Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

The study aimed to assess the effectiveness of in treating diabetes. The plant components were assessed using ethanol as a solvent. To determine whether the plant extracts included any secondary metabolites, a phytochemical screening was performed.

Methods

The quantities of total phenolic and total flavonoid were determined using plant extracts in ethanolic, chloroform, petroleum, and water solutions. Experimental animals were used to evaluate the antioxidant properties of plant extracts. Thus, the study was further processed to evaluate antidiabetic activity using ethanolic and aqueous extracts. Glucose levels were measured using an oral glucose tolerance test (OGTT).

Results

The percentage yield of ethanol, chloroform, petroleum ether, and aqueous extract were 19.22 g, 11.01 g, 6.44 g, and 15.76 g, respectively. The ethanolic and aqueous extracts showed the presence of most of the phytoconstituents like alkaloids, flavonoids, carbohydrates, tannins, phytosterols, glycosides, proteins, and gum. TPC values were high for ethanolic extract of the fern which was 54.34 mg GAE/g for ethanolic extract. However, the TFC value was 264.51 mg QE/g for ethanolic extract. Normalisation of insulin levels and restoration of blood glucose levels were both demonstrated by the plant extract.

Conclusion

It can be concluded from the study that ethanolic extract of was effective against STZ-induced diabetes. may be an alternative drug in treating diabetes after clinical trials.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072312202240729080240
2024-08-07
2025-06-23
Loading full text...

Full text loading...

References

  1. LiM. ChiX. WangY. SetrerrahmaneS. XieW. XuH. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy.Signal Transduct. Target. Ther.20227121610.1038/s41392‑022‑01073‑0 35794109
    [Google Scholar]
  2. ZhaoX. AnX. YangC. SunW. JiH. LianF. The crucial role and mechanism of insulin resistance in metabolic disease.Front. Endocrinol.202314114923910.3389/fendo.2023.1149239 37056675
    [Google Scholar]
  3. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  4. FreemanA.M. AcevedoL.A. PenningsN. Insulin Resistance. StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  5. AnsariP. HannanJ.M.A. AzamS. JakariaM. Challenges in diabetic micro-complication management: Focus on diabetic neuropathy.Int. J. Transl. Med.20211317518610.3390/ijtm1030013
    [Google Scholar]
  6. DeMarsilisA. ReddyN. BoutariC. FilippaiosA. SternthalE. KatsikiN. Pharmacotherapy of type 2 diabetes: An update and future directions.Metabolism202213715533210.1016/j.metabol.2022.155332 36240884
    [Google Scholar]
  7. Weinberg SibonyR. SegevO. DorS. RazI. Drug therapies for diabetes.Int. J. Mol. Sci.202324241714710.3390/ijms242417147 38138975
    [Google Scholar]
  8. AedhA.I. AlshahraniM.S. HuneifM.A. PrymeI.F. OruchR. A glimpse into milestones of insulin resistance and an updated review of its management.Nutrients202315492110.3390/nu15040921 36839279
    [Google Scholar]
  9. MastrototaroL. RodenM. Insulin resistance and insulin sensitizing agents.Metabolism202112515489210.1016/j.metabol.2021.154892 34563556
    [Google Scholar]
  10. TranN. PhamB. LeL. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery.Biology20209925210.3390/biology9090252 32872226
    [Google Scholar]
  11. NasimN. SandeepI.S. MohantyS. Plant-derived natural products for drug discovery: Current approaches and prospects.Nucleus202265339941110.1007/s13237‑022‑00405‑3 36276225
    [Google Scholar]
  12. UsaiR. MajoniS. RwereF. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review.Front. Pharmacol.20221398081910.3389/fphar.2022.980819 36091798
    [Google Scholar]
  13. NauckM.A. QuastD.R. WefersJ. PfeifferA.F.H. The evolving story of incretins (GIP and GLP ‐1) in metabolic and cardiovascular disease: A pathophysiological update.Diabetes Obes. Metab.202123S3Suppl. 352910.1111/dom.14496 34310013
    [Google Scholar]
  14. SutoyoS. SanjayaA.I.G.M. HidayahR. PuspitaD. NurrulhidayahS. Phytochemical screening, total flavonoid content, and total phenolic content of ethanol extract of the Indonesian fern Selaginella plana.2021209357362
    [Google Scholar]
  15. SariY.M. NovriyantiN. Menstrual health problems of women indigenous peoples around protected forest area in sumatra, indonesia, and plants’ usefulness to treat it.J. Mother Child202327119 37303200
    [Google Scholar]
  16. RenM. LiS. GaoQ. QiaoL. CaoQ. YangZ. ChenC. JiangY. WangG. FuS. Advances in the anti-tumor activity of biflavonoids in Selaginella.Int. J. Mol. Sci.2023249773110.3390/ijms24097731 37175435
    [Google Scholar]
  17. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.0280 34965646
    [Google Scholar]
  18. EntezariM. HashemiD. TaheriazamA. ZabolianA. MohammadiS. FakhriF. HashemiM. HushmandiK. AshrafizadehM. ZarrabiA. ErtasY.N. MirzaeiS. SamarghandianS. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation.Biomed. Pharmacother.202214611256310.1016/j.biopha.2021.112563 35062059
    [Google Scholar]
  19. SutoyoS. TukiranS. Antioxydant activity of the silver nanoparticles (AgNPs) synthesized using Nephrolepisradicans extract as bioreductor.J. Phys. Conf. Ser.2021174716
    [Google Scholar]
  20. TiwariP. KumarB. KaurM. KaurG. KaurH. Phytochemical screening and extraction: A review.Int. Pharmac. Sci.2011198106
    [Google Scholar]
  21. EdeogaH.O. OkwuD.E. MbaebieB.O. Phytochemical constituents of some Nigerian medicinal plants.Afr. J. Biotechnol.20054768568810.5897/AJB2005.000‑3127
    [Google Scholar]
  22. KusbandariA. SusantiH. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber.Mater. Sci. Eng.2017259012010
    [Google Scholar]
  23. SuranaA.R. KumbhareM.R. WaghR.D. Estimation of total phenolic and total flavonoid content and assessment of in vitro antioxidant activity of extracts of Hamelia patens Jacq.Stems. Res. J. Phytochem.2016102677410.3923/rjphyto.2016.67.74
    [Google Scholar]
  24. BarikR. JainS. QwatraD. JoshiA. TripathiG. GoyalR. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats.Indian J. Pharmacol.2008401192210.4103/0253‑7613.40484 21264156
    [Google Scholar]
  25. Kamli-SalinoS.E.J. BrownP.A.J. HaschlerT.N. LiangL. FeliersD. WilsonH.M. DelibegovicM. Induction of experimental diabetes and diabetic nephropathy using anomer-equilibrated streptozotocin in male C57Bl/6J mice.Biochem. Biophys. Res. Commun.202365010911610.1016/j.bbrc.2023.01.089 36774688
    [Google Scholar]
  26. SakamotoS. PutalunW. VimolmangkangS. PhoolcharoenW. ShoyamaY. TanakaH. MorimotoS. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites.J. Nat. Med.2018721324210.1007/s11418‑017‑1144‑z 29164507
    [Google Scholar]
  27. ZebA. UllahF. A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods.J. Anal. Methods Chem.201620161510.1155/2016/9412767 27123360
    [Google Scholar]
  28. GiustariniD. FantiP. MatteucciE. RossiR. Micro-method for the determination of glutathione in human blood.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201496419119410.1016/j.jchromb.2014.02.018 24636839
    [Google Scholar]
  29. ChoudharyR. SarohaA.E. SwarnkarP.L. Effect of abscisic acid and hydrogen peroxide on antioxidant enzymes in Syzygium cumini plant.J. Food Sci. Technol.201249564965210.1007/s13197‑011‑0464‑3 24082280
    [Google Scholar]
  30. KaterjiM. FilippovaM. Duerksen-HughesP. Approaches and methods to measure oxidative stress in clinical samples: Research applications in the cancer field.Oxid. Med. Cell. Longev.2019201912910.1155/2019/1279250 30992736
    [Google Scholar]
  31. ShaikhJ.R. PatilM.K. Qualitative tests for preliminary phytochemical screening: An overview.Int. J. Chem. Stud.20208260360810.22271/chemi.2020.v8.i2i.8834
    [Google Scholar]
  32. ChikmawatiT. Phytochemical composition of Selaginella spp. from java island indonesia.Makara J. Sci.2012162
    [Google Scholar]
  33. BaillyC. The traditional and modern uses of Selaginella tamariscina (P. Beauv.) Spring, in medicine and cosmetic: Applications and bioactive ingredients.J. Ethnopharmacol.202128011444410.1016/j.jep.2021.114444 34302944
    [Google Scholar]
  34. WilcoxG. Insulin and insulin resistance.Clin. Biochem. Rev.20052621939 16278749
    [Google Scholar]
  35. BruceC.R. HamleyS. AngT. HowlettK.F. ShawC.S. KowalskiG.M. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests.Mol. Metab.20215310128110.1016/j.molmet.2021.101281 34175474
    [Google Scholar]
  36. RahmanM.S. HossainK.S. DasS. KunduS. AdegokeE.O. RahmanM.A. HannanM.A. UddinM.J. PangM.G. Role of insulin in health and disease: An update.Int. J. Mol. Sci.20212212640310.3390/ijms22126403 34203830
    [Google Scholar]
  37. HædersdalS. LundA. KnopF.K. VilsbøllT. The role of glucagon in the pathophysiology and treatment of type 2 diabetes.Mayo Clin. Proc.201893221723910.1016/j.mayocp.2017.12.003 29307553
    [Google Scholar]
  38. RöderP.V. WuB. LiuY. HanW. Pancreatic regulation of glucose homeostasis.Exp. Mol. Med.2016483e21910.1038/emm.2016.6 26964835
    [Google Scholar]
  39. NieT. CooperG.J.S. Mechanisms underlying the antidiabetic activities of polyphenolic compounds: A review.Front. Pharmacol.20211279832910.3389/fphar.2021.798329 34970150
    [Google Scholar]
  40. Arab SadeghabadiZ. AbbasalipourkabirR. MohseniR. ZiamajidiN. Investigation of oxidative stress markers and antioxidant enzymes activity in newly diagnosed type 2 diabetes patients and healthy subjects, association with IL-6 level.J. Diabetes Metab. Disord.201918243744310.1007/s40200‑019‑00437‑8 31890669
    [Google Scholar]
  41. TiwariB.K. PandeyK.B. AbidiA.B. RizviS.I. Markers of oxidative stress during diabetes mellitus.J. Biomark.2013201337879010.1155/2013/378790
    [Google Scholar]
  42. ZhengM. LiuY. ZhangG. YangZ. XuW. ChenQ. The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics.Antioxidants2023129167510.3390/antiox12091675 37759978
    [Google Scholar]
  43. RathoreP. RaoS.P. RoyA. SatapathyT. SinghV. Hepatoprotective activity of isolated herbal compounds.J. Pharm. Technol.201472
    [Google Scholar]
  44. ShabalalaS.C. JohnsonR. BassonA.K. ZiqubuK. HlengwaN. MthembuS.X.H. MabhidaS.E. Mazibuko-MbejeS.E. HanserS. CirilliI. TianoL. DludlaP.V. Detrimental effects of lipid peroxidation in type 2 diabetes: Exploring the neutralizing influence of antioxidants.Antioxidants20221110207110.3390/antiox11102071 36290794
    [Google Scholar]
  45. JainP. PandeyR. ShuklaS.S. Natural Sources of Anti-inflammation. Inflammation: Natural Resources and its Applications; Jain, P.; Pandey, R. ShuklaS.S. New Delhi, IndiaSpringer20152513310.1007/978‑81‑322‑2163‑0_4
    [Google Scholar]
  46. ZhengW. HuangL.Z. ZhaoL. WangB. XuH.B. WangG.Y. WangZ.L. ZhouH. Superoxide dismutase activity and malondialdehyde level in plasma and morphological evaluation of acute severe hemorrhagic shock in rats.Am. J. Emerg. Med.2008261545810.1016/j.ajem.2007.02.007 18082781
    [Google Scholar]
  47. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.2021298May10949010.1016/j.vetpar.2021.109490 34271319
    [Google Scholar]
  48. SarianM.N. AhmedQ.U. Mat So’adS.Z. AlhassanA.M. MurugesuS. PerumalV. Syed MohamadS.N.A. KhatibA. LatipJ. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study.BioMed Res. Int.2017201711410.1155/2017/8386065 29318154
    [Google Scholar]
  49. JainP. SatapathyT. PandeyR.K. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides.Indian J. Nat. Prod. Resour.20201112217223
    [Google Scholar]
  50. JainP. SatapathyT. PandeyR.K. Acaricidal activity and biochemical analysis of Citrus limetta seed oil for controlling Ixodid Tick Rhipicephalus microplus infesting cattle.Syst. Appl. Acarol.202120212610.11158/saa.26.7.13
    [Google Scholar]
  51. JainP. SatapathyT. PandeyR.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves.Vet. Parasitol.2021296June10950810.1016/j.vetpar.2021.109508 34218174
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072312202240729080240
Loading
/content/journals/cbc/10.2174/0115734072312202240729080240
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): diabetes; fern; glucose; hypoglycemia; phenolic-flavonoid; Selaginella plana
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test