Skip to content
2000
image of A Comprehensive Review on Integrated Approach for Discovery and Development of Novel Bioactive Compounds: From Natural Resources to Targeted Therapeutics

Abstract

Background

Bioactive compounds were isolated, characterized, but their efficacy, potency and mechanism of action to treat/prevent several diseases yet to defined. The present review provides the insight on the activity of nature derived bioactive compounds therapeutic potential against communicable and non-communicable disease by using approaches such as structure-based virtual screening, ligand-based virtual screening, quantitative structure activity relationships (QSAR) modeling, network-based methods (molecular networking) which could be a breakthrough for the novel bioactive drug development of personalized medicine toward the numerous diseases.

Methods

This study conducted a thorough literature search on various computational tools used for elucidation of bioactive compounds against communicable and non-communicable diseases. The search was performed using multiple search engines and the main keywords, and only English publications (Web of science, Pub med, Science direct etc.) published up to 2023 were included.

Results

The research presented the various computational tools used for elucidation of bioactive compounds against communicable and non-communicable diseases and possible mechanism of action of lead compounds. It also gives the brief how computational tools might be used in future for personalized medicine development with recently conducted studies outcome.

Conclusion

The present review concludes that computational tools help to narrow down the hit compounds via computational tools (virtual screening) and in short period of the time millions of bioactive compounds could be investigated for their therapeutic potential. These review emphasize the potential impact of computational approaches on drug development and personalized medicine.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072327345241121185704
2024-12-04
2025-01-10
Loading full text...

Full text loading...

References

  1. Boutayeb A. The double burden of communicable and non-communicable diseases in developing countries. Trans. R. Soc. Trop. Med. Hyg. 2006 100 3 191 199 10.1016/j.trstmh.2005.07.021 16274715
    [Google Scholar]
  2. WHO. Communicable and noncommunicable diseases, and mental health. 2021 Available from: https://www.who.int/our-work/communicable-and-noncommunicable-diseases-and-mental-health(accessed on 4-11-2024)
  3. Edemekong P.F. Huang B. Epidemiology of prevention of communicable diseases. StatPearls Treasure Island (FL) StatPearls Publishing 2022
    [Google Scholar]
  4. George Kerry R. Ukhurebor K.E. Kumari S. Maurya G.K. Patra S. Panigrahi B. Majhi S. Rout J.R. Rodriguez-Torres M.P. Das G. Shin H.S. Patra J.K. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater. Sci. 2021 9 10 3576 3602 10.1039/D0BM02164D 34008586
    [Google Scholar]
  5. Wagner K.H. Brath H. A global view on the development of non- communicable diseases. Prevent. Med. 2012 54 S38 S41
    [Google Scholar]
  6. Dhawan D. Sharma S. Abdominal obesity, adipokines and non-communicable diseases. J. Steroid Biochem. Mol. Biol. 2020 203 105737 10.1016/j.jsbmb.2020.105737 32818561
    [Google Scholar]
  7. Azadnajafabad S. Mohammadi E. Aminorroaya A. Fattahi N. Rezaei S. Haghshenas R. Rezaei N. Naderimagham S. Larijani B. Farzadfar F. Non-communicable diseases’ risk factors in Iran; a review of the present status and action plans. J. Diabetes Metab. Disord. 2021 ••• 1 9 10.1007/s40200‑020‑00709‑8 33500879
    [Google Scholar]
  8. Biesalski H.K. Dragsted L.O. Elmadfa I. Grossklaus R. Müller M. Schrenk D. Walter P. Weber P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009 25 11-12 1202 1205 10.1016/j.nut.2009.04.023 19695833
    [Google Scholar]
  9. Lomartire S. Gonçalves A.M.M. An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications. Mar. Drugs 2022 20 2 141 10.3390/md20020141 35200670
    [Google Scholar]
  10. Kris-Etherton P.M. Hecker K.D. Bonanome A. Coval S.M. Binkoski A.E. Hilpert K.F. Griel A.E. Etherton T.D. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002 113 9 71 88
    [Google Scholar]
  11. Newman R. Waterland N. Moon Y. Tou J.C. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention–a review. Plant Foods Hum. Nutr. 2019 74 4 449 460 10.1007/s11130‑019‑00769‑z 31522406
    [Google Scholar]
  12. Grodzicki W. Dziendzikowska K. The role of selected bioactive compounds in the prevention of Alzheimer’s disease. Antioxidants 2020 9 3 229 10.3390/antiox9030229 32168776
    [Google Scholar]
  13. Sharma B.R. Jaiswal S. Ravindra P.V. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomed. Pharmacother. 2022 152 113148 10.1016/j.biopha.2022.113148 35665671
    [Google Scholar]
  14. Teixeira C.S.S. Villa C. Sousa S.F. Costa J. Ferreira I.M.P.L.V.O. Mafra I. An in silico approach to unveil peptides from Acheta domesticus with potential bioactivity against hypertension, diabetes, cardiac and pulmonary fibrosis. Food Res. Int. 2023 169 112847 10.1016/j.foodres.2023.112847 37254421
    [Google Scholar]
  15. Shaik A.H. Shaik S.R. Daddam J.R. Ali D. Manoharadas S. Arafah M.W. Kodidhela L.D. Maslinic acid and gallic acid protective efficacy on lipids, lipoproteins and lipid metabolizing enzymes against isoproterenol administered cardiotoxicity: An in vivo and in silico molecular docking evidences. J. King Saud Univ. Sci. 2021 33 1 101230 10.1016/j.jksus.2020.101230
    [Google Scholar]
  16. de Ruyck J. Brysbaert G. Blossey R. Lensink M. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem. 2016 9 1 11 10.2147/AABC.S105289 27390530
    [Google Scholar]
  17. Wang Z. Sun H. Shen C. Hu X. Gao J. Li D. Cao D. Hou T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys. 2020 22 6 3149 3159 10.1039/C9CP06303J 31995074
    [Google Scholar]
  18. Ghosh A.K. Gemma S. Structure-based design of drugs and other bioactive molecules: tools and strategies. John Wiley & Sons 2014 10.1002/9783527665211
    [Google Scholar]
  19. De Azevedo W. Jr Walter F. MolDock applied to structure-based virtual screening. Curr. Drug Targets 2010 11 3 327 334 10.2174/138945010790711941 20210757
    [Google Scholar]
  20. Labbé C.M. Rey J. Lagorce D. Vavruša M. Becot J. Sperandio O. Villoutreix B.O. Tufféry P. Miteva M.A. MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res. 2015 43 W1 W448 W454 10.1093/nar/gkv306 25855812
    [Google Scholar]
  21. Schellhammer I. Rarey M. FlexX‐Scan: Fast, structure‐based virtual screening. Proteins 2004 57 3 504 517 10.1002/prot.20217 15382244
    [Google Scholar]
  22. Schneider C. Buchanan A. Taddese B. Deane C.M. DLAB: deep learning methods for structure-based virtual screening of antibodies. Bioinformatics 2022 38 2 377 383 10.1093/bioinformatics/btab660 34546288
    [Google Scholar]
  23. Craig I.R. Essex J.W. Spiegel K. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J. Chem. Inf. Model. 2010 50 4 511 524 10.1021/ci900407c 20222690
    [Google Scholar]
  24. Shin W.H. Zhu X. Bures M. Kihara D. Three-dimensional compound comparison methods and their application in drug discovery. Molecules 2015 20 7 12841 12862 10.3390/molecules200712841 26193243
    [Google Scholar]
  25. Danishuddin Khan A.U. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov. Today 2016 21 8 1291 1302 10.1016/j.drudis.2016.06.013 27326911
    [Google Scholar]
  26. Banegas-Luna A.J. Cerón-Carrasco J.P. Pérez-Sánchez H. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. Future Med. Chem. 2018 10 22 2641 2658 10.4155/fmc‑2018‑0076 30499744
    [Google Scholar]
  27. Stahura F. Bajorath J. New methodologies for ligand-based virtual screening. Curr. Pharm. Des. 2005 11 9 1189 1202 10.2174/1381612053507549 15853666
    [Google Scholar]
  28. Baell J.B. Holloway G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010 53 7 2719 2740 10.1021/jm901137j 20131845
    [Google Scholar]
  29. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  30. Hughes J.D. Blagg J. Price D.A. Bailey S. DeCrescenzo G.A. Devraj R.V. Ellsworth E. Fobian Y.M. Gibbs M.E. Gilles R.W. Greene N. Huang E. Krieger-Burke T. Loesel J. Wager T. Whiteley L. Zhang Y. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008 18 17 4872 4875 10.1016/j.bmcl.2008.07.071 18691886
    [Google Scholar]
  31. Beckett A.H. Büchi J. Chen K.K. Lin T.M. Haas H. Kunz W. Oelkers H.A. Bally J. Beckett A.H. Stereochemical factors in biological activity. Fortschr. Arzneimittelforsch. 1959 1 455 530 10.1007/978‑3‑0348‑7035‑1_6
    [Google Scholar]
  32. Kier L.B. Molecular orbital calculation of preferred conformations of acetylcholine, muscarine, and muscarone. Molecular Pharmacol. 1967 3 5 487 494
    [Google Scholar]
  33. Choudhury C. Sastry N.G. Pharmacophore modelling and screening: concepts, recent developments and applications in rational drug design. Structural Bioinformatics: Applications in Preclinical Drug Discovery Process Springer 2019
    [Google Scholar]
  34. Tropsha A. Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 2007 13 34 3494 3504 10.2174/138161207782794257 18220786
    [Google Scholar]
  35. Katritzky A.R. Slavov S.H. Stoyanova-Slavova I.S. Kahn I. Karelson M. Quantitative structure-activity relationship (QSAR) modeling of EC50 of aquatic toxicities for Daphnia magna. J. Toxicol. Environ. Health A 2009 72 19 1181 1190 10.1080/15287390903091863 20077186
    [Google Scholar]
  36. Prachayasittikul V. Worachartcheewan A. Shoombuatong W. Songtawee N. Simeon S. Prachayasittikul V. Nantasenamat C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem. 2015 15 18 1780 1800 10.2174/1568026615666150506151101 25961523
    [Google Scholar]
  37. Huang S. Mu F. Li F. Wang W. Chen H. Lei L. Ma Y. Ding Y. Wang J. A network-based approach to explore the mechanism and bioactive compounds of erzhi pill against metabolic dysfunction-associated fatty liver disease. J. Diabetes Res. 2020 2020 1 1 15 10.1155/2020/7867245 32724826
    [Google Scholar]
  38. Baskiyar S. Ren C. Heck K.L. Hall A.M. Gulfam M. Packer S. Seals C.D. Calderón A.I. Bioactive Natural Products Identification Using Automation of Molecular Networking Software. J. Chem. Inf. Model. 2022 62 24 6378 6385 10.1021/acs.jcim.2c00307 35947427
    [Google Scholar]
  39. Chen H.R. Sherr D.H. Hu Z. DeLisi C. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med. Genomics 2016 9 1 51 10.1186/s12920‑016‑0212‑7 27475327
    [Google Scholar]
  40. Abdelrheem D.A. Ahmed S.A. Abd El-Mageed H.R. Mohamed H.S. Rahman A.A. Elsayed K.N. Ahmed S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Heal. 2020 55 1 1373 1386
    [Google Scholar]
  41. Kalhor H. Sadeghi S. Marashiyan M. Kalhor R. Aghaei Gharehbolagh S. Akbari Eidgahi M.R. Rahimi H. Identification of new DNA gyrase inhibitors based on bioactive compounds from streptomyces: structure-based virtual screening and molecular dynamics simulations approaches. J. Biomol. Struct. Dyn. 2020 38 3 791 806 10.1080/07391102.2019.1588784 30916622
    [Google Scholar]
  42. Arefin A. Ismail Ema T. Islam T. Saddam Hossen M. Islam T. Al Azad S. Nasir Uddin Badal M. Aminul Islam M. Biswas P. Alam N.U. Islam E. Anjum M. Masud A. Shaikh Kamran M. Rahman A. Kumar Paul P. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach. J. Biomed. Res. 2021 35 6 459 473 10.7555/JBR.35.20210111 34857680
    [Google Scholar]
  43. Anandan S. Gowtham H.G. Shivakumara C.S. Thampy A. Singh S.B. Murali M. Shivamallu C. Pradeep S. Shilpa N. Shati A.A. Alfaifi M.Y. Elbehairi S.E.I. Ortega-Castro J. Frau J. Flores-Holguín N. Kollur S.P. Glossman-Mitnik D. Integrated approach for studying bioactive compounds from Cladosporium spp. against estrogen receptor alpha as breast cancer drug target. Sci. Rep. 2022 12 1 22446 10.1038/s41598‑022‑22038‑x 36575224
    [Google Scholar]
  44. Bharadwaj K.K. Ahmad I. Pati S. Ghosh A. Sarkar T. Rabha B. Patel H. Baishya D. Edinur H.A. Abdul Kari Z. Ahmad Mohd Zain M.R. Wan Rosli W.I. Potent bioactive compounds from seaweed waste to combat cancer through bioinformatics investigation. Front. Nutr. 2022 9 889276 10.3389/fnut.2022.889276 35529456
    [Google Scholar]
  45. Haribabu J. Garisetti V. Malekshah R.E. Srividya S. Gayathri D. Bhuvanesh N. Mangalaraja R.V. Echeverria C. Karvembu R. Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity. J. Mol. Struct. 2022 1250 131782 10.1016/j.molstruc.2021.131782 34697505
    [Google Scholar]
  46. Santos C.B.R. Lobato C.C. Braga F.S. Morais S.S.S. Santos C.F. Fernandes C.P. Brasil D.S.B. Hage-Melim L.I.S. Macêdo W.J.C. Carvalho J.C.T. Application of Hartree-Fock method for modeling of bioactive molecules using SAR and QSPR. Comput. Mol. Biosci. 2014 4 1 1 24 10.4236/cmb.2014.41001
    [Google Scholar]
  47. Islam M.R. Awal M.A. Khames A. Abourehab M.A.S. Samad A. Hassan W.M.I. Alam R. Osman O.I. Nur S.M. Molla M.H.R. Abdulrahman A.O. Rajia S. Ahammad F. Hasan M.N. Qadri I. Kim B. Computational identification of druggable bioactive compounds from Catharanthus roseus and Avicennia marina against colorectal cancer by targeting thymidylate synthase. Molecules 2022 27 7 2089 10.3390/molecules27072089 35408488
    [Google Scholar]
  48. Obernikhina N. Zhuravlova M. Kachkovsky O. Kobzar O. Brovarets V. Pavlenko O. Kulish M. Dmytrenko O. Stability of fullerene complexes with oxazoles as biologically active compounds. Appl. Nanosci. 2020 10 4 1345 1353 10.1007/s13204‑019‑01225‑9
    [Google Scholar]
  49. Sheng C. Zhang W. Fragment informatics and computational fragment-based drug design: an overview and update. Med. Res. Rev. 2013 33 3 554 598 10.1002/med.21255 22430881
    [Google Scholar]
  50. Hartenfeller M. Zettl H. Walter M. Rupp M. Reisen F. Proschak E. Weggen S. Stark H. Schneider G. DOGS: reaction-driven de novo design of bioactive compounds. PLOS Comput. Biol. 2012 8 2 e1002380 10.1371/journal.pcbi.1002380 22359493
    [Google Scholar]
  51. Hao G.F. Jiang W. Ye Y.N. Wu F.X. Zhu X.L. Guo F.B. Yang G.F. ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Res. 2016 44 W1 W550 W556 10.1093/nar/gkw393 27150808
    [Google Scholar]
  52. Yang J.F. Wang F. Jiang W. Zhou G.Y. Li C.Z. Zhu X.L. Hao G.F. Yang G.F. PADFrag: a database built for the exploration of bioactive fragment space for drug discovery. J. Chem. Inf. Model. 2018 58 9 1725 1730 10.1021/acs.jcim.8b00285 30134653
    [Google Scholar]
  53. Sellwood M.A. Ahmed M. Segler M.H.S. Brown N. Artificial intelligence in drug discovery. Future Med. Chem. 2018 10 17 2025 2028 10.4155/fmc‑2018‑0212 30101607
    [Google Scholar]
  54. Staszak M. Staszak K. Wieszczycka K. Bajek A. Roszkowski K. Tylkowski B. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 2 e1568 10.1002/wcms.1568
    [Google Scholar]
  55. Shekhar S. Prakash P. Singha P. Prasad K. Singh S. Modeling and Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Allium sativum Leaves Using Response Surface Methodology and Artificial Neural Network Coupled with Genetic Algorithm. Foods 2023 12 9 1925 10.3390/foods12091925 37174462
    [Google Scholar]
  56. McKinney J.D. Richard A. Waller C. Newman M.C. Gerberick F. The practice of structure activity relationships (SAR) in toxicology. Toxicol. Sci. 2000 56 1 8 17 10.1093/toxsci/56.1.8 10869449
    [Google Scholar]
  57. Wassermann A.M. Peltason L. Bajorath J. Computational analysis of multi-target structure-activity relationships to derive preference orders for chemical modifications toward target selectivity. ChemMedChem 2010 5 6 847 858 10.1002/cmdc.201000064 20414918
    [Google Scholar]
  58. Kęska P. Stadnik J. Structure–activity relationships study on biological activity of peptides as dipeptidyl peptidase IV inhibitors by chemometric modeling. Chem. Biol. Drug Des. 2020 95 2 291 301 10.1111/cbdd.13643 31709757
    [Google Scholar]
  59. Binesh A. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends. Rev. Aquacult. 2021 13 1 556 566 10.1111/raq.12486
    [Google Scholar]
  60. Susanti E. In silico analysis of bioactive compounds of Hibiscus sabdariffa as potential agonists of LXR to inhibit the atherogenesis process. AIP Conf. Proceed. 2019 2108 020008 10.1063/1.5109983
    [Google Scholar]
  61. Li C. Zhang W.Y. Yu Y. Cheng C.S. Han J.Y. Yao X.S. Zhou H. Discovery of the mechanisms and major bioactive compounds responsible for the protective effects of Gualou Xiebai Decoction on coronary heart disease by network pharmacology analysis. Phytomedicine 2019 56 261 268 10.1016/j.phymed.2018.11.010 30668346
    [Google Scholar]
  62. Salekeen R. Akhter F. Islam M.E. Rahman S.M. Islam K.M.D. Billah M.M. Retracted Article: Citrus Fruits as Source of Novel Bioactive Peptides: in-vitro and in-silico Analysis of Atheroprotective Potentials. Food Funct. 2022
    [Google Scholar]
  63. Ramya S. Soorya C. Grace Lydial Pushpalatha G. Aruna D. Loganathan T. Balamurugan S. Abraham G. Ponrathy T. Kandeepan C. Jayakumararaj R. Artificial Intelligence and Machine Learning approach based in-silico ADME-Tox and Pharmacokinetic Profile of α-Linolenic acid from Catharanthus roseus (L.) G. Don. J. Drug Deliv. Ther. 2022 12 2-S 96 109 10.22270/jddt.v12i2‑S.5274
    [Google Scholar]
  64. Siegel R. Naishadham D. Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013 63 1 11 30 10.3322/caac.21166 23335087
    [Google Scholar]
  65. Ramakrishnan V. Arivuchelvan A. Parthiban M. Thangapandiyan M. Preetha S.P. Molecular docking study of fucoidan against cyclin-dependent kinase 2 in colorectal carcinoma. Pharma Innovation Journal 2021 10 11 1962 1966
    [Google Scholar]
  66. Lakshmanan A. Balasubramanian B. Maluventhen V. Malaisamy A. Baskaran R. Liu W.C. Arumugam M. Extraction and Characterization of Fucoidan Derived from Sargassum ilicifolium and Its Biomedical Potential with In Silico Molecular Docking. Appl. Sci. (Basel) 2022 12 24 13010 10.3390/app122413010
    [Google Scholar]
  67. Gurung A.B. Ali M.A. Lee J. Farah M.A. Al-Anazi K.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One 2021 16 7 e0254035 10.1371/journal.pone.0254035 34260631
    [Google Scholar]
  68. Pangastuti A. Amin I.F. Amin A.Z. Amin M. Natural bioactive compound from Moringa oleifera against cancer based on in silico screening. J. Teknol. 2016 78 5 10.11113/jt.v78.8328
    [Google Scholar]
  69. Prabhavathi H. Dasegowda K.R. Renukananda K.H. Lingaraju K. Naika H.R. Exploration and evaluation of bioactive phytocompounds against BRCA proteins by in silico approach. J. Biomol. Struct. Dyn. 2021 39 15 5471 5485 10.1080/07391102.2020.1790424 32643536
    [Google Scholar]
  70. Ranjith D. Viswanath S. In silico antidiabetic activity of bioactive compounds in Ipomoea mauritiana Jacq. TPI Int. J. 2019 8 9 5 11
    [Google Scholar]
  71. Hartati F.K. Djauhari A.B. Kharisma V.D. Evaluation of Pharmacokinetic properties, toxicity, and bioactive cytotoxic activity of black rice [Oryza sativa L.] as candidates for diabetes mellitus drugs by in silico. Biointerface Res. Appl. Chem. 2021 11 4 12301 12311 10.33263/BRIAC114.1230112311
    [Google Scholar]
  72. Song Y. Yang J. Jing W. Wang Q. Liu Y. Cheng X. Ye F. Tian J. Wei F. Ma S. Systemic elucidation on the potential bioactive compounds and hypoglycemic mechanism of Polygonum multiflorum based on network pharmacology. Chin. Med. 2020 15 1 121 10.1186/s13020‑020‑00401‑2 33292335
    [Google Scholar]
  73. Mujawah A. Rauf A. Bawazeer S. Wadood A. Hemeg H.A. Bawazeer S. Isolation, Structural Elucidation, In Vitro Anti-α-Glucosidase, Anti-β-Secretase, and In Silico Studies of Bioactive Compound Isolated from Syzygium cumini L. Processes (Basel) 2023 11 3 880 10.3390/pr11030880
    [Google Scholar]
  74. Rajeshkumar R.R. Kumar B.K. Parasuraman P. Panneerselvam T. Sundar K. Ammunje D.N. Ram Kumar Pandian S. Murugesan S. Kabilan S.J. Kunjiappan S. Graph theoretical network analysis, in silico exploration, and validation of bioactive compounds from Cynodon dactylon as potential neuroprotective agents against α-synuclein. Bioimpacts 2022 12 6 487 499 10.34172/bi.2022.24113 36644543
    [Google Scholar]
  75. Krishnan N. Mariappanadar V. Dhanabalan A.K. Devadasan V. Gopinath S.C. Raman P. Purification, identification and in silico models of alkaloids from Nardostachys jatamansi—bioactive compounds for neurodegenerative diseases. Biomass Convers. Biorefin. 2022 ••• 1 12
    [Google Scholar]
  76. Maruca A. Moraca F. Rocca R. Molisani F. Alcaro F. Gidaro M. Alcaro S. Costa G. Ortuso F. Chemoinformatic database building and in silico hit-identification of potential multi-targeting bioactive compounds extracted from mushroom species. Molecules 2017 22 9 1571 10.3390/molecules22091571 32961649
    [Google Scholar]
  77. Kurniawan A. Siswandono S. Mumpuni E. Abdillah S. In Silico Molecular Docking and Toxicity Studies of Bioactive Fucoidan Compound from Brown Seaweed as Potential of Antihypertensive. Pharmacon: Jurnal Farmasi Indonesia 2022 19 1 1 9 10.23917/pharmacon.v19i1.15933
    [Google Scholar]
  78. Jahan I. Tona M.R. Sharmin S. Sayeed M.A. Tania F.Z. Paul A. Chy M.N.U. Rakib A. Emran T.B. Simal-Gandara J. GC-MS phytochemical profiling, pharmacological properties, and in silico studies of Chukrasia velutina leaves: A novel source for bioactive agents. Molecules 2020 25 15 3536 10.3390/molecules25153536 32748850
    [Google Scholar]
  79. Murugesan S. Ravichandran D. Lakshmanan D.K. Ravichandran G. Arumugam V. Raju K. Geetha K. Thilagar S. Evaluation of anti rheumatic activity of Piper betle L. (Betelvine) extract using in silico, in vitro and in vivo approaches. Bioorg. Chem. 2020 103 104227 10.1016/j.bioorg.2020.104227 32891004
    [Google Scholar]
  80. Kaloni D. Chakraborty D. Tiwari A. Biswas S. In silico studies on the phytochemical components of Murraya koenigii targeting TNF-α in rheumatoid arthritis. J. Herb. Med. 2020 24 100396 10.1016/j.hermed.2020.100396
    [Google Scholar]
  81. Yi F. Tan X. Yan X. Liu H. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach. Chin. Med. 2016 11 1 42 10.1186/s13020‑016‑0112‑y 27708692
    [Google Scholar]
  82. Khalid M. Alqarni M.H. Shoaib A. Arif M. Foudah A.I. Afzal O. Ali A. Ali A. Alqahtani S.S. Altamimi A.S.A. Anti-arthritic and anti-inflammatory potential of Spondias mangifera extract fractions: An in silico, in vitro and in vivo approach. Plants 2021 10 5 825 10.3390/plants10050825 33919084
    [Google Scholar]
  83. Kumar V. Parate S. Yoon S. Lee G. Lee K.W. Computational simulations identified marine-derived natural bioactive compounds as replication inhibitors of SARS-CoV-2. Front. Microbiol. 2021 12 647295 10.3389/fmicb.2021.647295 33967984
    [Google Scholar]
  84. Alrasheid A.A. Babiker M.Y. Awad T.A. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacol. 2021 9 1 10 10.1007/s40203‑020‑00073‑8 33432283
    [Google Scholar]
  85. Singh R. Bhardwaj V.K. Sharma J. Purohit R. Kumar S. In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. J. Tradit. Complement. Med. 2022 12 1 35 43 10.1016/j.jtcme.2021.05.005 34099976
    [Google Scholar]
  86. Kaliyamurthi V. Binesh A. Power of Portieria hornemannii : influence on zebrafish antioxidant system-inflammatory cascade by combatting copper-induced inflammation. Nat. Prod. Res. 2023 ••• 1 5 10.1080/14786419.2023.2280166 37950668
    [Google Scholar]
  87. Khalil M. Potensi Senyawa Bioaktif B-Carotene Sebagai Kandidat Antivirus Hepatitis B. Jurnal Geuthèë: Penelitian Multidisiplin 2020 3 1 393 399 [The Potention Of Bioactive Compound B-Carotene As Anti-Hepatitis B Virus Candidate].
    [Google Scholar]
  88. Divya M. Aparna C. Mayank R. In-silico insights to identify the bioactive compounds of edible mushrooms as potential MMP9 inhibitor for Hepatitis-B. Res. J. Biotechnol. 2021 16 2
    [Google Scholar]
  89. Parvez M. Al-Dosari M. Abdelwahid M. Alqahtani A. Alanzi A. Novel anti‑hepatitis B virus‑active catechin and epicatechin from Rhus tripartita. Exp. Ther. Med. 2022 23 6 398 10.3892/etm.2022.11325 35619632
    [Google Scholar]
  90. Piyushbhai M.K. Binesh A. Shanmugam S.A. Venkatachalam K. Exposure to low-dose arsenic caused teratogenicity and upregulation of proinflammatory cytokines in zebrafish embryos. Biol. Trace Elem. Res. 2023 201 7 3487 3496 10.1007/s12011‑022‑03418‑w 36107303
    [Google Scholar]
  91. Crisan L. Bora A. Small molecules of natural origin as potential anti-HIV agents: A computational approach. Life (Basel) 2021 11 7 722 10.3390/life11070722 34357094
    [Google Scholar]
  92. Wu F. Zhou Y. Li L. Shen X. Chen G. Wang X. Liang X. Tan M. Huang Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem. 2020 8 726 10.3389/fchem.2020.00726 33062633
    [Google Scholar]
  93. Ding B. Yu Y. Geng S. Liu B. Hao Y. Liang G. Computational methods for the interaction between cyclodextrins and natural compounds: technology, benefits, limitations, and trends. J. Agric. Food Chem. 2022 70 8 2466 2482 10.1021/acs.jafc.1c07018 35170315
    [Google Scholar]
  94. Rollié S. Mangold M. Sundmacher K. Designing biological systems: Systems Engineering meets Synthetic Biology. Chem. Eng. Sci. 2012 69 1 1 29 10.1016/j.ces.2011.10.068
    [Google Scholar]
  95. Amaro R.E. Mulholland A.J. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat. Rev. Chem. 2018 2 4 0148
    [Google Scholar]
  96. Xu X. Huang M. Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. Biophys. Rep. 2018 4 1 1 16 10.1007/s41048‑017‑0045‑8 29577065
    [Google Scholar]
  97. Pinzi L. Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  98. Davies J.W. Glick M. Jenkins J.L. Streamlining lead discovery by aligning in silico and high-throughput screening. Curr. Opin. Chem. Biol. 2006 10 4 343 351 10.1016/j.cbpa.2006.06.022 16822701
    [Google Scholar]
  99. Boström J. Brown D.G. Young R.J. Keserü G.M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 2018 17 10 709 727 10.1038/nrd.2018.116 30140018
    [Google Scholar]
  100. Bon M. Bilsland A. Bower J. McAulay K. Fragment‐based drug discovery—the importance of high‐quality molecule libraries. Mol. Oncol. 2022 16 21 3761 3777 10.1002/1878‑0261.13277 35749608
    [Google Scholar]
  101. Sadybekov A.V. Katritch V. Computational approaches streamlining drug discovery. Nature 2023 616 7958 673 685 10.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  102. Vamathevan J. Clark D. Czodrowski P. Dunham I. Ferran E. Lee G. Li B. Madabhushi A. Shah P. Spitzer M. Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019 18 6 463 477 10.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  103. Roy S.N. Mishra S. Yusof S.M. Emergence of drug discovery in machine learning. Technical Advancements of Machine Learning in Healthcare.Studies in Computational Intelligence Springer, Singapore 2021
    [Google Scholar]
  104. Foloppe N. Hubbard R. Towards predictive ligand design with free-energy based computational methods? Curr. Med. Chem. 2006 13 3583 3608
    [Google Scholar]
  105. Cournia Z. Allen B. Sherman W. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J. Chem. Inf. Model. 2017 57 12 2911 2937 10.1021/acs.jcim.7b00564 29243483
    [Google Scholar]
  106. Frank M. Drikakis D. Charissis V. Machine-learning methods for computational science and engineering. Computation (Basel) 2020 8 1 15 10.3390/computation8010015
    [Google Scholar]
  107. Sliwoski G. Kothiwale S. Meiler J. Lowe E.W. Jr Computational methods in drug discovery. Pharmacol. Rev. 2014 66 1 334 395 10.1124/pr.112.007336 24381236
    [Google Scholar]
  108. da Silva T.H. Hachigian T.Z. Lee J. King M.D. Using computers to ESKAPE the antibiotic resistance crisis. Drug Discov. Today 2022 27 2 456 470 10.1016/j.drudis.2021.10.005 34688913
    [Google Scholar]
  109. Salman M.M. Al-Obaidi Z. Kitchen P. Loreto A. Bill R.M. Wade-Martins R. Advances in applying computer-aided drug design for neurodegenerative diseases. Int. J. Mol. Sci. 2021 22 9 4688 10.3390/ijms22094688 33925236
    [Google Scholar]
  110. Duay S.S. Yap R.C.Y. Gaitano A.L. III Santos J.A.A. Macalino S.J.Y. Roles of Virtual Screening and Molecular Dynamics Simulations in Discovering and Understanding Antimalarial Drugs. Int. J. Mol. Sci. 2023 24 11 9289 10.3390/ijms24119289 37298256
    [Google Scholar]
  111. Rai A. Saito K. Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. Plant J. 2017 90 4 764 787 10.1111/tpj.13485 28109168
    [Google Scholar]
  112. Misra B.B. Langefeld C. Olivier M. Cox L.A. Integrated omics: tools, advances and future approaches. J. Mol. Endocrinol. 2019 62 1 R21 R45 10.1530/JME‑18‑0055 30006342
    [Google Scholar]
  113. Binesh A. Devaraj Sivasitambaram N. Halagowder D. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis. J. Biochem. Mol. Toxicol. 2020 34 3 e22442 10.1002/jbt.22442 31926051
    [Google Scholar]
  114. Yurkovich J.T. Tian Q. Price N.D. Hood L. A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat. Rev. Clin. Oncol. 2020 17 3 183 194 10.1038/s41571‑019‑0273‑6 31619755
    [Google Scholar]
  115. Vatansever S. Schlessinger A. Wacker D. Kaniskan H.Ü. Jin J. Zhou M.M. Zhang B. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Med. Res. Rev. 2021 41 3 1427 1473 10.1002/med.21764 33295676
    [Google Scholar]
  116. Iqbal M.J. Javed Z. Sadia H. Qureshi I.A. Irshad A. Ahmed R. Malik K. Raza S. Abbas A. Pezzani R. Sharifi-Rad J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int. 2021 21 1 270 10.1186/s12935‑021‑01981‑1 34020642
    [Google Scholar]
  117. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  118. Lavecchia A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov. Today 2019 24 10 2017 2032 10.1016/j.drudis.2019.07.006 31377227
    [Google Scholar]
  119. Selvaraj C. Chandra I. Singh S.K. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Mol. Divers. 2021 ••• 1 21 34686947
    [Google Scholar]
  120. Schneider G. Automating drug discovery. Nat. Rev. Drug Discov. 2018 17 2 97 113 10.1038/nrd.2017.232 29242609
    [Google Scholar]
  121. Renaud J.P. Chari A. Ciferri C. Liu W. Rémigy H.W. Stark H. Wiesmann C. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat. Rev. Drug Discov. 2018 17 7 471 492 10.1038/nrd.2018.77 29880918
    [Google Scholar]
  122. De Vivo M. Masetti M. Bottegoni G. Cavalli A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016 59 9 4035 4061 10.1021/acs.jmedchem.5b01684 26807648
    [Google Scholar]
  123. Shaker B. Ahmad S. Lee J. Jung C. Na D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021 137 104851 10.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  124. Mishra S. Dahima R. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. J. Drug Deliv. Ther. 2019 9 2-s 366 369 10.22270/jddt.v9i2‑s.2710
    [Google Scholar]
  125. Sabine B. Dietrich P. Computational simulation as an innovative approach in personalized medicine. Innovations in Spinal Deformities and Postural Disorders Intech open 2017 47 10.5772/intechopen.68835
    [Google Scholar]
  126. Chen R. Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013 5 1 73 82 10.1002/wsbm.1198 23184638
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072327345241121185704
Loading
/content/journals/cbc/10.2174/0115734072327345241121185704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test