Skip to content
2000
Volume 18, Issue 1
  • ISSN: 1874-6098
  • E-ISSN: 1874-6128

Abstract

 Introduction and Objective

There is limited research on the changes that can occur in the gait biomechanical parameters of older adults over long-distance walking. Thus, this study aimed to evaluate the gait characteristics of older women of a specific Portuguese community over the six-minute walk test (6MWT) along with gait spatial and temporal parameters and angular kinematics of the lower limb joints.

Materials and Methods

Twenty-six older women voluntarily participated. Each woman performed the 6MWT, and during this, their spatial and temporal parameters were collected through plantar pressure data (100Hz) and angular kinematics through an inertial sensor system (100Hz). The 6MWT was divided into four intervals, and the Friedman test was used to compare them. The median age of the women was calculated, and the Mann-Whitney test was used to compare women above and below the median age value.

Results

An increase in gait speed, stance phase, and double stance phase along the intervals was observed, as well as larger angular displacements of the hip, knee, and ankle (<0.05). Women below or above the median age value also yielded these behaviours. Gait speed, cadence, stride length, and step length were higher in women below the median age value, while stride and step duration were lower (<0.05).

Conclusion

Older women yielded changes in gait spatial and temporal parameters along the 6MWT, as well as larger angular displacements of the lower limb joints. Older women (compared to younger ones) yielded lower gait speed, cadence, stride length, and step length, higher stance and double stance phases, and shorter angular displacements of the lower limb joints.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098315374240508094923
2024-05-22
2025-03-28
Loading full text...

Full text loading...

References

  1. American College of Sports MedicineExercise prescription for healthy populations with special considerations.ACSM’s Guidelines for Exercise and test Prescription.11th ed LigouriG. FeitoY. FountaineC. RoyB. Philadelphia, PA, USAWolters Kluwer2022167201
    [Google Scholar]
  2. OrimoH. ItoH. SuzukiT. ArakiA. HosoiT. SawabeM. Reviewing the definition of elderly.Jpn. J. Geriatr.2006431273410.3143/geriatrics.43.2716521795
    [Google Scholar]
  3. WangJ. MaxwellC.A. YuF. Biological processes and biomarkers related to frailty in older adults: A state-of-the-science literature review.Biol. Res. Nurs.20192118010610.1177/109980041879804730198309
    [Google Scholar]
  4. ToddC. SkeltonD. What are the main risk factors for falls amongst older people and what are the most effective interventions to prevent these falls? World Health Organization.2004https://apps.who.int/iris/handle/10665/363812
  5. UngarA. RafanelliM. IacomelliI. BrunettiM.A. CeccofiglioA. TesiF. MarchionniN. Fall prevention in the elderly.Clin. Cases Miner. Bone Metab.2013102919524133524
    [Google Scholar]
  6. SmeeD.J. AnsonJ.M. WaddingtonG.S. BerryH.L. Association between physical functionality and falls risk in community-living older adults.Curr. Gerontol. Geriatr. Res.201220121610.1155/2012/86451623304137
    [Google Scholar]
  7. SiqueiraF.V. FacchiniL.A. SilveiraD.S. PicciniR.X. TomasiE. ThuméE. SilvaS.M. DilélioA. Prevalence of falls in elderly in Brazil: A countrywide analysis.Cad. Saude Publica20112791819182610.1590/S0102‑311X201100090001521986609
    [Google Scholar]
  8. Hita-ContrerasF. Martínez-AmatA. Cruz-DíazD. Pérez-LópezF.R. Fall prevention in postmenopausal women: The role of Pilates exercise training.Climacteric201619322923310.3109/13697137.2016.113956426849849
    [Google Scholar]
  9. ZhaoJ. LiangG. HuangH. ZengL. YangW. PanJ. LiuJ. Identification of risk factors for falls in postmenopausal women: A systematic review and meta-analysis.Osteoporos. Int.202031101895190410.1007/s00198‑020‑05508‑832591972
    [Google Scholar]
  10. PrinceF. CorriveauH. HébertR. WinterD.A. Gait in the elderly.Gait Posture19975212813510.1016/S0966‑6362(97)01118‑1
    [Google Scholar]
  11. SilvaJ. AtalaiaT. AbrantesJ. AleixoP. Gait biomechanical parameters related to falls in the elderly: A systematic review.Biomechanics20244116521810.3390/biomechanics4010011
    [Google Scholar]
  12. HelbostadJ.L. SturnieksD.L. MenantJ. DelbaereK. LordS.R. PijnappelsM. Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review.BMC Geriatr.20101015610.1186/1471‑2318‑10‑5620716373
    [Google Scholar]
  13. WongD.W.C. LamW.K. LeeW.C.C. Gait asymmetry and variability in older adults during long-distance walking: Implications for gait instability.Clin. Biomech.202072374310.1016/j.clinbiomech.2019.11.02331809921
    [Google Scholar]
  14. ElhadiM.M.O. MaC.Z. WongD.W.C. WanA.H.P. LeeW.C.C. Comprehensive gait analysis of healthy older adults who have undergone long-distance walking.J. Aging Phys. Act.201725336737710.1123/japa.2016‑013627834558
    [Google Scholar]
  15. JefferisB.J. SartiniC. LeeI.M. ChoiM. AmuzuA. GutierrezC. CasasJ.P. AshS. LennnonL.T. WannametheeS.G. WhincupP.H. Adherence to physical activity guidelines in older adults, using objectively measured physical activity in a population-based study.BMC Public Health201414138210.1186/1471‑2458‑14‑38224745369
    [Google Scholar]
  16. StormF.A. CesareoA. ReniG. BiffiE. Wearable inertial sensors to assess gait during the 6-minute walk test: A systematic review.Sensors2020209266010.3390/s2009266032384806
    [Google Scholar]
  17. UbuaneP.O. AnimasahunB.A. AjiboyeO.A. Kayode-AweM.O. AjayiO.A. NjokanmaF.O. The historical evolution of the six-minute walk test as a measure of functional exercise capacity: A narrative review.J. Xiangya Med.2018334010.21037/jxym.2018.11.01
    [Google Scholar]
  18. ATS Committee on Proficiency Standards for Clinical Pulmonary Function LaboratoriesATS statement: Guidelines for the six-minute walk test.Am. J. Respir. Crit. Care Med.2002166111111710.1164/ajrccm.166.1.at110212091180
    [Google Scholar]
  19. RikliR. JonesC. Senior Fitness Test Manual.Human Kinetics2013
    [Google Scholar]
  20. DroverD. HowcroftJ. KofmanJ. LemaireE. Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features.Sensors (Basel)2017176132110.3390/s1706132128590432
    [Google Scholar]
  21. Galán-MercantA. OrtizA. Herrera-ViedmaE. TomasM.T. FernandesB. Moral-MunozJ.A. Assessing physical activity and functional fitness level using convolutional neural networks.Knowl. Base. Syst.201918510493910.1016/j.knosys.2019.104939
    [Google Scholar]
  22. GrimpampiE. OesenS. HalperB. HofmannM. WessnerB. MazzàC. Reliability of gait variability assessment in older individuals during a six-minute walk test.J. Biomech.201548154185418910.1016/j.jbiomech.2015.10.00826515246
    [Google Scholar]
  23. HowcroftJ. KofmanJ. LemaireE.D. Prospective fall-risk prediction models for older adults based on wearable sensors.IEEE Trans. Neural Syst. Rehabil. Eng.201725101812182010.1109/TNSRE.2017.268710028358689
    [Google Scholar]
  24. WaughJ.L.S. HuangE. FraserJ.E. BeyerK.B. TrinhA. McilroyW.E. KulićD. Online learning of gait models from older adult data.IEEE Trans. Neural Syst. Rehabil. Eng.201927473374210.1109/TNSRE.2019.290447730872234
    [Google Scholar]
  25. KemounG. ThoumieP. BoissonD. GuieuJ.D. Ankle dorsiflexion delay can predict falls in the elderly.J. Rehabil. Med.200234627828310.1080/16501970276039037412440802
    [Google Scholar]
  26. SantanaI. DuroD. LemosR. CostaV. PereiraM. SimõesM.R. FreitasS. Mini-mental state examination: Evaluation of the new normative data for the screening and diagnosis of cognitive impairment.Acta Med. Port.201629424024810.20344/amp.688927349775
    [Google Scholar]
  27. GuerreiroM SilvaA BotelhoM LeitãoO Castro-CaldasA GarciaC Adaptation of the translation of the mini mental state examination to the Portuguese population.Revista Portuguesa Neurologia199419
    [Google Scholar]
  28. FreitasS. SimõesM. AlvesL. SantanaI. Mini mental state examination (MMSE): normative study for the portuguese population in a community stratified sample.Appl. Neuropsychol. Adult20152231131910.1080/23279095.2014.92645525531579
    [Google Scholar]
  29. ZebrisSoftware manual zebris FDM.2019Available From: www.zebris.de
  30. RoetenbergD. LuingeH. SlyckeP. Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors. Xsens Technologies.2013Available From: www.xsens.com
  31. AlbertoS. CabralS. ProençaJ. Pona-FerreiraF. LeitãoM. Bouça-MachadoR. KauppilaL.A. VelosoA.P. CostaR.M. FerreiraJ.J. MatiasR. Validation of quantitative gait analysis systems for Parkinson’s disease for use in supervised and unsupervised environments.BMC Neurol.202121133110.1186/s12883‑021‑02354‑x34454453
    [Google Scholar]
  32. WinterD.A. Biomechanics and motor control of human gait: normal, elderly and pathologicalWaterloo, CanadaUniversity of Waterloo1991
    [Google Scholar]
  33. MakiB.E. Gait changes in older adults: predictors of falls or indicators of fear.J. Am. Geriatr. Soc.199745331332010.1111/j.1532‑5415.1997.tb00946.x9063277
    [Google Scholar]
  34. FukuchiC.A. FukuchiR.K. DuarteM. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis.Syst. Rev.20198115310.1186/s13643‑019‑1063‑z31248456
    [Google Scholar]
  35. HerssensN. VerbecqueE. HallemansA. VereeckL. Van RompaeyV. SaeysW. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review.Gait Posture20186418119010.1016/j.gaitpost.2018.06.01229929161
    [Google Scholar]
  36. BoyerK.A. JohnsonR.T. BanksJ.J. JewellC. HaferJ.F. Systematic review and meta-analysis of gait mechanics in young and older adults.Exp. Gerontol.201795637010.1016/j.exger.2017.05.00528499954
    [Google Scholar]
  37. ZhongQ. AliN. GaoY. WuH. WuX. SunC. MaJ. ThabaneL. XiaoM. ZhouQ. ShenY. WangT. ZhuY. Gait kinematic and kinetic characteristics of older adults with mild cognitive impairment and subjective cognitive decline: A cross-sectional study.Front. Aging Neurosci.20211366455810.3389/fnagi.2021.66455834413762
    [Google Scholar]
  38. AleixoP. AtalaiaT. PattoJ. AbrantesJ. The effect of a proprioceptive exercises programme on disease activity and gait biomechanical parameters of post-menopausal women with rheumatoid arthritis.Rheumatoid Arthritis. ToumiH. London, UKIntechOpen202210.5772/intechopen.99462
    [Google Scholar]
  39. AleixoP. AbrantesJ. Proprioceptive and strength exercise guidelines to prevent falls in the elderly related to biomechanical movement characteristics.Healthcare (Basel)202412218610.3390/healthcare1202018638255074
    [Google Scholar]
  40. BarbieriF.A. dos SantosP.C.R. Lirani-SilvaE. VitórioR. GobbiL.T.B. van DiëenJ.H. Systematic review of the effects of fatigue on spatiotemporal gait parameters.J. Back Musculoskeletal Rehabil.201326212513110.3233/BMR‑13037123640313
    [Google Scholar]
  41. AleixoP. AbrantesJ. 3D gait analysis in rheumatoid arthritis postmenopausal women with and without falls history.Proceedings of the IEEE 2015 4th Portuguese Meeting on Bioengineering (ENBENG)Porto, Portugal, 26–28 February 2015; pp. 1–4.
    [Google Scholar]
  42. AleixoP. AtalaiaT. AbrantesJ. Dynamic joint stiffness: A critical review.Advances in Medicine and Biology. BerhardtV. Hauppauge, NY, USANova Science Publishers, Inc.2021Vol. 175196
    [Google Scholar]
  43. PicernoP. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.Gait Posture20175123924610.1016/j.gaitpost.2016.11.00827833057
    [Google Scholar]
/content/journals/cas/10.2174/0118746098315374240508094923
Loading
/content/journals/cas/10.2174/0118746098315374240508094923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test