Skip to content
2000
image of A Review on Recent Synthesis and Diverse Biological Activities of
 Isoquinolone

Abstract

Isoquinolone scaffolds are among the most important core structures of nitrogen heterocyclic compounds, which possess vital roles in biological and physiological activities such as anti-tumor, anti-microbial, anti-leukemic, anti-malaria, anti-dengue, anti-HIV and anti-bacterial. Over the years, multiple studies have been done to synthesize these isoquinolone derivatives, and several authors have reported on various methods and synthetic routes to produce the target skeletons of isoquinolones. Therefore, many scientific communities have developed these compounds as the intended structure and evaluated their biological activities. Thus, this review confers several information on isoquinolone analogue synthetic strategies and their biological effects on mosquito-borne diseases.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072321232240927090613
2024-10-08
2024-11-15
Loading full text...

Full text loading...

References

  1. Dey P. Kundu A. Kumar A. Gupta M. Lee B.M. Bhakta T. Dash S. Kim H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). Rec. Adv. Nat. Prod. Anal. 2020 Jan 505 567 10.1016/B978‑0‑12‑816455‑6.00015‑9
    [Google Scholar]
  2. Liscombe D.K. MacLeod B.P. Loukanina N. Nandi O.I. Facchini P.J. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 2005 66 11 1374 1393 10.1016/j.phytochem.2005.04.029 16342378
    [Google Scholar]
  3. Harris J.E.G. Pope W.J. CXXII.—isoQuinoline and the isoquinoline-reds. J. Chem. Soc. Trans. 1922 121 0 1029 1033 10.1039/CT9222101029
    [Google Scholar]
  4. Pandeya S. N. Tyagi A. Synthetic approaches for quinoline and isoquinoline. Int J Pharm Pharm Sci 2011 3 3 53 61
    [Google Scholar]
  5. Gilchrist T. L. Heterocyclic chemistry Longman, Harlow, Essex England 1997
    [Google Scholar]
  6. Bentley K.W. β-Phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep. 1992 9 4 365 391 10.1039/NP9920900365 1522979
    [Google Scholar]
  7. Tsoung J. Bogdan A.R. Kantor S. Wang Y. Charaschanya M. Djuric S.W. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor. J. Org. Chem. 2017 82 2 1073 1084 10.1021/acs.joc.6b02520 28001397
    [Google Scholar]
  8. Fallah-Mehrjardi M. Friedlander synthesis of poly-substituted quinolines: A mini review. Mini Rev. Org. Chem. 2017 14 3 10.2174/1570193X14666170206124809
    [Google Scholar]
  9. Lv Q. Fang L. Wang P. Lu C. Yan F. A simple one-pot synthesis of quinoline-4-carboxylic acid derivatives by Pfitzinger reaction of isatin with ketones in water. Monatsh. Chem. 2013 144 3 391 394 10.1007/s00706‑012‑0822‑5
    [Google Scholar]
  10. Ballesteros-Garrido R. Recent developments in the synthesis of 4-, 5-, 6- and 7-azaindoles. Adv. Heterocycl. Chem. 2023 140 67 123 10.1016/bs.aihch.2023.01.001
    [Google Scholar]
  11. Wang Z. Conrad-limpach quinoline synthesis. Comprehensive Organic Name Reactions and Reagents 2010 Sep 692 696 10.1002/9780470638859.conrr152
    [Google Scholar]
  12. Hua R. Isoquinolone syntheses by annulation protocols. Catalysts 2021 11 5 620 10.3390/catal11050620
    [Google Scholar]
  13. Frasco D.A. Lilly C.P. Boyle P.D. Ison E.A. Cp*IrIII-catalyzed oxidative coupling of benzoic acids with alkynes. ACS Catal. 2013 3 10 2421 2429 10.1021/cs400656q
    [Google Scholar]
  14. Garrett C.E. Prasad K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by pd‐catalyzed reactions. Adv. Synth. Catal. 2004 346 8 889 900 10.1002/adsc.200404071
    [Google Scholar]
  15. Chia M. Haider M. A. Pollock G. Kraus G. A. Neurock M. Mechanistic insights into ring-opening and decarboxylation of 2-pyrones in liquid water and tetrahydrofuran. J Am Chem Soc. 2013 135 15 5699 5708 10.1021/ja312075r
    [Google Scholar]
  16. da Silva P.L. Guimarães L. Pliego J.R. Jr Revisiting the mechanism of neutral hydrolysis of esters: water autoionization mechanisms with acid or base initiation pathways. J. Phys. Chem. B 2013 117 21 6487 6497 10.1021/jp311504d 23642004
    [Google Scholar]
  17. Zhang L. Xiong W. Yao B. Liu H. Li M. Qin Y. Yu Y. Li X. Chen M. Wu W. Li J. Wang J. Jiang H. Facile synthesis of isoquinolines and isoquinoline N -oxides via a copper-catalyzed intramolecular cyclization in water. RSC Advances 2022 12 47 30248 30252 10.1039/D2RA06097C 36349148
    [Google Scholar]
  18. Ranade P. B. Navale N. Zote S. W. Kulal D. K. Sheikh M. V Ramana M. M. Synthesis and spectroscopic investigation of binding of novel Thiazolo [2, 3-a] isoquinoline analog with bovine serum albumin. Indian J. Chem. 2021 60 1081 1085
    [Google Scholar]
  19. Cheng J. Yang R. Wu X. Sun S. Yu J-T. Rhodium-catalyzed annulation of 2-arylimidazoles and α-aroyl sulfoxonium ylides toward 5-arylimidazo[2,1-a]isoquinolines. Synthesis 2018 50 17 3487 3492 10.1055/s‑0037‑1610124
    [Google Scholar]
  20. Wang F.X. Yan J.L. Liu Z. Zhu T. Liu Y. Ren S.C. Lv W.X. Jin Z. Chi Y.R. Assembly of multicyclic isoquinoline scaffolds from pyridines: formal total synthesis of fredericamycin A. Chem. Sci. 2021 12 30 10259 10265 10.1039/D1SC02442F 34377413
    [Google Scholar]
  21. Hu K. Qi L. Yu S. Cheng T. Wang X. Li Z. Xia Y. Chen J. Wu H. Efficient synthesis of isoquinolines in water by a Pd-catalyzed tandem reaction of functionalized alkylnitriles with arylboronic acids. Green Chem. 2017 19 7 1740 1750 10.1039/C7GC00267J
    [Google Scholar]
  22. Jonckers T.H.M. van Miert S. Cimanga K. Bailly C. Colson P. De Pauw-Gillet M.C. van den Heuvel H. Claeys M. Lemière F. Esmans E.L. Rozenski J. Quirijnen L. Maes L. Dommisse R. Lemière G.L.F. Vlietinck A. Pieters L. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J. Med. Chem. 2002 45 16 3497 3508 10.1021/jm011102i 12139461
    [Google Scholar]
  23. Yeh L.H. Wang H.K. Pallikonda G. Ciou Y.L. Hsieh J.C. Palladium-catalyzed dual annulation: A method for the synthesis of norneocryptolepine. Org. Lett. 2019 21 6 1730 1734 10.1021/acs.orglett.9b00287 30829491
    [Google Scholar]
  24. Vinoth P. Karuppasamy M. Gupta A. Nagarajan S. Maheswari C.U. Sridharan V. Intramolecular oxypalladation-initiated domino sequence: One-pot, two-step regioselective synthesis of isoquinolines. Tetrahedron 2023 134 133272 10.1016/j.tet.2023.133272
    [Google Scholar]
  25. Tian W. Xu L. Wei Y. Li P. Synthesis of isoquinoline-3-carboxylate chelated B, B -diaryl tetracoordinated organoboron complexes. Youji Huaxue 2023 43 5 1792 10.6023/cjoc202301001
    [Google Scholar]
  26. Wang L. Zhang L. Gong L. Cobalt(III)-catalyzed synthesis of isoquinolines from oximes and alkynes in deep eutectic solvents. Mendeleev Commun. 2023 33 2 243 245 10.1016/j.mencom.2023.02.030
    [Google Scholar]
  27. Thomas S.J. Rothman A.L. Trials and Tribulations on the Path to Developing a Dengue Vaccine. Am. J. Prev. Med. 2015 49 6 Suppl. 4 S334 S344 10.1016/j.amepre.2015.09.006 26590433
    [Google Scholar]
  28. De la Guardia C. Stephens D. Dang H. Quijada M. Larionov O. Lleonart R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules 2018 23 3 672 10.3390/molecules23030672 29547522
    [Google Scholar]
  29. Nobori H. Uemura K. Toba S. Sanaki T. Shishido T. Hall W.W. Orba Y. Sawa H. Sato A. Identification of quinolone derivatives as effective anti-Dengue virus agents. Antiviral Res. 2020 184 104969 10.1016/j.antiviral.2020.104969 33160000
    [Google Scholar]
  30. Tham H.W. Balasubramaniam V. Ooi M.K. Chew M.F. Viral determinants and vector competence of zika virus transmission. Front. Microbiol. 2018 9 MAY 1040 10.3389/fmicb.2018.01040 29875751
    [Google Scholar]
  31. Chen H. Lao Z. Xu J. Li Z. Long H. Li D. Lin L. Liu X. Yu L. Liu W. Li G. Wu J. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology 2020 546 88 97 10.1016/j.virol.2020.04.009 32452420
    [Google Scholar]
  32. Adcock R.S. Chu Y.K. Golden J.E. Chung D.H. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res. 2017 138 47 56 10.1016/j.antiviral.2016.11.018 27919709
    [Google Scholar]
  33. Ratanakomol T. Roytrakul S. Wikan N. Smith D.R. Berberine inhibits dengue virus through dual mechanisms. Molecules 2021 26 18 5501 10.3390/molecules26185501 34576974
    [Google Scholar]
  34. Marra R.K.F. Kümmerle A.E. Guedes G.P. Barros C.S. Gomes R.S.P. Cirne-Santos C.C. Paixão I.C.N.P. Neves A.P. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors. Bioorg. Med. Chem. Lett. 2020 30 2 126881 10.1016/j.bmcl.2019.126881 31843348
    [Google Scholar]
  35. Khan M. Santhosh S.R. Tiwari M. Lakshmana Rao P.V. Parida M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells. J. Med. Virol. 2010 82 5 817 824 10.1002/jmv.21663 20336760
    [Google Scholar]
  36. Islamuddin M. Afzal O. Khan W.H. Hisamuddin M. Altamimi A.S.A. Husain I. Kato K. Alamri M.A. Parveen S. Inhibition of Chikungunya Virus Infection by 4-Hydroxy-1-Methyl-3-(3-morpholinopropanoyl)quinoline-2(1 H )-one (QVIR) Targeting nsP2 and E2 Proteins. ACS Omega 2021 6 14 9791 9803 10.1021/acsomega.1c00447 33869959
    [Google Scholar]
  37. Narula A.K. Azad C.S. Nainwal L.M. New dimensions in the field of antimalarial research against malaria resurgence. Eur. J. Med. Chem. 2019 181 111353 10.1016/j.ejmech.2019.05.043 31525705
    [Google Scholar]
  38. Marella A. Verma G. Shaquiquzzaman M. Khan M.F. Akhtar W. Alam M.M. Malaria hybrids: A chronological evolution. Mini Rev. Med. Chem. 2019 19 14 1144 1177 10.2174/1389557519666190315100027 30887923
    [Google Scholar]
  39. Alven S. Aderibigbe B. Combination therapy strategies for the treatment of malaria. Molecules 2019 24 19 3601 10.3390/molecules24193601 31591293
    [Google Scholar]
  40. Vinindwa B. Dziwornu G.A. Masamba W. Synthesis and evaluation of chalcone-quinoline based molecular hybrids as potential anti-malarial agents. Molecules 2021 26 13 4093 10.3390/molecules26134093 34279438
    [Google Scholar]
  41. Murugan K. Panneerselvam C. Subramaniam J. Paulpandi M. Rajaganesh R. Vasanthakumaran M. Madhavan J. Shafi S.S. Roni M. Portilla-Pulido J.S. Mendez S.C. Duque J.E. Wang L. Aziz A.T. Chandramohan B. Dinesh D. Piramanayagam S. Hwang J.S. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases. Sci. Rep. 2022 12 1 4765 10.1038/s41598‑022‑08397‑5 35306526
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072321232240927090613
Loading
/content/journals/cbc/10.2174/0115734072321232240927090613
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: catalyst ; isoquinolone ; quinolone ; P. falciparum ; anti-dengue ; anti-malaria
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test