Skip to content
2000
Volume 13, Issue 2
  • ISSN: 1874-6098
  • E-ISSN: 1874-6128

Abstract

Background: Solving the nervous system requires understanding how it generates inner sensations of "mind" within it. It was possible to derive a hypothesis of brain functions where the formation of a spectrum inter-postsynaptic (inter-spine) functional LINKs (IPLs) are the key structural changes responsible for encoding at the time of learning and are used for inducing the inner sensation of memory, both taking place at millisecond timescales. Since stages of ontogeny reflect possible stages of evolution, it is possible to examine whether IPLs have features of an evolved mechanism. Objective: To examine whether 1) IPLs have features of an evolved mechanism, 2) significant neuronal death during ontogeny leads to evolutionary adaptations for preventing cell death among the surviving neurons, and 3) loss of these adaptations lead to cellular changes that can cause agingrelated neurodegeneration. Methods: Key milestone changes of the ontogeny of the nervous system were examined to test whether they match with a feasible sequence of steps that lead to the formation of IPLs. Results: Several developmental stages can explain a probable sequence of events that lead to IPL formation among synaptically-connected neurons. When internal sensations generated by the IPLs started providing survival advantage, evolution has started preserving the IPL circuitry. A stage of inter-spine fusion possibly leads to a) significant neuronal death during the early stages of development, and b) trigger an adaptation in the surviving cells to stabilize and prevent the IPLs from undergoing fusion. Since there are no irreversible steps for maintaining the stability of IPLs, agingrelated factors may destroy the adaptation mechanism and destabilize the IPLs predisposing them to cause neurodegeneration. Conclusion: The derived testable IPL mechanism that can explain nervous system functions is capable to have evolved. An adaptation to prevent IPL hemifusion from progressing to fusion is likely the last stage of nervous system evolution. Since the IPL mechanism is utilized during every event of learning, any aging-related factors that can weaken this adaptation can cause IPL fusion and lead to neurodegeneration.

Loading

Article metrics loading...

/content/journals/cas/10.2174/1874609813666191223092451
2020-07-01
2025-07-11
Loading full text...

Full text loading...

/content/journals/cas/10.2174/1874609813666191223092451
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test