- Home
- A-Z Publications
- Current Alzheimer Research
- Previous Issues
- Volume 20, Issue 3, 2023
Current Alzheimer Research - Volume 20, Issue 3, 2023
Volume 20, Issue 3, 2023
-
-
BACE-1 Inhibitors Targeting Alzheimer's Disease
The accumulation of amyloid-β (Aβ) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of β-secretase (β-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aβ peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aβ generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.
-
-
-
Blood Neurofilament Light Chain in Different Types of Dementia
Authors: Lihua Gu, Hao Shu, Yanjuan Wang and Pan WangAims: The study aimed to evaluate diagnostic values of circulating neurofilament light chain (NFL) levels in different types of dementia. Background: Previous studies reported inconsistent change of blood NFL for different types of dementia, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease dementia (PDD) and Creutzfeldt-Jakob disease (CJD) and Lewy body dementia (LBD). Objective: Meta-analysis was conducted to summarize the results of studies evaluating diagnostic values of circulating NFL levels in different types of dementia to enhance the strength of evidence. Methods: Articles evaluating change in blood NFL levels in dementia and published before July 2022 were searched on the following databases (PubMed, Web of Science, EMBASE, Medline and Google Scholar). The computed results were obtained by using STATA 12.0 software. Results: AD patients showed increased NFL concentrations in serum and plasma, compared to healthy controls (HC) (standard mean difference (SMD) = 1.09, 95% confidence interval (CI): 0.48, 1.70, I2 = 97.4%, p < 0.001). In AD patients, higher NFL concentrations in serum and plasma were associated with reduced cerebrospinal fluid (CSF) Aβ1-42, increased CSF t-tau, increased CSF p-tau, reduced Mini-Mental State Examination (MMSE) and decreased memory. Additionally, mild cognitive impairment (MCI) showed elevated NFL concentrations in serum and plasma, compared to HC (SMD = 0.53, 95% CI: 0.18, 0.87, I2 = 93.8%, p < 0.001). However, in MCI, no significant association was found between NFL concentrations in serum, plasma and memory or visuospatial function. No significant difference was found between preclinical AD and HC (SMD = 0.18, 95% CI: -0.10, 0.47, I2 = 0.0%, p = 0.438). FTD patients showed increased NFL concentrations in serum and plasma, compared to HC (SMD = 1.08, 95% CI: 0.72, 1.43, I2 = 83.3%, p < 0.001). Higher NFL concentrations in serum and plasma were associated with increased CSF NFL in FTD. Additionally, the pooled parameters calculated were as follows: sensitivity, 0.82 (95% CI: 0.72, 0.90); specificity, 0.91 (95% CI: 0.83, 0.96). CJD patients showed increased NFL concentrations in serum and plasma, compared to HC. No significant difference in NFL level in serum and plasma was shown between AD and FTD (SMD = -0.03, 95% CI: -0.77, 0.72, I2 = 83.3%, p = 0.003). Conclusion: In conclusion, the study suggested abnormal blood NFL level in AD and MCI, but not in preclinical AD. FTD and CJD showed abnormal blood NFL levels.
-
-
-
Disrupted Balance of Gray Matter Volume and Directed Functional Connectivity in Mild Cognitive Impairment and Alzheimer’s Disease
Authors: Yu Xiong, Chenghui Ye, Ruxin Sun, Ying Chen, Xiaochun Zhong, Jiaqi Zhang, Zhanhua Zhong, Hongda Chen and Min HuangBackground: Alterations in functional connectivity have been demonstrated in Alzheimer’s disease (AD), an age-progressive neurodegenerative disorder that affects cognitive function; however, directional information flow has never been analyzed. Objective: This study aimed to determine changes in resting-state directional functional connectivity measured using a novel approach, granger causality density (GCD), in patients with AD, and mild cognitive impairment (MCI) and explore novel neuroimaging biomarkers for cognitive decline detection. Methods: In this study, structural MRI, resting-state functional magnetic resonance imaging, and neuropsychological data of 48 Alzheimer’s Disease Neuroimaging Initiative participants were analyzed, comprising 16 patients with AD, 16 with MCI, and 16 normal controls. Volume-based morphometry (VBM) and GCD were used to calculate the voxel-based gray matter (GM) volumes and directed functional connectivity of the brain. We made full use of voxel-based between-group comparisons of VBM and GCD values to identify specific regions with significant alterations. In addition, Pearson’s correlation analysis was conducted between directed functional connectivity and several clinical variables. Furthermore, receiver operating characteristic (ROC) analysis related to classification was performed in combination with VBM and GCD. Results: In patients with cognitive decline, abnormal VBM and GCD (involving inflow and outflow of GCD) were noted in default mode network (DMN)-related areas and the cerebellum. GCD in the DMN midline core system, hippocampus, and cerebellum was closely correlated with the Mini- Mental State Examination and Functional Activities Questionnaire scores. In the ROC analysis combining VBM with GCD, the neuroimaging biomarker in the cerebellum was optimal for the early detection of MCI, whereas the precuneus was the best in predicting cognitive decline progression and AD diagnosis. Conclusion: Changes in GM volume and directed functional connectivity may reflect the mechanism of cognitive decline. This discovery could improve our understanding of the pathology of AD and MCI and provide available neuroimaging markers for the early detection, progression, and diagnosis of AD and MCI.
-
-
-
Caffeine Improve Memory and Cognition via Modulating Neural Progenitor Cell Survival and Decreasing Oxidative Stress in Alzheimer's Rat Model
Authors: Virendra Tiwari, Akanksha Mishra, Sonu Singh and Shubha ShuklaAims: Caffeine possesses potent antioxidant, anti-inflammatory and anti-apoptotic activities against a variety of neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). The goal of this study was to investigate the protective role of a psychoactive substance like caffeine on hippocampal neurogenesis and memory functions in streptozotocin (STZ)-induced neurodegeneration in rats. Background: Caffeine is a natural CNS stimulant, belonging to the methylxanthine class, and is a widely consumed psychoactive substance. It is reported to abate the risk of various abnormalities that are cardiovascular system (CVS) related, cancer related, or due to metabolism dysregulation. Shortterm caffeine exposure has been widely evaluated, but its chronic exposure is less explored and pursued. Several studies suggest a devastating role of caffeine in neurodegenerative disorders. However, the protective role of caffeine on neurodegeneration is still unclear. Objective: Here, we examined the effects of chronic caffeine administration on hippocampal neurogenesis in intracerebroventricular STZ injection induced memory dysfunction in rats. The chronic effect of caffeine on proliferation and neuronal fate determination of hippocampal neurons was evaluated by co-labeling of neurons by thymidine analogue BrdU that labels new born cells, DCX (a marker for immature neurons) and NeuN that labels mature neurons. Methods: STZ (1 mg/kg, 2 μl) was injected stereotaxically into the lateral ventricles (intracerebroventricular injection) once on day 1, followed by chronic treatment with caffeine (10 mg/kg, i.p) and donepezil (5 mg/kg, i.p.). Protective effect of caffeine on cognitive impairment and adult hippocampal neurogenesis was evaluated. Results: Our findings show decreased oxidative stress burden and amyloid burden following caffeine administration in STZ lesioned SD rats. Further, double immunolabeling with bromodeoxyuridine+/ doublecortin+ (BrdU+/DCX+) and bromodeoxyuridine+/ neuronal nuclei+ (BrdU+/NeuN+) has indicated that caffeine improved neuronal stem cell proliferation and long term survival in STZ lesioned rats. Conclusion: Our findings support the neurogenic potential of caffeine in STZ induced neurodegeneration.
-
-
-
Memory Enhancing and Neurogenesis Activity of Honey Bee Venom in the Symptoms of Amnesia: Using Rats with Amnesia-like Alzheimer’s Disease as a Model
Background/Objective: Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD. Methods: The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively. Results: During the nootropic phase, treatment groups demonstrated a significant (P < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (P < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (P < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (P < 0.05) in a dose-dependent manner. Conclusion: This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.
-
-
-
Cogstim: A Shared Decision-making Model to Support Older Adults’ Brain Health
Authors: Raymond L. Ownby and Drenna WaldropThe lack of effective treatments for cognitive decline in older adults has led to an interest in the possibility that lifestyle interventions can help to prevent changes in mental functioning and reduce the risk for dementia. Multiple lifestyle factors have been related to risk for decline, and multicomponent intervention studies suggest that changing older adults’ behaviors can have a positive impact on their cognition. How to translate these findings into a practical model for clinical use with older adults, however, is not clear. In this Commentary, we propose a shared decision-making model to support clinicians’ efforts to promote brain health in older persons. The model organizes risk and protective factors into three broad groups based on their mechanism of action and provides older persons with basic information to allow them to make evidence- and preference-based choices in choosing goals for effective brain health programs. A final component includes basic instruction in behavior change strategies such as goal setting, self-monitoring, and problem-solving. The implementation of the model will support older persons’ efforts to develop a personally relevant and effective brainhealthy lifestyle that may help to reduce their risk for cognitive decline.
-
Volumes & issues
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Cognitive Reserve in Aging
Authors: A. M. Tucker and Y. Stern
-
- More Less