Skip to content
2000
image of Preclinical Pharmacology of CX1837, a High-Impact Ampakine with an Improved Safety Margin: Implications for Treating Alzheimer’s Disease and Ischemic Stroke

Abstract

Introduction

For over a decade, AMPA receptor allosteric potentiators (AMPAkines) have shown significant effectiveness in multiple preclinical studies related to neurodegenerative and psychiatric disorders underpinned by deficient excitatory synaptic activity. Despite promising preclinical evidence, the clinical translation of AMPAkines has been slow due to the propensity of some of these compounds to produce seizures at or around therapeutic doses.

Materials and
The preclinical activity of the AMPAkine CX1837 is disclosed in the current work.
Results

CX1837 enhanced synaptic transmission in hippocampal slices and dose-dependently enhanced long-term potentiation, which is believed to control memory consolidation. CX1837 boosted performance in cognition tests, such as the novel object recognition test and the win-shift radial arm maze. CX1837 also increased attentional functioning in the 5-choice serial reaction time task involving rats. CX1837 produced positive preclinical effects at 0.01-1.0 mg/kg dose and elicited epileptic effects at 10 mg/kg dose. CX1837 has demonstrated to have one of the largest safety margins to date in preclinical studies. Low doses of CX1837, which produce acute increases in cognition, may potentially increase neurotrophins when given chronically. This could slow the progression of Alzheimer’s disease and reverse deficits secondary to ischemic stroke.

Conclusion

Together, our findings highlight CX1837 as a potential candidate for clinical development in order to treat multiple neurodegenerative and psychiatric disorders.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050365821250127055828
2025-02-10
2025-03-27
Loading full text...

Full text loading...

References

  1. Bredt D.S. Nicoll R.A. AMPA receptor trafficking at excitatory synapses. Neuron 2003 40 2 361 379 10.1016/S0896‑6273(03)00640‑8 14556714
    [Google Scholar]
  2. Simmons D.A. Rex C.S. Palmer L. Pandyarajan V. Fedulov V. Gall C.M. Lynch G. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc. Natl. Acad. Sci. USA 2009 106 12 4906 4911 10.1073/pnas.0811228106 19264961
    [Google Scholar]
  3. Drummond J.B. Tucholski J. Haroutunian V. Meador-Woodruff J.H. Transmembrane AMPA receptor regulatory protein (TARP) dysregulation in anterior cingulate cortex in schizophrenia. Schizophr. Res. 2013 147 1 32 38 10.1016/j.schres.2013.03.010 23566497
    [Google Scholar]
  4. Tucholski J. Simmons M.S. Pinner A.L. Haroutunian V. McCullumsmith R.E. Meador-Woodruff J.H. Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia. Schizophr. Res. 2013 146 1-3 177 183 10.1016/j.schres.2013.01.031 23462048
    [Google Scholar]
  5. Zeppillo T. Schulmann A. Macciardi F. Hjelm B.E. Föcking M. Sequeira P.A. Guella I. Cotter D. Bunney W.E. Limon A. Vawter M.P. Functional impairment of cortical AMPA receptors in schizophrenia. Schizophr. Res. 2022 249 25 37 10.1016/j.schres.2020.03.037 32513544
    [Google Scholar]
  6. Benesh J.L. Mueller T.M. Meador-Woodruff J.H. AMPA receptor subunit localization in schizophrenia anterior cingulate cortex. Schizophr. Res. 2022 249 16 24 10.1016/j.schres.2020.01.025 32014361
    [Google Scholar]
  7. Singh T. Poterba T. Curtis D. Akil H. Eissa A.M. Barchas J.D. Bass N. Bigdeli T.B. Breen G. Bromet E.J. Buckley P.F. Bunney W.E. Bybjerg-Grauholm J. Byerley W.F. Chapman S.B. Chen W.J. Churchhouse C. Craddock N. Cusick C.M. DeLisi L. Dodge S. Escamilla M.A. Eskelinen S. Fanous A.H. Faraone S.V. Fiorentino A. Francioli L. Gabriel S.B. Gage D. Taliun G.S.A. Ganna A. Genovese G. Glahn D.C. Grove J. Hall M.H. Hämäläinen E. Heyne H.O. Holi M. Hougaard D.M. Howrigan D.P. Huang H. Hwu H.G. Kahn R.S. Kang H.M. Karczewski K.J. Kirov G. Knowles J.A. Lee F.S. Lehrer D.S. Lescai F. Malaspina D. Marder S.R. McCarroll S.A. McIntosh A.M. Medeiros H. Milani L. Morley C.P. Morris D.W. Mortensen P.B. Myers R.M. Nordentoft M. O’Brien N.L. Olivares A.M. Ongur D. Ouwehand W.H. Palmer D.S. Paunio T. Quested D. Rapaport M.H. Rees E. Rollins B. Satterstrom F.K. Schatzberg A. Scolnick E. Scott L.J. Sharp S.I. Sklar P. Smoller J.W. Sobell J.L. Solomonson M. Stahl E.A. Stevens C.R. Suvisaari J. Tiao G. Watson S.J. Watts N.A. Blackwood D.H. Børglum A.D. Cohen B.M. Corvin A.P. Esko T. Freimer N.B. Glatt S.J. Hultman C.M. McQuillin A. Palotie A. Pato C.N. Pato M.T. Pulver A.E. Clair S.D. Tsuang M.T. Vawter M.P. Walters J.T. Werge T.M. Ophoff R.A. Sullivan P.F. Owen M.J. Boehnke M. O’Donovan M.C. Neale B.M. Daly M.J. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 2022 604 7906 509 516 10.1038/s41586‑022‑04556‑w 35396579
    [Google Scholar]
  8. Alt A. Nisenbaum E.S. Bleakman D. Witkin J.M. A role for AMPA receptors in mood disorders. Biochem. Pharmacol. 2006 71 9 1273 1288 10.1016/j.bcp.2005.12.022 16442080
    [Google Scholar]
  9. Maeng S. Zarate C.A. Jr Du J. Schloesser R.J. McCammon J. Chen G. Manji H.K. Cellular mechanisms underlying the antidepressant effects of ketamine: Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 2008 63 4 349 352 10.1016/j.biopsych.2007.05.028 17643398
    [Google Scholar]
  10. Suzuki A. Murakami K. Tajima Y. Hara H. Kunugi A. Kimura H. TAK-137, an AMPA receptor potentiator with little agonistic effect, produces antidepressant-like effect without causing psychotomimetic effects in rats. Pharmacol. Biochem. Behav. 2019 183 80 86 10.1016/j.pbb.2019.06.004 31202810
    [Google Scholar]
  11. Adler L.A. Kroon R.A. Stein M. Shahid M. Tarazi F.I. Szegedi A. Schipper J. Cazorla P. A translational approach to evaluate the efficacy and safety of the novel AMPA receptor positive allosteric modulator org 26576 in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 2012 72 11 971 977 10.1016/j.biopsych.2012.05.012 22771238
    [Google Scholar]
  12. Naaijen J. Bralten J. Poelmans G. Faraone S. Asherson P. Banaschewski T. Buitelaar J. Franke B. Ebstein P.R. Gill M. Miranda A. Oades D.R. Roeyers H. Rothenberger A. Sergeant J. Sonuga-Barke E. Anney R. Mulas F. Steinhausen H-C. Glennon J.C. Franke B. Buitelaar J.K. IMAGE consortium Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: Association to overlapping traits in ADHD and autism. Transl. Psychiatry 2017 7 1 e999 10.1038/tp.2016.273 28072412
    [Google Scholar]
  13. Medin T. Jensen V. Skare Ø. Storm-Mathisen J. Hvalby Ø. Bergersen L.H. Altered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function and expression in hippocampus in a rat model of attention-deficit/hyperactivity disorder (ADHD). Behav. Brain Res. 2019 360 209 215 10.1016/j.bbr.2018.12.028 30552946
    [Google Scholar]
  14. Bai W.J. Luo X.G. Jin B.H. Zhu K.S. Guo W.Y. Zhu X.Q. Qin X. Yang Z.X. Zhao J.J. Chen S.R. Wang R. Hao J. Wang F. Shi S.Y. Kong D.Z. Zhang W. Deficiency of transmembrane AMPA receptor regulatory protein γ-8 leads to attention-deficit hyperactivity disorder-like behavior in mice. Zool. Res. 2022 43 5 851 870 10.24272/j.issn.2095‑8137.2022.122 36031768
    [Google Scholar]
  15. Hampson R.E. Rogers G. Lynch G. Deadwyler S.A. Facilitative effects of the ampakine CX516 on short-term memory in rats: Correlations with hippocampal neuronal activity. J. Neurosci. 1998 18 7 2748 2763 10.1523/JNEUROSCI.18‑07‑02748.1998 9502832
    [Google Scholar]
  16. Hampson R.E. Rogers G. Lynch G. Deadwyler S.A. Facilitative effects of the ampakine CX516 on short-term memory in rats: Enhancement of delayed-nonmatch-to-sample performance. J. Neurosci. 1998 18 7 2740 2747 10.1523/JNEUROSCI.18‑07‑02740.1998 9502831
    [Google Scholar]
  17. Porrino L.J. Daunais J.B. Rogers G.A. Hampson R.E. Deadwyler S.A. Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLoS Biol. 2005 3 9 e299 10.1371/journal.pbio.0030299 16104830
    [Google Scholar]
  18. Zheng Y. Balabhadrapatruni S. Masumura C. Darlington C.L. Smith P.F. Effects of the putative cognitive-enhancing ampakine, CX717, on attention and object recognition memory. Curr. Alzheimer Res. 2011 8 8 876 882 10.2174/156720511798192709 22171951
    [Google Scholar]
  19. Baudry M. Kramar E. Xu X. Zadran H. Moreno S. Lynch G. Gall C. Bi X. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol. Dis. 2012 47 2 210 215 10.1016/j.nbd.2012.04.002 22525571
    [Google Scholar]
  20. Kramár E.A. Chen L.Y. Lauterborn J.C. Simmons D.A. Gall C.M. Lynch G. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol. Aging 2012 33 4 708 719 10.1016/j.neurobiolaging.2010.06.008 20674095
    [Google Scholar]
  21. Radin D.P. Zhong S. Purcell R. Lippa A. Acute ampakine treatment ameliorates age-related deficits in long-term potentiation. Biomed. Pharmacother. 2016 84 806 809 10.1016/j.biopha.2016.10.016 27721179
    [Google Scholar]
  22. Lauterborn J.C. Palmer L.C. Jia Y. Pham D.T. Hou B. Wang W. Trieu B.H. Cox C.D. Kantorovich S. Gall C.M. Lynch G. Chronic ampakine treatments stimulate dendritic growth and promote learning in middle-aged rats. J. Neurosci. 2016 36 5 1636 1646 10.1523/JNEUROSCI.3157‑15.2016 26843645
    [Google Scholar]
  23. Mozafari N. Shamsizadeh A. Fatemi I. Allahtavakoli M. Moghadam-Ahmadi A. Kaviani E. Kaeidi A. CX691, as an AMPA receptor positive modulator, improves the learning and memory in a rat model of Alzheimer’s disease. Iran. J. Basic Med. Sci. 2018 21 7 724 730 30140412
    [Google Scholar]
  24. Ingvar M. Ambros-Ingerson J. Davis M. Granger R. Kessler M. Rogers G.A. Schehr R.S. Lynch G. Enhancement by an ampakine of memory encoding in humans. Exp. Neurol. 1997 146 2 553 559 10.1006/exnr.1997.6581 9270067
    [Google Scholar]
  25. Wezenberg E. Verkes J.R. Ruigt G.S.F. Hulstijn W. Sabbe B.G.C. Acute effects of the ampakine farampator on memory and information processing in healthy elderly volunteers. Neuropsychopharmacology 2007 32 6 1272 1283 10.1038/sj.npp.1301257 17119538
    [Google Scholar]
  26. Larson J. Quach C.N. LeDuc B.Q. Nguyen A. Rogers G.A. Lynch G. Effects of an AMPA receptor modulator on methamphetamine-induced hyperactivity in rats. Brain Res. 1996 738 2 353 356 10.1016/S0006‑8993(96)01049‑9 8955535
    [Google Scholar]
  27. Johnson S.A. Luu N.T. Herbst T.A. Knapp R. Lutz D. Arai A. Rogers G.A. Lynch G. Synergistic interactions between ampakines and antipsychotic drugs. J. Pharmacol. Exp. Ther. 1999 289 1 392 397 10087029
    [Google Scholar]
  28. Li X. Tizzano J.P. Griffey K. Clay M. Lindstrom T. Skolnick P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 2001 40 8 1028 1033 10.1016/S0028‑3908(00)00194‑5 11406194
    [Google Scholar]
  29. Knapp R.J. Goldenberg R. Shuck C. Cecil A. Watkins J. Miller C. Crites G. Malatynska E. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur. J. Pharmacol. 2002 440 1 27 35 10.1016/S0014‑2999(02)01338‑9 11959085
    [Google Scholar]
  30. Alt A. Witkin J. Bleakman D. AMPA receptor potentiators as novel antidepressants. Curr. Pharm. Des. 2005 11 12 1511 1527 10.2174/1381612053764814 15892659
    [Google Scholar]
  31. Farley S. Apazoglou K. Witkin J.M. Giros B. Tzavara E.T. Antidepressant-like effects of an AMPA receptor potentiator under a chronic mild stress paradigm. Int. J. Neuropsychopharmacol. 2010 13 9 1207 1218 10.1017/S1461145709991076 20059803
    [Google Scholar]
  32. Gainetdinov R.R. Mohn A.R. Bohn L.M. Caron M.G. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proc. Natl. Acad. Sci. USA 2001 98 20 11047 11054 10.1073/pnas.191353298 11572967
    [Google Scholar]
  33. Lauterborn J.C. Lynch G. Vanderklish P. Arai A. Gall C.M. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 2000 20 1 8 21 10.1523/JNEUROSCI.20‑01‑00008.2000 10627576
    [Google Scholar]
  34. Lauterborn J.C. Truong G.S. Baudry M. Bi X. Lynch G. Gall C.M. Chronic elevation of brain-derived neurotrophic factor by ampakines. J. Pharmacol. Exp. Ther. 2003 307 1 297 305 10.1124/jpet.103.053694 12893840
    [Google Scholar]
  35. Lauterborn J.C. Pineda E. Chen L.Y. Ramirez E.A. Lynch G. Gall C.M. Ampakines cause sustained increases in brain-derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression. Neuroscience 2009 159 1 283 295 10.1016/j.neuroscience.2008.12.018 19141314
    [Google Scholar]
  36. Radin D.P. Johnson S. Purcell R. Lippa A.S. Effects of chronic systemic low-impact ampakine treatment on neurotrophin expression in rat brain. Biomed. Pharmacother. 2018 105 540 544 10.1016/j.biopha.2018.06.008 29886374
    [Google Scholar]
  37. Arai A.C. Kessler M. Rogers G. Lynch G. Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: Interactions with cyclothiazide and GYKI 52466. Mol. Pharmacol. 2000 58 4 802 813 10.1124/mol.58.4.802 10999951
    [Google Scholar]
  38. Arai A.C. Xia Y.F. Rogers G. Lynch G. Kessler M. Benzamide-type AMPA receptor modulators form two subfamilies with distinct modes of action. J. Pharmacol. Exp. Ther. 2002 303 3 1075 1085 10.1124/jpet.102.040360 12438530
    [Google Scholar]
  39. Montgomery K.E. Kessler M. Arai A.C. Modulation of agonist binding to AMPA receptors by 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546): Differential effects across brain regions and GluA1-4/transmembrane AMPA receptor regulatory protein combinations. J. Pharmacol. Exp. Ther. 2009 331 3 965 974 10.1124/jpet.109.158014 19717789
    [Google Scholar]
  40. Radin D.P. Zhong S. Cerne R. Smith J.L. Witkin J.M. Lippa A. Preclinical pharmacology of the low-impact ampakine CX717. Future Pharmacology 2024 4 3 494 509 10.3390/futurepharmacol4030028
    [Google Scholar]
  41. Radin D.P. Zhong S. Cerne R. Shoaib M. Witkin J.M. Lippa A. Low-impact ampakine CX1739 exerts pro-cognitive effects and reverses opiate-induced respiratory depression in rodents. Future Pharmacology 2024 4 1 173 187 10.3390/futurepharmacol4010012
    [Google Scholar]
  42. Simmons D.A. Mehta R.A. Lauterborn J.C. Gall C.M. Lynch G. Brief ampakine treatments slow the progression of Huntington’s disease phenotypes in R6/2 mice. Neurobiol. Dis. 2011 41 2 436 444 10.1016/j.nbd.2010.10.015 20977939
    [Google Scholar]
  43. Clarkson A.N. Overman J.J. Zhong S. Mueller R. Lynch G. Carmichael S.T. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J. Neurosci. 2011 31 10 3766 3775 10.1523/JNEUROSCI.5780‑10.2011 21389231
    [Google Scholar]
  44. Clarkson A.N. Parker K. Nilsson M. Walker F.R. Gowing E.K. Combined ampakine and BDNF treatments enhance poststroke functional recovery in aged mice via AKT-CREB signaling. J. Cereb. Blood Flow Metab. 2015 35 8 1272 1279 10.1038/jcbfm.2015.33 25757752
    [Google Scholar]
  45. Lasztóczi B. Kardos J. Cyclothiazide prolongs low [Mg2+]-induced seizure-like events. J. Neurophysiol. 2006 96 6 3538 3544 10.1152/jn.00287.2006 16914619
    [Google Scholar]
  46. Kong S. Qian B. Liu J. Fan M. Chen G. Wang Y. Cyclothiazide induces seizure behavior in freely moving rats. Brain Res. 2010 1355 207 213 10.1016/j.brainres.2010.07.088 20678492
    [Google Scholar]
  47. Shaffer C.L. Hurst R.S. Scialis R.J. Osgood S.M. Bryce D.K. Hoffmann W.E. Lazzaro J.T. Hanks A.N. Lotarski S. Weber M.L. Liu J. Menniti F.S. Schmidt C.J. Hajós M. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: The interspecies exposure-response continuum of the novel potentiator PF-4778574. J. Pharmacol. Exp. Ther. 2013 347 1 212 224 10.1124/jpet.113.204735 23899905
    [Google Scholar]
  48. Kong S. Cheng Z. Liu J. Wang Y. Downregulated GABA and BDNF-TrkB pathway in chronic cyclothiazide seizure model. Neural Plast. 2014 2014 1 11 10.1155/2014/310146 24757570
    [Google Scholar]
  49. Wan L. Liu X. Wu Z. Ren W. Kong S. Dargham R.A. Cheng L. Wang Y. Activation of extrasynaptic GABAA receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons. Neurosci. Bull. 2014 30 5 866 876 10.1007/s12264‑014‑1466‑8 25260800
    [Google Scholar]
  50. Kunugi A. Tanaka M. Suzuki A. Tajima Y. Suzuki N. Suzuki M. Nakamura S. Kuno H. Yokota A. Sogabe S. Kosugi Y. Awasaki Y. Kaku T. Kimura H. TAK-137, an AMPA-R potentiator with little agonistic effect, has a wide therapeutic window. Neuropsychopharmacology 2019 44 5 961 970 10.1038/s41386‑018‑0213‑7 30209408
    [Google Scholar]
  51. Arai A. Kessler M. Rogers G. Lynch G. Effects of a memory-enhancing drug on DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus. J. Pharmacol. Exp. Ther. 1996 278 2 627 638 8768713
    [Google Scholar]
  52. Ennaceur A. Michalikova S. Bradford A. Ahmed S. Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Behav. Brain Res. 2005 159 2 247 266 10.1016/j.bbr.2004.11.006 15817188
    [Google Scholar]
  53. Brown M.F. Giumetti G.W. Spatial pattern learning in the radial arm maze. Learn. Behav. 2006 34 1 102 108 10.3758/BF03192875 16786888
    [Google Scholar]
  54. Gökçek-Saraç Ç. Wesierska M. Jakubowska-Doğru E. Comparison of spatial learning in the partially baited radial-arm maze task between commonly used rat strains: Wistar, Spargue-Dawley, Long-Evans, and outcrossed Wistar/Sprague-Dawley. Learn. Behav. 2015 43 1 83 94 10.3758/s13420‑014‑0163‑9 25537841
    [Google Scholar]
  55. Robbins T. The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry. Psychopharmacology 2002 163 3-4 362 380 10.1007/s00213‑002‑1154‑7 12373437
    [Google Scholar]
  56. Radin D.P. Zhong S. Cerne R. Shoaib M. Witkin J.M. Lippa A. Preclinical characterization of a water-soluble low-impact ampakine prodrug, CX1942 and its active moiety, CX1763. Future Med. Chem. 2024 16 22 2325 2336 10.1080/17568919.2024.2401312 39301929
    [Google Scholar]
  57. Robinson E.S.J. Eagle D.M. Mar A.C. Bari A. Banerjee G. Jiang X. Dalley J.W. Robbins T.W. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 2008 33 5 1028 1037 10.1038/sj.npp.1301487 17637611
    [Google Scholar]
  58. Dong Z. Han H. Li H. Bai Y. Wang W. Tu M. Peng Y. Zhou L. He W. Wu X. Tan T. Liu M. Wu X. Zhou W. Jin W. Zhang S. Sacktor T.C. Li T. Song W. Wang Y.T. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J. Clin. Invest. 2015 125 1 234 247 10.1172/JCI77888 25437879
    [Google Scholar]
  59. Nicoll R.A. A brief history of long-term potentiation. Neuron 2017 93 2 281 290 10.1016/j.neuron.2016.12.015 28103477
    [Google Scholar]
  60. Lynch G. Gall C.M. Ampakines and the threefold path to cognitive enhancement. Trends Neurosci. 2006 29 10 554 562 10.1016/j.tins.2006.07.007 16890999
    [Google Scholar]
  61. Gocel J. Larson J. Evidence for loss of synaptic AMPA receptors in anterior piriform cortex of aged mice. Front. Aging Neurosci. 2013 5 39 10.3389/fnagi.2013.00039 23964238
    [Google Scholar]
  62. Luo Y. Zhou J. Li M.X. Wu P.F. Hu Z.L. Ni L. Jin Y. Chen J.G. Wang F. Reversal of aging‐related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell 2015 14 2 170 179 10.1111/acel.12282 25564942
    [Google Scholar]
  63. Rogers S.L. Farlow M.R. Doody R.S. Mohs R. Friedhoff L.T. Donepezil Study Group A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998 50 1 136 145 10.1212/WNL.50.1.136 9443470
    [Google Scholar]
  64. Woolley M.L. Waters K.A. Gartlon J.E. Lacroix L.P. Jennings C. Shaughnessy F. Ong A. Pemberton D.J. Harries M.H. Southam E. Jones D.N.C. Dawson L.A. Evaluation of the pro-cognitive effects of the AMPA receptor positive modulator, 5-(1-piperidinylcarbonyl)-2,1,3-benzoxadiazole (CX691), in the rat. Psychopharmacology 2009 202 1-3 343 354 10.1007/s00213‑008‑1325‑2 18795266
    [Google Scholar]
  65. Xue L. Deng J. Zhu L. Shen F. Wei J. Wang L. Chen Q. Wang L. Effects of predictive nursing intervention on cognitive impairment and neurological function in ischemic stroke patients. Brain Behav. 2023 13 3 e2890 10.1002/brb3.2890 36738135
    [Google Scholar]
  66. Fan L. Quijano-Ruiz A. Wang C. Zhao H. Wang D. Wu H. Liu L. Zhan Y. Zhou X. Effects of personalized music listening on post-stroke cognitive impairment: A randomized controlled trial. Complement. Ther. Clin. Pract. 2024 57 101885 10.1016/j.ctcp.2024.101885 39098085
    [Google Scholar]
  67. Siow I. Narasimhalu K. Lee K.S. Tan H.K. Ting S.K.S. Hameed S. Chang H.M. Silva D.D.A. Chen C.L.H. Tan E.K. Predictors of post stroke cognitive impairment: VITATOPS cognition substudy. J. Stroke Cerebrovasc. Dis. 2024 33 6 107718 10.1016/j.jstrokecerebrovasdis.2024.107718 38604352
    [Google Scholar]
  68. Deijle I.A. Jonkers I.M. Hooghiemstra A.M. Engels G. Twisk J.W.R. Weinstein H.C. Schaik V.S.M. Van den Berg-Vos R.M. Effects of a 1 year aerobic and strength training on cognitive functioning after transient ischemic attack or minor stroke: A randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2024 33 1 107441 10.1016/j.jstrokecerebrovasdis.2023.107441 37966094
    [Google Scholar]
/content/journals/car/10.2174/0115672050365821250127055828
Loading
/content/journals/car/10.2174/0115672050365821250127055828
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cognitive deficit ; BDNF ; AMPA receptor ; AMPAkine ; LTP ; memory formation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test