.F. AminA.Z. AminM. Natural bioactive compound from Moringa oleifera against cancer based on in silico screening.J. Teknol.201678510.11113/jt.v78.8328
    [Google Scholar]
  69. PrabhavathiH. DasegowdaK.R. RenukanandaK.H. LingarajuK. NaikaH.R. Exploration and evaluation of bioactive phytocompounds against BRCA proteins by in silico approach.J. Biomol. Struct. Dyn.202139155471548510.1080/07391102.2020.179042432643536
    [Google Scholar]
  70. RanjithD. ViswanathS. In silico antidiabetic activity of bioactive compounds in Ipomoea mauritiana Jacq.TPI Int. J.201989511
    [Google Scholar]
  71. HartatiF.K. DjauhariA.B. KharismaV.D. Evaluation of Pharmacokinetic properties, toxicity, and bioactive cytotoxic activity of black rice [Oryza sativa L.] as candidates for diabetes mellitus drugs by in silico. Biointerface Res. Appl. Chem.2021114123011231110.33263/BRIAC114.1230112311
    [Google Scholar]
  72. SongY. YangJ. JingW. WangQ. LiuY. ChengX. YeF. TianJ. WeiF. MaS. Systemic elucidation on the potential bioactive compounds and hypoglycemic mechanism of Polygonum multiflorum based on network pharmacology.Chin. Med.202015112110.1186/s13020‑020‑00401‑233292335
    [Google Scholar]
  73. MujawahA. RaufA. BawazeerS. WadoodA. HemegH.A. BawazeerS. Isolation, Structural Elucidation, In Vitro Anti-α-Glucosidase, Anti-β-Secretase, and In Silico Studies of Bioactive Compound Isolated from Syzygium cumini L.Processes (Basel)202311388010.3390/pr11030880
    [Google Scholar]
  74. RajeshkumarR.R. KumarB.K. ParasuramanP. PanneerselvamT. SundarK. AmmunjeD.N. Ram Kumar PandianS. MurugesanS. KabilanS.J. KunjiappanS. Graph theoretical network analysis, in silico exploration, and validation of bioactive compounds from Cynodon dactylon as potential neuroprotective agents against α-synuclein.Bioimpacts202212648749910.34172/bi.2022.2411336644543
    [Google Scholar]
  75. KrishnanN. MariappanadarV. DhanabalanA.K. DevadasanV. GopinathS.C. RamanP. Purification, identification and in silico models of alkaloids from Nardostachys jatamansi-bioactive compounds for neurodegenerative diseases.Biomass Convers. Biorefin.2022136112
    [Google Scholar]
  76. MarucaA. MoracaF. RoccaR. MolisaniF. AlcaroF. GidaroM. AlcaroS. CostaG. OrtusoF. Chemoinformatic database building and in silico hit-identification of potential multi-targeting bioactive compounds extracted from mushroom species.Molecules2017229157110.3390/molecules2209157132961649
    [Google Scholar]
  77. KurniawanA. SiswandonoS. MumpuniE. AbdillahS. In Silico Molecular Docking and Toxicity Studies of Bioactive Fucoidan Compound from Brown Seaweed as Potential of Antihypertensive.Pharmacon: Jurnal Farmasi Indonesia20221911910.23917/pharmacon.v19i1.15933
    [Google Scholar]
  78. JahanI. TonaM.R. SharminS. SayeedM.A. TaniaF.Z. PaulA. ChyM.N.U. RakibA. EmranT.B. Simal-GandaraJ. GC-MS phytochemical profiling, pharmacological properties, and in silico studies of Chukrasia velutina leaves: A novel source for bioactive agents.Molecules20202515353610.3390/molecules2515353632748850
    [Google Scholar]
  79. MurugesanS. RavichandranD. LakshmananD.K. RavichandranG. ArumugamV. RajuK. GeethaK. ThilagarS. Evaluation of anti rheumatic activity of Piper betle L. (Betelvine) extract using in silico, in vitro and in vivo approaches.Bioorg. Chem.202010310422710.1016/j.bioorg.2020.10422732891004
    [Google Scholar]
  80. KaloniD. ChakrabortyD. TiwariA. BiswasS. In silico studies on the phytochemical components of Murraya koenigii targeting TNF-α in rheumatoid arthritis.J. Herb. Med.20202410039610.1016/j.hermed.2020.100396
    [Google Scholar]
  81. YiF. TanX. YanX. LiuH. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach.Chin. Med.20161114210.1186/s13020‑016‑0112‑y27708692
    [Google Scholar]
  82. KhalidM. AlqarniM.H. ShoaibA. ArifM. FoudahA.I. AfzalO. AliA. AliA. AlqahtaniS.S. AltamimiA.S.A. Anti-arthritic and anti-inflammatory potential of Spondias mangifera extract fractions: An in silico, in vitro and in vivo approach.Plants202110582510.3390/plants1005082533919084
    [Google Scholar]
  83. KumarV. ParateS. YoonS. LeeG. LeeK.W. Computational simulations identified marine-derived natural bioactive compounds as replication inhibitors of SARS-CoV-2.Front. Microbiol.20211264729510.3389/fmicb.2021.64729533967984
    [Google Scholar]
  84. AlrasheidA.A. BabikerM.Y. AwadT.A. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis.In Silico Pharmacol.2021911010.1007/s40203‑020‑00073‑833432283
    [Google Scholar]
  85. SinghR. BhardwajV.K. SharmaJ. PurohitR. KumarS. In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors.J. Tradit. Complement. Med.2022121354310.1016/j.jtcme.2021.05.00534099976
    [Google Scholar]
  86. KaliyamurthiV. BineshA. Power of Portieria hornemannii : influence on zebrafish antioxidant system-inflammatory cascade by combatting copper-induced inflammation.Nat. Prod. Res.20234530453410.1080/14786419.2023.228016637950668
    [Google Scholar]
  87. KhalilM. Potensi Senyawa Bioaktif B-Carotene Sebagai Kandidat Antivirus Hepatitis B.Jurnal Geuthèë: Penelitian Multidisiplin202031393399
    [Google Scholar]
  88. DivyaM. AparnaC. MayankR. In-silico insights to identify the bioactive compounds of edible mushrooms as potential MMP9 inhibitor for Hepatitis-B.Res. J. Biotechnol.2021162
    [Google Scholar]
  89. ParvezM. Al-DosariM. AbdelwahidM. AlqahtaniA. AlanziA. Novel anti‑hepatitis B virus‑active catechin and epicatechin from Rhus tripartita.Exp. Ther. Med.202223639810.3892/etm.2022.1132535619632
    [Google Scholar]
  90. PiyushbhaiM.K. BineshA. ShanmugamS.A. VenkatachalamK. Exposure to low-dose arsenic caused teratogenicity and upregulation of proinflammatory cytokines in zebrafish embryos.Biol. Trace Elem. Res.202320173487349610.1007/s12011‑022‑03418‑w36107303
    [Google Scholar]
  91. CrisanL. BoraA. Small molecules of natural origin as potential anti-HIV agents: A computational approach.Life (Basel)202111772210.3390/life1107072234357094
    [Google Scholar]
  92. WuF. ZhouY. LiL. ShenX. ChenG. WangX. LiangX. TanM. HuangZ. Computational approaches in preclinical studies on drug discovery and development.Front Chem.2020872610.3389/fchem.2020.0072633062633
    [Google Scholar]
  93. DingB. YuY. GengS. LiuB. HaoY. LiangG. Computational methods for the interaction between cyclodextrins and natural compounds: technology, benefits, limitations, and trends.J. Agric. Food Chem.20227082466248210.1021/acs.jafc.1c0701835170315
    [Google Scholar]
  94. RolliéS. MangoldM. SundmacherK. Designing biological systems: Systems Engineering meets Synthetic Biology.Chem. Eng. Sci.201269112910.1016/j.ces.2011.10.068
    [Google Scholar]
  95. AmaroR.E. MulhollandA.J. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures.Nat. Rev. Chem.2018240148
    [Google Scholar]
  96. XuX. HuangM. ZouX. Docking-based inverse virtual screening: methods, applications, and challenges.Biophys. Rep.20184111610.1007/s41048‑017‑0045‑829577065
    [Google Scholar]
  97. PinziL. RastelliG. Molecular docking: shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  98. DaviesJ.W. GlickM. JenkinsJ.L. Streamlining lead discovery by aligning in silico and high-throughput screening.Curr. Opin. Chem. Biol.200610434335110.1016/j.cbpa.2006.06.02216822701
    [Google Scholar]
  99. BoströmJ. BrownD.G. YoungR.J. KeserüG.M. Expanding the medicinal chemistry synthetic toolbox.Nat. Rev. Drug Discov.2018171070972710.1038/nrd.2018.11630140018
    [Google Scholar]
  100. BonM. BilslandA. BowerJ. McAulayK. Fragment‐based drug discovery—the importance of high‐quality molecule libraries.Mol. Oncol.202216213761377710.1002/1878‑0261.1327735749608
    [Google Scholar]
  101. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z37100941
    [Google Scholar]
  102. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  103. RoyS.N. MishraS. YusofS.M. Emergence of drug discovery in machine learning.Technical Advancements of Machine Learning in Healthcare.Studies in Computational IntelligenceSpringer, Singapore2021
    [Google Scholar]
  104. FoloppeN. HubbardR. Towards predictive ligand design with free-energy based computational methods?Curr. Med. Chem.20061335833608
    [Google Scholar]
  105. CourniaZ. AllenB. ShermanW. Relative binding free energy calculations in drug discovery: recent advances and practical considerations.J. Chem. Inf. Model.201757122911293710.1021/acs.jcim.7b0056429243483
    [Google Scholar]
  106. FrankM. DrikakisD. CharissisV. Machine-learning methods for computational science and engineering.Computation (Basel)2020811510.3390/computation8010015
    [Google Scholar]
  107. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.00733624381236
    [Google Scholar]
  108. da SilvaT.H. HachigianT.Z. LeeJ. KingM.D. Using computers to ESKAPE the antibiotic resistance crisis.Drug Discov. Today202227245647010.1016/j.drudis.2021.10.00534688913
    [Google Scholar]
  109. SalmanM.M. Al-ObaidiZ. KitchenP. LoretoA. BillR.M. Wade-MartinsR. Advances in applying computer-aided drug design for neurodegenerative diseases.Int. J. Mol. Sci.2021229468810.3390/ijms2209468833925236
    [Google Scholar]
  110. DuayS.S. YapR.C.Y. GaitanoA.L.III SantosJ.A.A. MacalinoS.J.Y. Roles of Virtual Screening and Molecular Dynamics Simulations in Discovering and Understanding Antimalarial Drugs.Int. J. Mol. Sci.20232411928910.3390/ijms2411928937298256
    [Google Scholar]
  111. RaiA. SaitoK. YamazakiM. Integrated omics analysis of specialized metabolism in medicinal plants.Plant J.201790476478710.1111/tpj.1348528109168
    [Google Scholar]
  112. MisraB.B. LangefeldC. OlivierM. CoxL.A. Integrated omics: tools, advances and future approaches.J. Mol. Endocrinol.2019621R21R4510.1530/JME‑18‑005530006342
    [Google Scholar]
  113. BineshA. Devaraj SivasitambaramN. HalagowderD. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis.J. Biochem. Mol. Toxicol.2020343e2244210.1002/jbt.2244231926051
    [Google Scholar]
  114. YurkovichJ.T. TianQ. PriceN.D. HoodL. A systems approach to clinical oncology uses deep phenotyping to deliver personalized care.Nat. Rev. Clin. Oncol.202017318319410.1038/s41571‑019‑0273‑631619755
    [Google Scholar]
  115. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions.Med. Res. Rev.20214131427147310.1002/med.2176433295676
    [Google Scholar]
  116. IqbalM.J. JavedZ. SadiaH. QureshiI.A. IrshadA. AhmedR. MalikK. RazaS. AbbasA. PezzaniR. Sharifi-RadJ. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future.Cancer Cell Int.202121127010.1186/s12935‑021‑01981‑134020642
    [Google Scholar]
  117. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  118. LavecchiaA. Deep learning in drug discovery: opportunities, challenges and future prospects.Drug Discov. Today201924102017203210.1016/j.drudis.2019.07.00631377227
    [Google Scholar]
  119. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries.Mol. Divers.20212631893191334686947
    [Google Scholar]
  120. SchneiderG. Automating drug discovery.Nat. Rev. Drug Discov.20181729711310.1038/nrd.2017.23229242609
    [Google Scholar]
  121. RenaudJ.P. ChariA. CiferriC. LiuW. RémigyH.W. StarkH. WiesmannC. Cryo-EM in drug discovery: achievements, limitations and prospects.Nat. Rev. Drug Discov.201817747149210.1038/nrd.2018.7729880918
    [Google Scholar]
  122. De VivoM. MasettiM. BottegoniG. CavalliA. Role of molecular dynamics and related methods in drug discovery.J. Med. Chem.20165994035406110.1021/acs.jmedchem.5b0168426807648
    [Google Scholar]
  123. ShakerB. AhmadS. LeeJ. JungC. NaD. In silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.10485134520990
    [Google Scholar]
  124. MishraS. DahimaR. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor.J. Drug Deliv. Ther.201992-s36636910.22270/jddt.v9i2‑s.2710
    [Google Scholar]
  125. SabineB. DietrichP. Computational simulation as an innovative approach in personalized medicine.Innovations in Spinal Deformities and Postural DisordersIntech open20174710.5772/intechopen.68835
    [Google Scholar]
  126. ChenR. SnyderM. Promise of personalized omics to precision medicine.Wiley Interdiscip. Rev. Syst. Biol. Med.201351738210.1002/wsbm.119823184638
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072327345241121185704
Loading
/content/journals/cbc/10.2174/0115734072327345241121185704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test