Skip to content
2000
image of Herbal DPP-4 Inhibitors: Comprehensive Review of their Effectiveness, Safety and Environmental Fate in Diabetes Mellitus

Abstract

The prevalence of diabetes mellitus continues to be a worldwide health concern, which calls for the ongoing investigation of novel therapeutic options. This review aims to examine the developing field of herbal dipeptidyl peptidase-4 (DPP-4) inhibitors as a potentially useful approach to managing diabetes. Because of their ability to suppress the breakdown of incretin hormones, DPP-4 inhibitors have become increasingly popular due to their role in improving glycemic control. This review focuses on the rising evidence supporting the efficacy and safety of herbal alternatives, although synthetic DPP-4 inhibitors have been used extensively in the past. The pharmacological actions of several herbal substances with DPP-4 inhibitory characteristics are extensively examined in this review. These natural chemicals have anti-inflammatory, antioxidant, and anti-diabetic properties derived from traditional medicinal plants. This study also sheds light on the molecular processes which these herbal medicines inhibit DPP-4. In addition, the study assesses the efficacy of herbal DPP-4 inhibitors in both animal and human studies, providing a critical evaluation of both types of research. The research of natural alternatives to synthetic pharmaceuticals not only broadens the therapeutic landscape but also highlights the significance of merging traditional wisdom with modern scientific breakthroughs. This is because natural alternatives were not previously available. Herbal DPP-4 inhibitors may emerge as significant additions to the arsenal of anti-diabetic drugs as research in this field continues to advance. These inhibitors would provide a holistic and sustainable approach to the treatment of diabetes.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072322250240924081053
2024-12-17
2025-01-18
Loading full text...

Full text loading...

References

  1. Dhankhar S. Chauhan S. Mehta D.K. Nitika Saini K. Saini M. Das R. Gupta S. Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol. Metab. Syndr. 2023 15 1 17 10.1186/s13098‑023‑00983‑5 36782201
    [Google Scholar]
  2. Forouhi N.G. Wareham N.J. Epidemiology of diabetes. Medicine (Abingdon) 2019 47 1 22 27 10.1016/j.mpmed.2018.10.004
    [Google Scholar]
  3. Tatsumi Y. Ohkubo T. Hypertension with diabetes mellitus: Significance from an epidemiological perspective for Japanese. Hypertens. Res. 2017 40 9 795 806 10.1038/hr.2017.67 28701739
    [Google Scholar]
  4. Arora A. Behl T. Sehgal A. Singh S. Sharma N. Bhatia S. Sobarzo-Sanchez E. Bungau S. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021 273 119311 10.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  5. Corb Aron R.A. Abid A. Vesa C.M. Nechifor A.C. Behl T. Ghitea T.C. Munteanu M.A. Fratila O. Andronie-Cioara F.L. Toma M.M. Bungau S. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of akkermansia muciniphila as a key gut bacterium. Microorganisms 2021 9 3 618 10.3390/microorganisms9030618 33802777
    [Google Scholar]
  6. Kawahito S. Kitahata H. Oshita S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J. Gastroenterol. 2009 15 33 4137 4142 10.3748/wjg.15.4137 19725147
    [Google Scholar]
  7. Egan A.M. Vellinga A. Harreiter J. Simmons D. Desoye G. Corcoy R. Adelantado J.M. Devlieger R. Van Assche A. Galjaard S. Damm P. Mathiesen E.R. Jensen D.M. Andersen L. Lapolla A. Dalfrà M.G. Bertolotto A. Mantaj U. Wender-Ozegowska E. Zawiejska A. Hill D. Jelsma J.G.M. Snoek F.J. Worda C. Bancher-Todesca D. van Poppel M.N.M. Kautzky-Willer A. Dunne F.P. Epidemiology of gestational diabetes mellitus according to IADPSG/WHO 2013 criteria among obese pregnant women in Europe. Diabetologia 2017 60 10 1913 1921 10.1007/s00125‑017‑4353‑9 28702810
    [Google Scholar]
  8. Bello-Chavolla O.Y. Rojas-Martinez R. Aguilar-Salinas C.A. Hernández-Avila M. Epidemiology of diabetes mellitus in Mexico. Nutr. Rev. 2017 75 Suppl. 1 4 12 10.1093/nutrit/nuw030 28049745
    [Google Scholar]
  9. Zimmet P. Alberti K.G. Magliano D.J. Bennett P.H. Diabetes mellitus statistics on prevalence and mortality: Facts and fallacies. Nat. Rev. Endocrinol. 2016 12 10 616 622 10.1038/nrendo.2016.105 27388988
    [Google Scholar]
  10. Behl T. Kaur G. Sehgal A. Bhardwaj S. Singh S. Buhas C. Judea-Pusta C. Uivarosan D. Munteanu M.A. Bungau S. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives. Int. J. Mol. Sci. 2021 22 3 1413 10.3390/ijms22031413 33573368
    [Google Scholar]
  11. Cao Z. Characteristics of plantar pressure distribution in diabetes with or without diabetic peripheral neuropathy and peripheral arterial disease. J. Healthc. Eng. 2022 10.1155/2022/2437831
    [Google Scholar]
  12. Mirzaei M. Rahmaninan M. Mirzaei M. Nadjarzadeh A. Dehghani tafti A.A. Epidemiology of diabetes mellitus, pre-diabetes, undiagnosed and uncontrolled diabetes in Central Iran: Results from Yazd health study. BMC Public Health 2020 20 1 166 10.1186/s12889‑020‑8267‑y 32013917
    [Google Scholar]
  13. Thomas M.C. Cooper M.E. Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat. Rev. Nephrol. 2016 12 2 73 81 10.1038/nrneph.2015.173 26553517
    [Google Scholar]
  14. Nickerson H.D. Dutta S. Diabetic complications: Current challenges and opportunities. J. Cardiovasc. Transl. Res. 2012 5 4 375 379 10.1007/s12265‑012‑9388‑1 22752737
    [Google Scholar]
  15. Guillausseau P.J. Meas T. Virally M. Laloi-Michelin M. Médeau V. Kevorkian J.P. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 2008 34 Suppl. 2 S43 S48 10.1016/S1262‑3636(08)73394‑9 18640585
    [Google Scholar]
  16. Esser N. Utzschneider K.M. Kahn S.E. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 2020 63 10 2007 2021 10.1007/s00125‑020‑05245‑x 32894311
    [Google Scholar]
  17. Prasanna Kumar H.R. Gowdappa H.B. Hosmani T. Urs T. Exocrine dysfunction correlates with endocrinal impairment of pancreas in Type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2018 22 1 121 125 10.4103/ijem.IJEM_139_17 29535950
    [Google Scholar]
  18. Gupta S. Burman S. Nair A.B. Chauhan S. Sircar D. Roy P. Dhanwat M. Lahiri D. Mehta D. Das R. Khalil H.E. Brassica oleracea extracts prevent hyperglycemia in type 2 diabetes mellitus. Prev. Nutr. Food Sci. 2022 27 1 50 62 10.3746/pnf.2022.27.1.50 35465108
    [Google Scholar]
  19. Germanos M. Gao A. Taper M. Yau B. Kebede M.A. Inside the insulin secretory granule. Metabolites 2021 11 8 515 10.3390/metabo11080515 34436456
    [Google Scholar]
  20. Guay C. Regazzi R. New emerging tasks for microRNAs in the control of β-cell activities. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016 1861 12 2121 2129 10.1016/j.bbalip.2016.05.003 27178175
    [Google Scholar]
  21. Javed K. Fairweather S.J. Amino acid transporters in the regulation of insulin secretion and signalling. Biochem. Soc. Trans. 2019 47 2 571 590 10.1042/BST20180250 30936244
    [Google Scholar]
  22. Yoon M.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients 2016 8 7 405 10.3390/nu8070405 27376324
    [Google Scholar]
  23. Pawar S. Thakur P. Radhe B.K. Jadhav H. Behere V. Pagar V. The accuracy of polyuria, polydipsia, polyphagia, and Indian diabetes risk score in adults screened for diabetes mellitus type-II. Medical Journal of Dr. D.Y. Patil University 2017 10 3 263 267 10.4103/0975‑2870.206569
    [Google Scholar]
  24. Dhatariya K. Diabetic ketoacidosis and hyperosmolar crisis in adults. Medicine 2019 47 1 46 51 10.1016/j.mpmed.2018.10.001
    [Google Scholar]
  25. Nusinovici S. Sabanayagam C. Teo B.W. Tan G.S.W. Wong T.Y. Vision impairment in CKD patients: Epidemiology, mechanisms, differential diagnoses, and prevention. Am. J. Kidney Dis. 2019 73 6 846 857 10.1053/j.ajkd.2018.12.047 30929852
    [Google Scholar]
  26. Rohilla M. Rishabh Bansal S. Garg A. Dhiman S. Dhankhar S. Saini M. Chauhan S. Alsubaie N. Batiha G.E.S. Albezrah N.K.A. Singh T.G. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed. Pharmacother. 2023 169 115881 10.1016/j.biopha.2023.115881 37989030
    [Google Scholar]
  27. Hicks C.W. Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr. Diab. Rep. 2019 19 10 86 10.1007/s11892‑019‑1212‑8 31456118
    [Google Scholar]
  28. Edmonds M. Manu C. Vas P. The current burden of diabetic foot disease. J. Clin. Orthop. Trauma 2021 17 88 93 10.1016/j.jcot.2021.01.017 33680841
    [Google Scholar]
  29. Boyko E.J. Monteiro-Soares M. Wheeler S.G. Peripheral arterial disease, foot ulcers, lower extremity amputations, and diabetes. 3rd ed Diabetes in America 2018
    [Google Scholar]
  30. Megallaa M.H. Ismail A.A. Zeitoun M.H. Khalifa M.S. Association of diabetic foot ulcers with chronic vascular diabetic complications in patients with type 2 diabetes. Diabetes Metab. Syndr. 2019 13 2 1287 1292 10.1016/j.dsx.2019.01.048 31336479
    [Google Scholar]
  31. Kciuk M. Garg N. Dhankhar S. Saini M. Mujwar S. Devi S. Chauhan S. Singh T.G. Singh R. Marciniak B. Gielecińska A. Kontek R. Exploring the comprehensive neuroprotective and anticancer potential of afzelin. Pharmaceuticals 2024 17 6 701 10.3390/ph17060701 38931368
    [Google Scholar]
  32. Yamazaki D. Hitomi H. Nishiyama A. Hypertension with diabetes mellitus complications. Hypertens. Res. 2018 41 3 147 156 10.1038/s41440‑017‑0008‑y 29353881
    [Google Scholar]
  33. Saharan R. Kaur J. Dhankhar S. Garg N. Chauhan S. Beniwal S. Sharma H. Hydrogel-based drug delivery system in diabetes management. Pharm. Nanotechnol. 2024 12 4 289 299 10.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  34. Jörns A. Wedekind D. Jähne J. Lenzen S. Pancreas pathology of latent autoimmune diabetes in adults (LADA) in patients and in a LADA rat model compared with type 1 diabetes. Diabetes 2020 69 4 624 633 10.2337/db19‑0865 31974139
    [Google Scholar]
  35. Unnikrishnan R. Pradeepa R. Joshi S.R. Mohan V. Type 2 diabetes: Demystifying the global epidemic. Diabetes 2017 66 6 1432 1442 10.2337/db16‑0766 28533294
    [Google Scholar]
  36. Giri B. Dey S. Das T. Sarkar M. Banerjee J. Dash S.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 2018 107 306 328 10.1016/j.biopha.2018.07.157 30098549
    [Google Scholar]
  37. Dhankhar S. Garg N. Chauhan S. Saini M. Role of artificial intelligence in diabetic wound screening and early detection. Curr. Biotechnol. 2024 13 1 14 10.2174/0122115501303253240408072559
    [Google Scholar]
  38. Dhankhar S. Garg N. Chauhan S. Saini M. Singh T.G. Singh R. Unravelling the microbiome’s role in healing diabetic wounds. Curr. Pharm. Biotechnol. 2024 25 1 13 38920078
    [Google Scholar]
  39. Coelho A.R. Moreira F.A. Santos A.C. Silva-Pinto A. Sarmento A. Carvalho D. Freitas P. Diabetes mellitus in HIV-infected patients: Fasting glucose, A1c, or oral glucose tolerance test – Which method to choose for the diagnosis? BMC Infect. Dis. 2018 18 1 309 10.1186/s12879‑018‑3221‑7 29980190
    [Google Scholar]
  40. Genuth S.M. Palmer J.P. Nathan D.M. Classification and diagnosis of diabetes. Diabetes in America. 3rd ed Bethesda (MD) National Institute of Diabetes and Digestive and Kidney Diseases (US) 2021
    [Google Scholar]
  41. Puchulu F.M. Definition, diagnosis and classification of diabetes mellitus. Dermatology and Diabetes Springer Cham 2018 7 18
    [Google Scholar]
  42. Chen Y. Wang Q. Xie Z. Huang G. Fan L. Li X. Zhou Z. The impact of family history of type 2 diabetes on clinical heterogeneity in idiopathic type 1 diabetes. Diabetes Obes. Metab. 2023 25 2 417 425 10.1111/dom.14884 36200314
    [Google Scholar]
  43. Donath M.Y. Dinarello C.A. Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat. Rev. Immunol. 2019 19 12 734 746 10.1038/s41577‑019‑0213‑9 31501536
    [Google Scholar]
  44. Razzak R.A. Alshaiji A.F. Qareeballa A.A. Mohamed M.W. Bagust J. Docherty S. High-normal blood glucose levels may be associated with decreased spatial perception in young healthy adults. PLoS One 2018 13 6 e0199051 10.1371/journal.pone.0199051 29902276
    [Google Scholar]
  45. Gabbay M.A.L. Rodacki M. Calliari L.E. Vianna A.G.D. Krakauer M. Pinto M.S. Reis J.S. Puñales M. Miranda L.G. Ramalho A.C. Franco D.R. Pedrosa H.P.C. Time in range: A new parameter to evaluate blood glucose control in patients with diabetes. Diabetol. Metab. Syndr. 2020 12 1 22 10.1186/s13098‑020‑00529‑z 32190124
    [Google Scholar]
  46. Osei E. Fonville S. Zandbergen A.A.M. Koudstaal P.J. Dippel D.W.J. den Hertog H.M. Glucose in prediabetic and diabetic range and outcome after stroke. Acta Neurol. Scand. 2017 135 2 170 175 10.1111/ane.12577 26918555
    [Google Scholar]
  47. Yip W. Sequeira I. Plank L. Poppitt S. Prevalence of pre-diabetes across ethnicities: A review of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) for classification of dysglycaemia. Nutrients 2017 9 11 1273 10.3390/nu9111273 29165385
    [Google Scholar]
  48. Lu J. Ma X. Zhou J. Zhang L. Mo Y. Ying L. Lu W. Zhu W. Bao Y. Vigersky R.A. Jia W. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 2018 41 11 2370 2376 10.2337/dc18‑1131 30201847
    [Google Scholar]
  49. Le Floch J.P. Kessler L. Glucose variability. J. Diabetes Sci. Technol. 2016 10 4 885 891 10.1177/1932296816632003 26880391
    [Google Scholar]
  50. Hirsch I.B. Gaudiani L.M. A new look at brittle diabetes. J. Diabetes Complications 2021 35 1 107646 10.1016/j.jdiacomp.2020.107646 32620472
    [Google Scholar]
  51. Smulyan H. Lieber A. Safar M.E. Hypertension, diabetes type II, and their association: role of arterial stiffness. Am. J. Hypertens. 2016 29 1 5 13 10.1093/ajh/hpv107 26156872
    [Google Scholar]
  52. Esmaeilinasab M. Ebrahimi M. Mokarrar M.H. Rahmati L. Mahjouri M.Y. Arzaghi S.M. Type II diabetes and personality; a study to explore other psychosomatic aspects of diabetes. J. Diabetes Metab. Disord. 2016 15 1 54 10.1186/s40200‑016‑0281‑3 27981040
    [Google Scholar]
  53. Padhi S. Nayak A.K. Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020 131 110708 10.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  54. Akhtar S. Khan Z. Rafiq M. Khan A. Prevalence of type ii diabetes in district dir lower in Pakistan. Pak. J. Med. Sci. 2016 32 3 622 625 10.12669/pjms.323.9795 27375702
    [Google Scholar]
  55. McIntyre H.D. Catalano P. Zhang C. Desoye G. Mathiesen E.R. Damm P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019 5 1 47 10.1038/s41572‑019‑0098‑8 31296866
    [Google Scholar]
  56. Chiefari E. Arcidiacono B. Foti D. Brunetti A. Gestational diabetes mellitus: An updated overview. J. Endocrinol. Invest. 2017 40 9 899 909 10.1007/s40618‑016‑0607‑5 28283913
    [Google Scholar]
  57. Samrat Chauhan L.K. Potential Anti-Arthritic Agents From Indian Medicinal Plants. Res. Rev. J. Pharm. Pharm. Sci. 2015 4 3 10 22
    [Google Scholar]
  58. Banday M.Z. Sameer A.S. Nissar S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020 10 4 174 188 10.4103/ajm.ajm_53_20 33437689
    [Google Scholar]
  59. Tufail T. Pathophysiology of obesity and diabetes. Dietary Phytochemicals: A Source of Novel Bioactive Compounds for the Treatment of Obesity, Cancer and Diabetes Springer 2021 29 42 10.1007/978‑3‑030‑72999‑8_2
    [Google Scholar]
  60. Valaiyapathi B. Gower B. Ashraf A.P. Pathophysiology of type 2 diabetes in children and adolescents. Curr. Diabetes Rev. 2020 16 3 220 229 10.2174/18756417OTA50ODUuTcVY 29879890
    [Google Scholar]
  61. Kesavadev J. Pathophysiology of type 2 diabetes. The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues Springer 2023 127 142 10.1007/978‑3‑031‑25519‑9_9
    [Google Scholar]
  62. Nauck M.A. Quast D.R. Wefers J. Pfeiffer A.F.H. The evolving story of incretins ( GIP and GLP ‐1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes. Metab. 2021 23 S3 Suppl. 3 5 29 10.1111/dom.14496 34310013
    [Google Scholar]
  63. Christensen M.B. Gasbjerg L.S. Heimbürger S.M. Stensen S. Vilsbøll T. Knop F.K. GIP’s involvement in the pathophysiology of type 2 diabetes. Peptides 2020 125 170178 10.1016/j.peptides.2019.170178 31682875
    [Google Scholar]
  64. Jonik S. Marchel M. Grabowski M. Opolski G. Mazurek T. Gastrointestinal incretins—glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) beyond pleiotropic physiological effects are involved in pathophysiology of atherosclerosis and coronary artery disease—state of the art. Biology 2022 11 2 288 10.3390/biology11020288 35205155
    [Google Scholar]
  65. Mittal P. Dhankhar S. Chauhan S. Garg N. Bhattacharya T. Ali M. Chaudhary A.A. Rudayni H.A. Al-Zharani M. Ahmad W. Khan S.U.D. Singh T.G. Mujwar S. A review on natural antioxidants for their role in the treatment of parkinson’s disease. Pharmaceuticals 2023 16 7 908 10.3390/ph16070908 37513820
    [Google Scholar]
  66. Khan M.S. Solomon N. DeVore A.D. Sharma A. Felker G.M. Hernandez A.F. Heidenreich P.A. Matsouaka R.A. Green J.B. Butler J. Yancy C.W. Peterson P.N. Fonarow G.C. Greene S.J. Clinical outcomes with metformin and sulfonylurea therapies among patients with heart failure and diabetes. JACC Heart Fail. 2022 10 3 198 210 10.1016/j.jchf.2021.11.001 34895861
    [Google Scholar]
  67. McBrayer D.N. Tal-Gan Y. Recent advances in GLP‐1 receptor agonists for use in diabetes mellitus. Drug Dev. Res. 2017 78 6 292 299 10.1002/ddr.21404 28786125
    [Google Scholar]
  68. Cheang J.Y. Moyle P.M. Glucagon‐like peptide‐1 (GLP‐1)‐based therapeutics: Current status and future opportunities beyond type 2 diabetes. ChemMedChem 2018 13 7 662 671 10.1002/cmdc.201700781 29430842
    [Google Scholar]
  69. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K.B. Ostolaza H. Martín C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  70. Chiyanika C. Chan D.F.Y. Hui S.C.N. So H. Deng M. Yeung D.K.W. Nelson E.A.S. Chu W.C.W. The relationship between pancreas steatosis and the risk of metabolic syndrome and insulin resistance in Chinese adolescents with concurrent obesity and non‐alcoholic fatty liver disease. Pediatr. Obes. 2020 15 9 e12653 10.1111/ijpo.12653 32351030
    [Google Scholar]
  71. Patil S.R. Chavan A.B. Patel A.M. Chavan P.D. Bhopale J.V. A review on diabetes mellitus its types, pathophysiology, epidermiology and its global burden. J. Res. Appl. Sci. Biotechnol. 2023 2 4 73 79 10.55544/jrasb.2.4.9
    [Google Scholar]
  72. Pfeiffer A.F. Oral hypoglycemic agents: Sulfonylureas and meglitinides. Type 2 Diabetes. CRC Press 2016 111 120
    [Google Scholar]
  73. Lega I.C. Lipscombe L.L. Diabetes, obesity, and cancer—pathophysiology and clinical implications. Endocr. Rev. 2020 41 1 33 52 10.1210/endrev/bnz014 31722374
    [Google Scholar]
  74. Shafiei-Irannejad V. Samadi N. Salehi R. Yousefi B. Zarghami N. New insights into antidiabetic drugs: Possible applications in cancer treatment. Chem. Biol. Drug Des. 2017 90 6 1056 1066 10.1111/cbdd.13013 28456998
    [Google Scholar]
  75. Hossain M.A. Pervin R. Current antidiabetic drugs: Review of their efficacy and safety. Nutritional and therapeutic interventions for diabetes and metabolic syndrome Academic Press 2018 455 473
    [Google Scholar]
  76. Wang G.S. Hoyte C. Review of biguanide (metformin) toxicity. J. Intensive Care Med. 2019 34 11-12 863 876 10.1177/0885066618793385 30126348
    [Google Scholar]
  77. Hotta N. A new perspective on the biguanide, metformin therapy in type 2 diabetes and lactic acidosis. J. Diabetes Investig. 2019 10 4 906 908 10.1111/jdi.13090 31152685
    [Google Scholar]
  78. Narwal S. Current therapeutic strategies for chagas disease. Antiinfect. Agents 2023 21 1 11
    [Google Scholar]
  79. Panchal M. Rana P. Garg N. Dhankhar S. Chauhan S. Sharma H. A comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy. Emir. Med. J. 2023 5 1 8 10.2174/0102506882282929231212074538
    [Google Scholar]
  80. Lebovitz H.E. Thiazolidinediones: The forgotten diabetes medications. Curr. Diab. Rep. 2019 19 12 151 10.1007/s11892‑019‑1270‑y 31776781
    [Google Scholar]
  81. Rizos C.V. Kei A. Elisaf M.S. The current role of thiazolidinediones in diabetes management. Arch. Toxicol. 2016 90 8 1861 1881 10.1007/s00204‑016‑1737‑4 27165418
    [Google Scholar]
  82. Hedrington M.S. Davis S.N. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin. Pharmacother. 2019 20 18 2229 2235 10.1080/14656566.2019.1672660 31593486
    [Google Scholar]
  83. Dirir A.M. Daou M. Yousef A.F. Yousef L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022 21 4 1049 1079 10.1007/s11101‑021‑09773‑1 34421444
    [Google Scholar]
  84. Tomlinson B. Patil N.G. Fok M. Chan P. Lam C.W.K. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin. Pharmacother. 2022 23 3 387 403 10.1080/14656566.2021.1999413 34758676
    [Google Scholar]
  85. Lv W. Wang X. Xu Q. Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr. Top. Med. Chem. 2020 20 1 37 56 10.2174/1568026620666191224141617 31884929
    [Google Scholar]
  86. Dhankhar S. Mujwar S. Garg N. Chauhan S. Saini M. Sharma P. Kumar S. Kumar Sharma S. Kamal M.A. Rani N. Artificial intelligence in the management of neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2024 23 8 931 940 10.2174/0118715273266095231009092603 37861051
    [Google Scholar]
  87. Lalit K. Phyto-pharmacological review of Coccinia indica. World J. Pharm. Pharm. Sci. 2014 3 2 1734 1745 [WJPPS].
    [Google Scholar]
  88. Bae E.J. DPP-4 inhibitors in diabetic complications: Role of DPP-4 beyond glucose control. Arch. Pharm. Res. 2016 39 8 1114 1128 10.1007/s12272‑016‑0813‑x 27502601
    [Google Scholar]
  89. Gallwitz B. Clinical use of DPP-4 inhibitors. Front. Endocrinol. 2019 10 389 10.3389/fendo.2019.00389 31275246
    [Google Scholar]
  90. Makrilakis K. The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: When to select, what to expect. Int. J. Environ. Res. Public Health 2019 16 15 2720 10.3390/ijerph16152720 31366085
    [Google Scholar]
  91. Cahn A. Cernea S. Raz I. An update on DPP-4 inhibitors in the management of type 2 diabetes. Expert Opin. Emerg. Drugs 2016 21 4 409 419 10.1080/14728214.2016.1257608 27809608
    [Google Scholar]
  92. Munir K.M. Lamos E.M. Diabetes type 2 management: What are the differences between DPP-4 inhibitors and how do you choose? Expert Opin. Pharmacother. 2017 18 9 839 841 10.1080/14656566.2017.1323878 28449622
    [Google Scholar]
  93. Ling J. Ge L. Zhang D. Wang Y. Xie Z. Tian J. Xiao X. Yang K. DPP-4 inhibitors for the treatment of type 2 diabetes: A methodology overview of systematic reviews. Acta Diabetol. 2019 56 1 7 27 10.1007/s00592‑018‑1164‑5 29858660
    [Google Scholar]
  94. Karagiannis T. Boura P. Tsapas A. Safety of dipeptidyl peptidase 4 inhibitors: A perspective review. Ther. Adv. Drug Saf. 2014 5 3 138 146 10.1177/2042098614523031 25083269
    [Google Scholar]
  95. Turdu G. Gao H. Jiang Y. Kabas M. Plant dipeptidyl peptidase-IV inhibitors as antidiabetic agents: A brief review. Future Med. Chem. 2018 10 10 1229 1239 10.4155/fmc‑2017‑0235 29749760
    [Google Scholar]
  96. Marya Khan H. Nabavi S.M. Habtemariam S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci. 2018 193 153 158 10.1016/j.lfs.2017.10.025 29055800
    [Google Scholar]
  97. Purnomo Y. W Soeatmadji D. B Sumitro S. Widodo M.A. Dipeptidyl peptidase-4 inhibitory activity of indonesian anti-diabetic herbs: Carica papaya, tithonia diversifolia, urena lobata. Res. J. Pharm. Technol. 2023 16 1 273 277 10.52711/0974‑360X.2023.00050
    [Google Scholar]
  98. Purnomo Y. Soeatmadji D.W. Sumitro S.B. Widodo M.A. Incretin effect of Urena lobata leaves extract on structure and function of rats islet β-cells. J. Tradit. Complement. Med. 2017 7 3 301 306 10.1016/j.jtcme.2016.10.001 28725624
    [Google Scholar]
  99. Ahmed M.S. Khan I.J. Aman S. Chauhan S. Kaur N. Shriwastav S. Goel K. Saini M. Dhankar S. Singh T.G. Dev J. Mujwar S. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. J. Exp. Biol. Agric. Sci. 2023 11 2 380 393 10.18006/2023.11(2).380.393
    [Google Scholar]
  100. Chauhan S. Current approaches in healing of wounds in diabetes and diabetic foot ulcers. Curr. Bioact. Compd. 2023 19 3 104 121
    [Google Scholar]
  101. Zhao B.T. Le D.D. Nguyen P.H. Ali M.Y. Choi J.S. Min B.S. Shin H.M. Rhee H.I. Woo M.H. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L. Chem. Biol. Interact. 2016 253 27 37 10.1016/j.cbi.2016.04.012 27060210
    [Google Scholar]
  102. Kciuk M. Garg A. Rohilla M. Chaudhary R. Dhankhar S. Dhiman S. Bansal S. Saini M. Singh T.G. Chauhan S. Mujwar S. Gielecińska A. Kontek R. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis—comprehensive review. Antioxidants 2024 13 7 775 10.3390/antiox13070775 39061843
    [Google Scholar]
  103. Shaikh S. Lee E.J. Ahmad K. Ahmad S.S. Lim J.H. Choi I. A comprehensive review and perspective on natural sources as dipeptidyl peptidase-4 inhibitors for management of diabetes. Pharmaceuticals 2021 14 6 591 10.3390/ph14060591 34203048
    [Google Scholar]
  104. Abbas G. Al Harrasi A. Hussain H. Hamaed A. Supuran C.T. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg. Chem. 2019 86 305 315 10.1016/j.bioorg.2019.02.009 30738330
    [Google Scholar]
  105. Bhattacharya T. Soares G.A.B. Chopra H. Rahman M.M. Hasan Z. Swain S.S. Cavalu S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022 15 3 804 10.3390/ma15030804 35160749
    [Google Scholar]
  106. Sharma D. DPP-IV inhibitors from natural sources: An alternative approach for treatment and management of diabetes. Indian J. Nat. Prod. Resour. 2020 10 4 227 237
    [Google Scholar]
  107. Patarakijavanich P. A review of the antidiabetic potential of Mangifera indica leaf extract. Songklanakarin J. Sci. Technol. 2019 41 4 942 950
    [Google Scholar]
  108. Yaribeygi H. Atkin S.L. Sahebkar A. Natural compounds with DPP‐4 inhibitory effects: Implications for the treatment of diabetes. J. Cell. Biochem. 2019 120 7 10909 10913 10.1002/jcb.28467 30775811
    [Google Scholar]
  109. Chauhan S. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max. Int. J. Nutr. Pharmacol. Neurol. Dis. 2021 11 3 225 233
    [Google Scholar]
  110. Das S.K. Samantaray D. Behera S. Mangrove plants in therapeutic management of diabetes: An update. Bioresource Utilization and Management: Applications in Therapeutics, Biofuels, Agriculture, and Environmental Science 1st ed Academic Press 2021 10.1201/9781003057826‑8
    [Google Scholar]
  111. Nathiya R. Mahalingam G. Role of mangrove endophytic fungi in diabetes mellitus. Biotechnological Utilization of Mangrove Resources. Elsevier 2020 435 460 10.1016/B978‑0‑12‑819532‑1.00021‑4
    [Google Scholar]
  112. Rasouli H. Yarani R. Pociot F. Popović-Djordjević J. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives. Pharmacol. Res. 2020 155 104723 10.1016/j.phrs.2020.104723 32105756
    [Google Scholar]
  113. Zhou Y. Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit. Rev. Food Sci. Nutr. 2023 63 33 12372 12397 10.1080/10408398.2022.2101425 35866515
    [Google Scholar]
  114. Hamden K. Bengara A. Amri Z. Elfeki A. Experimental diabetes treated with trigonelline: Effect on key enzymes related to diabetes and hypertension, β-cell and liver function. Mol. Cell. Biochem. 2013 381 1-2 85 94 10.1007/s11010‑013‑1690‑y 23754616
    [Google Scholar]
  115. Sali B. Said G. Noureddine M. Hocine A. Molecular modeling interaction between enzyme diabetes type 2 dipeptidyl-peptidase (DPP-4) and main compound of cinnamon. Curr. Enzym. Inhib. 2018 14 1 61 66 10.2174/1573408013666170613103142
    [Google Scholar]
  116. Jiang S. Wu X. Wang Y. Zou J. Zhao X. The potential DPP-4 inhibitors from Xiao-Ke-An improve the glucolipid metabolism via the activation of AKT/GSK-3β pathway. Eur. J. Pharmacol. 2020 882 173272 10.1016/j.ejphar.2020.173272 32535096
    [Google Scholar]
  117. Lacroix I.M.E. Li-Chan E.C.Y. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – Current knowledge and future research considerations. Trends Food Sci. Technol. 2016 54 1 16 10.1016/j.tifs.2016.05.008
    [Google Scholar]
  118. Lu Y. Lu P. Wang Y. Fang X. Wu J. Wang X. A novel dipeptidyl peptidase IV inhibitory tea peptide improves pancreatic β-cell function and reduces α-cell proliferation in streptozotocin-induced diabetic mice. Int. J. Mol. Sci. 2019 20 2 322 10.3390/ijms20020322 30646613
    [Google Scholar]
  119. Kalhotra P. Chittepu V.C.S.R. Osorio-Revilla G. Gallardo-Velazquez T. Phytochemicals in garlic extract inhibit therapeutic enzyme DPP-4 and induce skeletal muscle cell proliferation: A possible mechanism of action to benefit the treatment of diabetes mellitus. Biomolecules 2020 10 2 305 10.3390/biom10020305 32075130
    [Google Scholar]
  120. Zollapi N.N.H. Identification of dipeptidyl-peptidase 4 (DPP-4) inhibitors from miracle berry fruit (synsepalum dulcificum) extract. Journal of Biochemistry. Microb. Biotechnol. 2023 11 1 42 47
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072322250240924081053
Loading
/content/journals/cbc/10.2174/0115734072322250240924081053
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: insulin ; DPP-4 ; Herbal ; phytochemicals ; diabetes ; inhibitors ; hyperglycemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test