Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Epilepsy, a prevalent neurological disorder, affects approximately 1% of the Indian population, presenting a significant challenge in clinical management. Noninvasive treatment options are actively being explored, with nose-to-brain drug delivery emerging as a promising approach for effective epilepsy control. This comprehensive review delves into the potential of intranasal nanotherapy, focusing on its applicability in managing epilepsy. A key component of this review is an in-depth analysis of sodium valproate (SVS), a widely prescribed antiepileptic drug known for its effectiveness in treating epilepsy as well as various mental health conditions, such as bipolar disorder and migraine. The review examines the chemical structure, pharmacological properties, and diverse therapeutic uses of SVS, highlighting its role as a GABA amplifier. Special attention is given to emerging nanoparticle-based intranasal formulations, which show promise for enhanced brain delivery and improved therapeutic outcomes in epilepsy treatment. Furthermore, it discusses the associated compounds in SVS and their potential impact on its pharmacological profile, including possible side effects, drug interactions, and adverse effects. The importance of precise dosing and rigorous medical monitoring is emphasized to minimize risks. Detailed analyses of the anatomy of the nasal cavity, drug deposition mechanisms, and mucociliary clearance are carried out to illustrate the challenges in optimizing drug delivery this route. The unique pharmacokinetic and pharmacodynamic features of divalproex sodium, a formulation of valproic acid, are explored, with insights into its absorption, distribution, metabolism, and excretion (ADME) characteristics. The review also highlights its broad-spectrum antiepileptic effects and regulation of the GABAergic system, offering a comprehensive understanding of its therapeutic efficacy. The findings underscore the potential of intranasal nanotherapies as an innovative and effective strategy for epilepsy management.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072275440250117060558
2025-01-27
2026-02-16
Loading full text...

Full text loading...

References

  1. Amiri-NikpourM.R. NazarbaghiS. EftekhariP. MohammadiS. DindarianS. BagheriM. MohammadiH. Sodium valproate compared to phenytoin in treatment of Status epilepticus.Brain Behav.201885e0095110.1002/brb3.951 29761006
    [Google Scholar]
  2. MacfarlaneA. GreenhalghT. Sodium valproate in pregnancy: What are the risks and should we use a shared decision-making approach?BMC Pregnancy Childbirth201818120010.1186/s12884‑018‑1842‑x 29859057
    [Google Scholar]
  3. OwensD.C. Sodium valproate in psychiatric practice: time for a change in perception.Br. J. Psychiatry2019215351651810.1192/bjp.2019.137 31190658
    [Google Scholar]
  4. LiampasI. SiokasV. BrotisA. ZintzarasE. StefanidisI. DardiotisE. Intravenous sodium valproate in Status epilepticus: review and Meta-analysis.Int. J. Neurosci.20211311708410.1080/00207454.2020.1732967 32075481
    [Google Scholar]
  5. BrookesR.L. CrichtonS. WolfeC.D.A. YiQ. LiL. HankeyG.J. RothwellP.M. MarkusH.S. Sodium valproate, a histone deacetylase inhibitor, is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack.Stroke2018491546110.1161/STROKEAHA.117.016674 29247141
    [Google Scholar]
  6. MelloM.L.S. Sodium valproate-induced chromatin remodeling.Front. Cell Dev. Biol.2021964551810.3389/fcell.2021.645518 33959607
    [Google Scholar]
  7. CostaC. MoreiraJ.N. AmaralM.H. Sousa LoboJ.M. SilvaA.C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis.J. Control. Release201929518720010.1016/j.jconrel.2018.12.049 30610952
    [Google Scholar]
  8. BattagliaL. PancianiP.P. MuntoniE. CapucchioM.T. BiasibettiE. De BonisP. MiolettiS. FontanellaM. SwaminathanS. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery.Expert Opin. Drug Deliv.201815436937810.1080/17425247.2018.1429401 29338427
    [Google Scholar]
  9. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  10. MistryA. StolnikS. IllumL. Nanoparticles for direct nose-to-brain delivery of drugs.Int. J. Pharm.2009379114615710.1016/j.ijpharm.2009.06.019 19555750
    [Google Scholar]
  11. LandisM.S. BoydenT. PeggS. Nasal-to-CNS drug delivery: Where are we now and where are we heading? An industrial perspective.Ther. Deliv.20123219520810.4155/tde.11.149 22834197
    [Google Scholar]
  12. RaiG. GaubaP. DangS. Recent advances in nanotechnology for intra-nasal drug delivery and clinical applications.J. Drug Deliv. Sci. Technol.20238610472610.1016/j.jddst.2023.104726
    [Google Scholar]
  13. SinghS. ShuklaR. ShuklaR. Nanovesicular-mediated] intranasal drug therapy for neurodegenerative disease.AAPS PharmSciTech202324717910.1208/s12249‑023‑02625‑5 37658972
    [Google Scholar]
  14. ShringarpureM. GharatS. MominM. OmriA. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery.Expert Opin. Drug Deliv.202118216918510.1080/17425247.2021.1823965 32921169
    [Google Scholar]
  15. BahadurS. PardhiD.M. RautioJ. RosenholmJ.M. PathakK. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders.Pharmaceutics20201212123010.3390/pharmaceutics12121230 33352959
    [Google Scholar]
  16. HandaM. TiwariS. YadavA.K. AlmalkiW.H. AlghamdiS. AlharbiK.S. ShuklaR. BegS. Therapeutic potential of nanoemulsions as feasible wagons for targeting Alzheimer’s disease.Drug Discov. Today202126122881288810.1016/j.drudis.2021.07.020 34332094
    [Google Scholar]
  17. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. ShariqM. ParveenS. MaheshwariS. Receptor for advanced glycation end products: Dementia and cognitive impairment.Drug Res. (Stuttg.)202373524725010.1055/a‑2015‑8041 36889338
    [Google Scholar]
  18. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. Dendrimers: A neuroprotective lead in Alzheimer disease: A review on its synthetic approach and applications.Drug Res. (Stuttg.)202272841742310.1055/a‑1886‑3208 35931069
    [Google Scholar]
  19. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. Neurodegeneration: Microglia: Nf-kappab signaling pathways.Drug Res. (Stuttg.)202272949649910.1055/a‑1915‑4861 36055286
    [Google Scholar]
  20. ChavdaV.P. JogiG. ShahN. AthalyeM.N. BamaniyaN. K VoraL. Cláudia Paiva-SantosA. Advanced particulate carrier-mediated technologies for nasal drug delivery.J. Drug Deliv. Sci. Technol.20227410356910.1016/j.jddst.2022.103569
    [Google Scholar]
  21. BoyuklievaR. PilichevaB. Micro-and nanosized carriers for nose-to-brain drug delivery in neurodegenerative disorders.Biomedicines2022107170610.3390/biomedicines10071706 35885011
    [Google Scholar]
  22. PardeshiC.V. HandaM. ShuklaR. New insights into nanoparticulate carriers for direct nose-to-brain drug delivery. Nanoeng. Biomater.Wiley202226130710.1002/9783527832095.ch9
    [Google Scholar]
  23. ŁukawskiK. CzuczwarS.J. Emerging therapeutic targets for epilepsy: preclinical insights.Expert Opin. Ther. Targets202226319320610.1080/14728222.2022.2039120 35130119
    [Google Scholar]
  24. PatelD. PatelB. WairkarS. Intranasal delivery of biotechnology-based therapeutics.Drug Discov. Today2022271210337110.1016/j.drudis.2022.103371 36174965
    [Google Scholar]
  25. NguyenT.T.L. MaengH.J. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery.Pharmaceutics202214357210.3390/pharmaceutics14030572 35335948
    [Google Scholar]
  26. Usman KhanM. CaiX. ShenZ. MekonnenT. KourmatzisA. ChengS. GholizadehH. Challenges in the development and application of organ-on-chips for intranasal drug delivery studies.Pharmaceutics2023155155710.3390/pharmaceutics15051557 37242799
    [Google Scholar]
  27. SafdarA. IsmailF. A comprehensive review on pharmacological applications and drug-induced toxicity of valproic acid.Saudi Pharm. J.2023312265278 36942277
    [Google Scholar]
  28. MuzammilS. MazharA. YeniD.K. AndleebR. AshrafA. ShehzadM.I. ZafarN. MazharM. Chapter 21 - Nanospanlastic as a promising nanovesicle for drug delivery. Systems of Nanovesicular Drug Delivery.Academic Press202233735210.1016/B978‑0‑323‑91864‑0.00007‑3
    [Google Scholar]
  29. HuttunenK.M. TerasakiT. UrttiA. MontaserA.B. UchidaY. Pharmacoproteomics of brain barrier transporters and substrate design for the brain targeted drug delivery.Pharm. Res.20223971363139210.1007/s11095‑022‑03193‑2 35257288
    [Google Scholar]
  30. GonçalvesP.S. Oliveira PesqueroB. Taques ValentinD. Monteiro PereiraV.C. AndreatiniR. Effect of repeated sodium valproate and topiramate administration on mania like behaviors induced by methylphenidate in mice.Acta Neurobiol. Exp. (Warsz.)202382451152010.55782/ane‑2022‑049 36748974
    [Google Scholar]
  31. FahoumF. EyalS. Intracerebroventricular administration for delivery of antiseizure therapeutics: Challenges and opportunities.Epilepsia20236471750176510.1111/epi.17625 37086103
    [Google Scholar]
  32. MaheshwariS. Ages rage pathways: Alzheimer’s disease.Drug Res.2023735251254
    [Google Scholar]
  33. GuoY. LiS. ZengL.H. TanJ. Tau-targeting therapy in Alzheimer’s disease: Critical advances and future opportunities.Ageing Neurodegener. Dis.2022211.
    [Google Scholar]
  34. ChenY. YuY. Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation.J. Neuroinflammation202320116510.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  35. RoyR.G. MandalP.K. MaroonJ.C. Oxidative stress occurs prior to amyloid Aβ plaque formation and tau phosphorylation in Alzheimer’s disease: Role of glutathione and metal ions.ACS Chem. Neurosci.202314172944295410.1021/acschemneuro.3c00486 37561556
    [Google Scholar]
  36. Bueno-CarrascoM.T. CuéllarJ. FlydalM.I. SantiagoC. KråkenesT.A. KleppeR. López-BlancoJ.R. MarcillaM. TeigenK. AlviraS. ChacónP. MartinezA. ValpuestaJ.M. Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation.Nat. Commun.20221317410.1038/s41467‑021‑27657‑y 35013193
    [Google Scholar]
  37. HartzR.A. AhujaV.T. SivaprakasamP. XiaoH. KrauseC.M. ClarkeW.J. KishK. LewisH. SzapielN. RaviralaR. MutalikS. NakmodeD. ShahD. BurtonC.R. MacorJ.E. DubowchikG.M. Design, structure–activity relationships, and in vivo evaluation of potent and brain-penetrant imidazo[1,2-b]pyridazines as glycogen synthase kinase-3β (GSK-3β) inhibitors.J. Med. Chem.20236664231425210.1021/acs.jmedchem.3c00133 36950863
    [Google Scholar]
  38. BalboniB. MasiM. RocchiaW. GirottoS. CavalliA. GSK-3β allosteric inhibition: A dead end or a new pharmacological frontier?Int. J. Mol. Sci.2023248754110.3390/ijms24087541 37108703
    [Google Scholar]
  39. YangW. XuQ.Q. YuanQ. XianY.F. LinZ.X. Sulforaphene, a CDK5 inhibitor, attenuates cognitive deficits in a transgenic mouse model of Alzheimer’s disease via reducing Aβ deposition, tau hyperphosphorylation and synaptic dysfunction.Int. Immunopharmacol.202311410950410.1016/j.intimp.2022.109504 36508924
    [Google Scholar]
  40. PaoP.C. SeoJ. LeeA. KritskiyO. PatnaikD. PenneyJ. RajuR.M. GeigenmullerU. SilvaM.C. LucenteD.E. GusellaJ.F. DickersonB.C. LoonA. YuM.X. BulaM. YuM. HaggartyS.J. TsaiL.H. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes.Proc. Natl. Acad. Sci. USA202312016e221786412010.1073/pnas.2217864120 37043533
    [Google Scholar]
  41. TangW. LinC. YuQ. ZhangD. LiuY. ZhangL. ZhouZ. ZhangJ. OuyangL. Novel medicinal chemistry strategies targeting CDK5 for drug discovery.J. Med. Chem.202366117140716110.1021/acs.jmedchem.3c00566 37234044
    [Google Scholar]
  42. BatraS. JahanS. AshrafA. AlharbyB. JawaidT. IslamA. HassanI. A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases.Int. J. Biol. Macromol.202323012325910.1016/j.ijbiomac.2023.123259 36641018
    [Google Scholar]
  43. JahanI. AdachiR. EgawaR. NomuraH. KubaH. CDK5/p35-dependent microtubule reorganization contributes to homeostatic shortening of the axon initial segment.J. Neurosci.202343335937210.1523/JNEUROSCI.0917‑22.2022 36639893
    [Google Scholar]
  44. LiH. ZhaoH. HuT. MengL. MoX. GongM. LiaoY. The Cdk5 inhibitor β‐butyrolactone impairs reconsolidation of heroin‐associated memory in the rat basolateral amygdala.Addict. Biol.2023289e1332610.1111/adb.13326 37644892
    [Google Scholar]
  45. Requejo-AguilarR. Cdk5 and aberrant cell cycle activation at the core of neurodegeneration.Neural Regen. Res.20231861186119010.4103/1673‑5374.360165 36453392
    [Google Scholar]
  46. López-GruesoM.J. PadillaC.A. BárcenaJ.A. Requejo-AguilarR. Deficiency of parkinson’s related protein DJ-1 alters CDK5 signalling and induces neuronal death by aberrant cell cycle re-entry.Cell. Mol. Neurobiol.202343275776910.1007/s10571‑022‑01206‑7 35182267
    [Google Scholar]
  47. EteläinenT.S. SilvaM.C. Uhari-VäänänenJ.K. De LorenzoF. JänttiM.H. CuiH. Chavero-PieresM. KilpeläinenT. MechtlerC. SvarcbahsR. SeppäläE. SavinainenJ.R. PurisE. FrickerG. GyntherM. JulkuU.H. HuttunenH.J. HaggartyS.J. MyöhänenT.T. A prolyl oligopeptidase inhibitor reduces tau pathology in cellular models and in mice with tauopathy.Sci. Transl. Med.202315691eabq291510.1126/scitranslmed.abq2915 37043557
    [Google Scholar]
  48. KaurP. KheraA. AlajangiH.K. SharmaA. JaiswalP.K. SinghG. BarnwalR.P. Role of tau in various tauopathies, treatment approaches, and emerging role of nanotechnology in neurodegenerative disorders.Mol. Neurobiol.20236031690172010.1007/s12035‑022‑03164‑z 36562884
    [Google Scholar]
  49. ChristensenK.R. CombsB. RichardsC. GrabinskiT. AlhadidyM.M. KanaanN.M. Phosphomimetics at Ser199/Ser202/] Thr205 in tau impairs axonal transport in rat hippocampal neurons.Mol. Neurobiol.20236063423343810.1007/s12035‑023‑03281‑3 36859689
    [Google Scholar]
  50. LvJ. ShenX. ShenX. ZhaoS. XuR. YanQ. LuJ. ZhuD. ZhaoY. DongJ. WangJ. ShenX. NPLC0393 from Gynostemma pentaphyllum ameliorates Alzheimer’s disease‐like pathology in mice by targeting protein phosphatase magnesium‐dependent 1A phosphatase.Phytother. Res.202337104771479010.1002/ptr.7945 37434441
    [Google Scholar]
  51. Mir Najib UllahS.N. AfzalO. AltamimiA.S.A. AtherH. SultanaS. AlmalkiW.H. BhartiP. SahooA. DwivediK. KhanG. SultanaS. AlzahraniA. RahmanM. Nanomedicine in the management of Alzheimer’s disease: State-of-the-art.Biomedicines2023116175210.3390/biomedicines11061752 37371847
    [Google Scholar]
  52. MikitshJ.L. ChackoA.M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier.Perspect. Medicin. Chem.20146112210.4137/PMC.S13384
    [Google Scholar]
  53. HamadaniC.M. DasanayakeG.S. GorniakM.E. PrideM.C. MonroeW. ChismC.M. HeintzR. JarrettE. SinghG. EdgecombS.X. TannerE.E.L. Development of ionic liquid-coated PLGA nanoparticles for applications in intravenous drug delivery.Nat. Protoc.20231882509255710.1038/s41596‑023‑00843‑6 37468651
    [Google Scholar]
  54. MoreS. PawarA. Brain targeted curcumin loaded turmeric oil microemulsion protects against trimethyltin induced neurodegeneration in adult zebrafish: A pharmacokinetic and pharmacodynamic insight.Pharm. Res.202340367568710.1007/s11095‑022‑03467‑9 36703027
    [Google Scholar]
  55. ShamsabadipourA. PourmadadiM. RashediH. YazdianF. Navaei-NigjehM. Nanoemulsion carriers of porous γ-alumina modified by polyvinylpyrrolidone and carboxymethyl cellulose for pH-sensitive delivery of 5-fluorouracil.Int. J. Biol. Macromol.202323312362110.1016/j.ijbiomac.2023.123621 36773864
    [Google Scholar]
  56. NemethC.L. GӧkÖ. TomlinsonS.N. SharmaA. MoserA.B. KannanS. KannanR.M. FatemiA. Targeted brain delivery of dendrimer-4-phenylbutyrate ameliorates neurological deficits in a long-term ABCD1-deficient mouse model of X-linked adrenoleukodystrophy.Neurotherapeutics202320127228310.1007/s13311‑022‑01311‑x 36207570
    [Google Scholar]
  57. KenyagaJ.M. OteinoS.A. SunY. QiangW. In-cell 31P solid-state NMR measurements of the lipid dynamics and influence of exogeneous β-amyloid peptides on live neuroblastoma neuro-2a cells.Biophys. Chem.202329710700810.1016/j.bpc.2023.107008 36989875
    [Google Scholar]
  58. ReddyT.S. ZomerR. MantriN. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids.Phytother. Res.20233741526153810.1002/ptr.7742 36748949
    [Google Scholar]
  59. BadriaF.A. FayedH.A. IbraheemA.K. StateA.F. MazyedE.A. Formulation of sodium valproate nanospanlastics as a promising approach for drug repurposing in the treatment of androgenic alopecia.Pharmaceutics202012986610.3390/pharmaceutics12090866 32933001
    [Google Scholar]
  60. RanjithS. JoshiA. Measures to mitigate sodium valproate use in pregnant women with epilepsy.Cureus20221410e3014410.7759/cureus.30144 36381886
    [Google Scholar]
  61. LeeM. AhnC. KimK. JeungE.B. Mitochondrial toxic effects of antiepileptic drug valproic acid on mouse kidney stem cells.Toxics202311547110.3390/toxics11050471 37235285
    [Google Scholar]
  62. ShnayderN.A. GrechkinaV.V. KhasanovaA.K. BochanovaE.N. DontcevaE.A. PetrovaM.M. AsadullinA.R. ShipulinG.A. AltynbekovK.S. Al-ZamilM. NasyrovaR.F. Therapeutic and toxic effects of valproic acid metabolites.Metabolites202313113410.3390/metabo13010134 36677060
    [Google Scholar]
  63. PrasannaP. JoshiT. PantM. PundirH. ChandraS. Evaluation of the inhibitory potential of valproic acid against histone deacetylase of Leishmania donovani and computational studies of valproic acid derivatives.J. Biomol. Struct. Dyn.202341125447546410.1080/07391102.2022.2087103 35706132
    [Google Scholar]
  64. LevyA. VeryE. MontastrucF. BirmesP. JullienA. RichaudL. Case Report: A case of valproic acid-induced hyperammonemic encephalopathy associated with the initiation of lithium: A re-duplicable finding.Front. Psychiatry20221387563610.3389/fpsyt.2022.875636 35586415
    [Google Scholar]
  65. GevorgyanH. AbaghyanT. MirumyanM. YenkoyanK. TrchounianK. Propionic and valproic acids have an impact on bacteria viability, proton flux and ATPase activity.J. Bioenerg. Biomembr.202355539740810.1007/s10863‑023‑09983‑6 37700074
    [Google Scholar]
  66. KavanaghO.N. WalkerG. LusiM. Graph-set analysis helps to understand charge transfer in a novel ionic cocrystal when the Δp K a rule fails.Cryst. Growth Des.20191995308531310.1021/acs.cgd.9b00770
    [Google Scholar]
  67. JiangY. SouthamA.D. TrovaS. BekeF. AlhazmiB. FrancisT. RadotraA. di MaioA. DraysonM.T. BunceC.M. KhanimF.L. Valproic acid disables the Nrf2 anti-oxidant response in acute myeloid leukaemia cells enhancing reactive oxygen species-mediated killing.Br. J. Cancer2022126227528610.1038/s41416‑021‑01570‑z 34686779
    [Google Scholar]
  68. HuT.M. ChungH.S. PingL.Y. HsuS.H. TsaiH.Y. ChenS.J. ChengM.C. Differential expression of multiple disease-related protein groups induced by valproic acid in human SH-SY5Y neuroblastoma cells.Brain Sci.202010854510.3390/brainsci10080545 32806546
    [Google Scholar]
  69. ZhangL. LiuL. ChuX. XieH. CaoL. GuoC. AJ. CaoB. LiM. WangG. HaoH. Combined effects of a high-fat diet and chronic valproic acid treatment on hepatic steatosis and hepatotoxicity in rats.Acta Pharmacol. Sin.201435336337210.1038/aps.2013.135 24442146
    [Google Scholar]
  70. SkibaA. PellegataD. MorozovaV. KoziołE. BudzyńskaB. LeeS.M.Y. GertschJ. Skalicka-WoźniakK. Pharmacometabolic effects of pteryxin and valproate on pentylenetetrazole-induced seizures in zebrafish reveal vagus nerve stimulation.Cells20231211154010.3390/cells12111540 37296660
    [Google Scholar]
  71. MishraM.K. KukalS. PaulP.R. BoraS. SinghA. KukretiS. SasoL. MuthusamyK. HasijaY. KukretiR. Insights into structural modifications of valproic acid and their pharmacological profile.Molecules202127110410.3390/molecules27010104 35011339
    [Google Scholar]
  72. FelisbinoM.B. ZiemannM. KhuranaI. OkabeJ. Al-HasaniK. MaxwellS. HarikrishnanK.N. de OliveiraC.B.M. MelloM.L.S. El-OstaA. Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways.Sci. Rep.2021111216310.1038/s41598‑021‑81794‑4 33495488
    [Google Scholar]
  73. dos AnjosE.H.M. RochaM.A. VidalB.C. MelloM.L.S. Exploration of DNA methylation in the chromatin of Triatoma infestans (Klug).Cytologia (Tokyo)202388323323810.1508/cytologia.88.233
    [Google Scholar]
  74. AlmansaC. FramptonC.S. VelaJ.M. WhitelockS. Plata-SalamánC.R. Co-crystals as a new approach to multimodal analgesia and the treatment of pain.J. Pain Res.2019122679268910.2147/JPR.S208082 31564960
    [Google Scholar]
  75. BadawyA.A. ElghabaR. SolimanM. HusseinA.M. AlSadrahS.A. AwadallaA. AbulseoudO.A. Chronic valproic acid administration increases plasma, liver, and brain ammonia concentration and suppresses glutamine synthetase activity.Brain Sci.2020101075910.3390/brainsci10100759 33096612
    [Google Scholar]
  76. MandanaS.N. FatemehN. HosseinN. AzamM. SalehA. Protective effect of ghrelin on sodium valproate-induced liver injury in rat.J. Stress Physiol. Biochem.20139196105
    [Google Scholar]
  77. LefterR. CiobicaA. AntiochI. AbabeiD.C. HritcuL. LucaA.C. Oxytocin differentiated effects according to the administration route in a prenatal valproic acid-induced rat model of autism.Medicina (Kaunas)202056626710.3390/medicina56060267 32485966
    [Google Scholar]
  78. GuptaS.R. SchumockG.T. WaltonS.M. CramerJ.A. PMH9 net benefit analysis of divalproex sodium extended-release compared to valproic acid in the treatment of bipolar disorder.Value Health2007103A73A7410.1016/S1098‑3015(10)68762‑1
    [Google Scholar]
  79. MuzinaD.J. GaoK. KempD.E. KhalifeS. GanocyS.J. ChanP.K. SerranoM.B. ConroyC.M. CalabreseJ.R. Acute efficacy of divalproex sodium versus placebo in mood stabilizer naive bipolar I or II depression: A double-blind, randomized, placebo-controlled trial.J. Clin. Psychiatry2010716367 20816041
    [Google Scholar]
  80. QiuY. CheskinH.S. EnghK.R. PoskaR.P. Once-a-day controlled-release dosage form of divalproex sodium I: formulation design and in vitro/in vivo investigations.J. Pharm. Sci.20039261166117310.1002/jps.10385 12761806
    [Google Scholar]
  81. DulacO. AlvarezJ.C. Bioequivalence of a new sustained-release formulation of sodium valproate, valproate modified-release granules, compared with existing sustained-release formulations after once- or twice-daily administration.Pharmacotherapy2005251354110.1592/phco.25.1.35.55626 15767218
    [Google Scholar]
  82. DuttaS. ReedR.C. O’deaR.F. Comparative absorption profiles of divalproex sodium delayed-release versus extended-release tablets-clinical implications.Ann. Pharmacother.200640461962510.1345/aph.1G617 16569797
    [Google Scholar]
  83. PhaechamudT. MueannoomW. TuntarawongsaS. ChitratthaS. Preparation of coated valproic acid and sodium valproate sustained-release matrix tablets.Indian J. Pharm. Sci.201072217318310.4103/0250‑474X.65026 20838520
    [Google Scholar]
  84. TrombleyT.A. CapstickR.A. LindsleyC.W. DARK classics in chemical neuroscience: gamma-hydroxybutyrate (GHB).ACS Chem. Neurosci.202011233850385910.1021/acschemneuro.9b00336 31287661
    [Google Scholar]
  85. AlsarraI.A. HamedA.Y. AlanaziF.K. NeauS.H. Rheological and mucoadhesive characterization of poly(vinylpyrrolidone) hydrogels designed for nasal mucosal drug delivery.Arch. Pharm. Res.201134457358210.1007/s12272‑011‑0407‑6 21544722
    [Google Scholar]
  86. MiyamotoM. NatsumeH. SatohI. OhtakeK. YamaguchiM. KobayashiD. SugibayashiK. MorimotoY. Effect of poly-l-arginine on the nasal absorption of FITC-dextran of different molecular weights and recombinant human granulocyte colony-stimulating factor (rhG-CSF) in rats.Int. J. Pharm.20012261-212713810.1016/S0378‑5173(01)00797‑9 11532576
    [Google Scholar]
  87. MorsyM.A. GuptaS. NairA.B. VenugopalaK.N. GreishK. El-DalyM. Protective effect of Spirulina platensis extract against dextran-sulfate-sodium-induced ulcerative colitis in rats.Nutrients20191110230910.3390/nu11102309 31569451
    [Google Scholar]
  88. SolomonG.D. CadyR.K. KlapperJ.A. EarlN.L. SaperJ.R. RamadanN.M. Clinical efficacy and tolerability of 2.5 mg zolmitriptan for the acute treatment of migraine.Neurology19974951219122510.1212/WNL.49.5.1219 9371897
    [Google Scholar]
  89. KnoesterP.D. JonkerD.M. Van Der HoevenR.T.M. VermeijT.A.C. EdelbroekP.M. BrekelmansG.J. De HaanG.J. Pharmacokinetics and pharmacodynamics of midazolam administered as a concentrated intranasal spray. A study in healthy volunteers.Br. J. Clin. Pharmacol.200253550150710.1046/j.1365‑2125.2002.01588.x 11994056
    [Google Scholar]
  90. GoodmanS. ChanG. GunawardaneN.A. KuznieckyR.I. Acute management of seizure clusters and prolonged seizures: A review of rescue therapies.Neurology2024201
    [Google Scholar]
  91. CorreiaA.C. CostaI. SilvaR. SampaioP. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Design of experiment (DoE) of mucoadhesive valproic acid-loaded nanostructured lipid carriers (NLC) for potential nose-to-brain application.Int. J. Pharm.202466412463110.1016/j.ijpharm.2024.124631 39182742
    [Google Scholar]
  92. GrosbergB.M. FriedmanD.I. RobbinsM.S. VerhaakA.M.S. Pharmacological dissociation in hemicrania continua with persistent visual aura evolved from episodic migraine.Neurologist202429636136410.1097/NRL.0000000000000583 39353868
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072275440250117060558
Loading
/content/journals/cbc/10.2174/0115734072275440250117060558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test