Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

For over a decade, AMPA receptor allosteric potentiators (AMPAkines) have shown significant effectiveness in multiple preclinical studies related to neurodegenerative and psychiatric disorders underpinned by deficient excitatory synaptic activity. Despite promising preclinical evidence, the clinical translation of AMPAkines has been slow due to the propensity of some of these compounds to produce seizures at or around therapeutic doses.

Materials and Methods

The preclinical activity of the AMPAkine CX1837 is disclosed in the current work.

Results

CX1837 enhanced synaptic transmission in hippocampal slices and dose-dependently enhanced long-term potentiation, which is believed to control memory consolidation. CX1837 boosted performance in cognition tests, such as the novel object recognition test and the win-shift radial arm maze. CX1837 also increased attentional functioning in the 5-choice serial re-action time task in rats. CX1837 produced positive preclinical effects at 0.01-1.0 mg/kg dose and elicited epileptic effects at 10 mg/kg dose.

Discussion

CX1837 has one of the largest safety margins to date in preclinical studies. Low doses of CX1837, which produce acute increases in cognition, may potentially increase neurotrophins when given chronically. This could slow the progression of Alzheimer’s disease and reverse deficits secondary to ischemic stroke.

Conclusion

Together, our findings highlight CX1837 as a potential candidate for clinical development in order to treat multiple neurodegenerative and psychiatric disorders.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050365821250127055828
2025-02-10
2025-07-10
Loading full text...

Full text loading...

References

  1. BredtD.S. NicollR.A. AMPA receptor trafficking at excitatory synapses.Neuron200340236137910.1016/S0896‑6273(03)00640‑814556714
    [Google Scholar]
  2. SimmonsD.A. RexC.S. PalmerL. PandyarajanV. FedulovV. GallC.M. LynchG. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice.Proc. Natl. Acad. Sci. USA2009106124906491110.1073/pnas.081122810619264961
    [Google Scholar]
  3. DrummondJ.B. TucholskiJ. HaroutunianV. Meador-WoodruffJ.H. Transmembrane AMPA receptor regulatory protein (TARP) dysregulation in anterior cingulate cortex in schizophrenia.Schizophr. Res.20131471323810.1016/j.schres.2013.03.01023566497
    [Google Scholar]
  4. TucholskiJ. SimmonsM.S. PinnerA.L. HaroutunianV. McCullumsmithR.E. Meador-WoodruffJ.H. Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia.Schizophr. Res.20131461-317718310.1016/j.schres.2013.01.03123462048
    [Google Scholar]
  5. ZeppilloT. SchulmannA. MacciardiF. HjelmB.E. FöckingM. SequeiraP.A. GuellaI. CotterD. BunneyW.E. LimonA. VawterM.P. Functional impairment of cortical AMPA receptors in schizophrenia.Schizophr. Res.2022249253710.1016/j.schres.2020.03.03732513544
    [Google Scholar]
  6. BeneshJ.L. MuellerT.M. Meador-WoodruffJ.H. AMPA receptor subunit localization in schizophrenia anterior cingulate cortex.Schizophr. Res.2022249162410.1016/j.schres.2020.01.02532014361
    [Google Scholar]
  7. SinghT. PoterbaT. CurtisD. AkilH. EissaA.M. BarchasJ.D. BassN. BigdeliT.B. BreenG. BrometE.J. BuckleyP.F. BunneyW.E. Bybjerg-GrauholmJ. ByerleyW.F. ChapmanS.B. ChenW.J. ChurchhouseC. CraddockN. CusickC.M. DeLisiL. DodgeS. EscamillaM.A. EskelinenS. FanousA.H. FaraoneS.V. FiorentinoA. FrancioliL. GabrielS.B. GageD. TaliunG.S.A. GannaA. GenoveseG. GlahnD.C. GroveJ. HallM.H. HämäläinenE. HeyneH.O. HoliM. HougaardD.M. HowriganD.P. HuangH. HwuH.G. KahnR.S. KangH.M. KarczewskiK.J. KirovG. KnowlesJ.A. LeeF.S. LehrerD.S. LescaiF. MalaspinaD. MarderS.R. McCarrollS.A. McIntoshA.M. MedeirosH. MilaniL. MorleyC.P. MorrisD.W. MortensenP.B. MyersR.M. NordentoftM. O’BrienN.L. OlivaresA.M. OngurD. OuwehandW.H. PalmerD.S. PaunioT. QuestedD. RapaportM.H. ReesE. RollinsB. SatterstromF.K. SchatzbergA. ScolnickE. ScottL.J. SharpS.I. SklarP. SmollerJ.W. SobellJ.L. SolomonsonM. StahlE.A. StevensC.R. SuvisaariJ. TiaoG. WatsonS.J. WattsN.A. BlackwoodD.H. BørglumA.D. CohenB.M. CorvinA.P. EskoT. FreimerN.B. GlattS.J. HultmanC.M. McQuillinA. PalotieA. PatoC.N. PatoM.T. PulverA.E. ClairS.D. TsuangM.T. VawterM.P. WaltersJ.T. WergeT.M. OphoffR.A. SullivanP.F. OwenM.J. BoehnkeM. O’DonovanM.C. NealeB.M. DalyM.J. Rare coding variants in ten genes confer substantial risk for schizophrenia.Nature2022604790650951610.1038/s41586‑022‑04556‑w35396579
    [Google Scholar]
  8. AltA. NisenbaumE.S. BleakmanD. WitkinJ.M. A role for AMPA receptors in mood disorders.Biochem. Pharmacol.20067191273128810.1016/j.bcp.2005.12.02216442080
    [Google Scholar]
  9. MaengS. ZarateC.A.Jr DuJ. SchloesserR.J. McCammonJ. ChenG. ManjiH.K. Cellular mechanisms underlying the antidepressant effects of ketamine: Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.Biol. Psychiatry200863434935210.1016/j.biopsych.2007.05.02817643398
    [Google Scholar]
  10. SuzukiA. MurakamiK. TajimaY. HaraH. KunugiA. KimuraH. TAK-137, an AMPA receptor potentiator with little agonistic effect, produces antidepressant-like effect without causing psychotomimetic effects in rats.Pharmacol. Biochem. Behav.2019183808610.1016/j.pbb.2019.06.00431202810
    [Google Scholar]
  11. AdlerL.A. KroonR.A. SteinM. ShahidM. TaraziF.I. SzegediA. SchipperJ. CazorlaP. A translational approach to evaluate the efficacy and safety of the novel AMPA receptor positive allosteric modulator org 26576 in adult attention-deficit/hyperactivity disorder.Biol. Psychiatry2012721197197710.1016/j.biopsych.2012.05.01222771238
    [Google Scholar]
  12. NaaijenJ. BraltenJ. PoelmansG. FaraoneS. AshersonP. BanaschewskiT. BuitelaarJ. FrankeB. EbsteinP.R. GillM. MirandaA. OadesD.R. RoeyersH. RothenbergerA. SergeantJ. Sonuga-BarkeE. AnneyR. MulasF. SteinhausenH-C. GlennonJ.C. FrankeB. BuitelaarJ.K. IMAGE consortium Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: Association to overlapping traits in ADHD and autism.Transl. Psychiatry201771e99910.1038/tp.2016.27328072412
    [Google Scholar]
  13. MedinT. JensenV. SkareØ. Storm-MathisenJ. HvalbyØ. BergersenL.H. Altered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function and expression in hippocampus in a rat model of attention-deficit/hyperactivity disorder (ADHD).Behav. Brain Res.201936020921510.1016/j.bbr.2018.12.02830552946
    [Google Scholar]
  14. BaiW.J. LuoX.G. JinB.H. ZhuK.S. GuoW.Y. ZhuX.Q. QinX. YangZ.X. ZhaoJ.J. ChenS.R. WangR. HaoJ. WangF. ShiS.Y. KongD.Z. ZhangW. Deficiency of transmembrane AMPA receptor regulatory protein γ-8 leads to attention-deficit hyperactivity disorder-like behavior in mice.Zool. Res.202243585187010.24272/j.issn.2095‑8137.2022.12236031768
    [Google Scholar]
  15. HampsonR.E. RogersG. LynchG. DeadwylerS.A. Facilitative effects of the ampakine CX516 on short-term memory in rats: Correlations with hippocampal neuronal activity.J. Neurosci.19981872748276310.1523/JNEUROSCI.18‑07‑02748.19989502832
    [Google Scholar]
  16. HampsonR.E. RogersG. LynchG. DeadwylerS.A. Facilitative effects of the ampakine CX516 on short-term memory in rats: Enhancement of delayed-nonmatch-to-sample performance.J. Neurosci.19981872740274710.1523/JNEUROSCI.18‑07‑02740.19989502831
    [Google Scholar]
  17. PorrinoL.J. DaunaisJ.B. RogersG.A. HampsonR.E. DeadwylerS.A. Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates.PLoS Biol.200539e29910.1371/journal.pbio.003029916104830
    [Google Scholar]
  18. ZhengY. BalabhadrapatruniS. MasumuraC. DarlingtonC.L. SmithP.F. Effects of the putative cognitive-enhancing ampakine, CX717, on attention and object recognition memory.Curr. Alzheimer Res.20118887688210.2174/15672051179819270922171951
    [Google Scholar]
  19. BaudryM. KramarE. XuX. ZadranH. MorenoS. LynchG. GallC. BiX. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome.Neurobiol. Dis.201247221021510.1016/j.nbd.2012.04.00222525571
    [Google Scholar]
  20. KramárE.A. ChenL.Y. LauterbornJ.C. SimmonsD.A. GallC.M. LynchG. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats.Neurobiol. Aging201233470871910.1016/j.neurobiolaging.2010.06.00820674095
    [Google Scholar]
  21. RadinD.P. ZhongS. PurcellR. LippaA. Acute ampakine treatment ameliorates age-related deficits in long-term potentiation.Biomed. Pharmacother.20168480680910.1016/j.biopha.2016.10.01627721179
    [Google Scholar]
  22. LauterbornJ.C. PalmerL.C. JiaY. PhamD.T. HouB. WangW. TrieuB.H. CoxC.D. KantorovichS. GallC.M. LynchG. Chronic ampakine treatments stimulate dendritic growth and promote learning in middle-aged rats.J. Neurosci.20163651636164610.1523/JNEUROSCI.3157‑15.201626843645
    [Google Scholar]
  23. MozafariN. ShamsizadehA. FatemiI. AllahtavakoliM. Moghadam-AhmadiA. KavianiE. KaeidiA. CX691, as an AMPA receptor positive modulator, improves the learning and memory in a rat model of Alzheimer’s disease.Iran. J. Basic Med. Sci.201821772473030140412
    [Google Scholar]
  24. IngvarM. Ambros-IngersonJ. DavisM. GrangerR. KesslerM. RogersG.A. SchehrR.S. LynchG. Enhancement by an ampakine of memory encoding in humans.Exp. Neurol.1997146255355910.1006/exnr.1997.65819270067
    [Google Scholar]
  25. WezenbergE. VerkesJ.R. RuigtG.S.F. HulstijnW. SabbeB.G.C. Acute effects of the ampakine farampator on memory and information processing in healthy elderly volunteers.Neuropsychopharmacology20073261272128310.1038/sj.npp.130125717119538
    [Google Scholar]
  26. LarsonJ. QuachC.N. LeDucB.Q. NguyenA. RogersG.A. LynchG. Effects of an AMPA receptor modulator on methamphetamine-induced hyperactivity in rats.Brain Res.1996738235335610.1016/S0006‑8993(96)01049‑98955535
    [Google Scholar]
  27. JohnsonS.A. LuuN.T. HerbstT.A. KnappR. LutzD. AraiA. RogersG.A. LynchG. Synergistic interactions between ampakines and antipsychotic drugs.J. Pharmacol. Exp. Ther.1999289139239710087029
    [Google Scholar]
  28. LiX. TizzanoJ.P. GriffeyK. ClayM. LindstromT. SkolnickP. Antidepressant-like actions of an AMPA receptor potentiator (LY392098).Neuropharmacology20014081028103310.1016/S0028‑3908(00)00194‑511406194
    [Google Scholar]
  29. KnappR.J. GoldenbergR. ShuckC. CecilA. WatkinsJ. MillerC. CritesG. MalatynskaE. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model.Eur. J. Pharmacol.20024401273510.1016/S0014‑2999(02)01338‑911959085
    [Google Scholar]
  30. AltA. WitkinJ. BleakmanD. AMPA receptor potentiators as novel antidepressants.Curr. Pharm. Des.200511121511152710.2174/138161205376481415892659
    [Google Scholar]
  31. FarleyS. ApazoglouK. WitkinJ.M. GirosB. TzavaraE.T. Antidepressant-like effects of an AMPA receptor potentiator under a chronic mild stress paradigm.Int. J. Neuropsychopharmacol.20101391207121810.1017/S146114570999107620059803
    [Google Scholar]
  32. GainetdinovR.R. MohnA.R. BohnL.M. CaronM.G. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter.Proc. Natl. Acad. Sci. USA20019820110471105410.1073/pnas.19135329811572967
    [Google Scholar]
  33. LauterbornJ.C. LynchG. VanderklishP. AraiA. GallC.M. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons.J. Neurosci.200020182110.1523/JNEUROSCI.20‑01‑00008.200010627576
    [Google Scholar]
  34. LauterbornJ.C. TruongG.S. BaudryM. BiX. LynchG. GallC.M. Chronic elevation of brain-derived neurotrophic factor by ampakines.J. Pharmacol. Exp. Ther.2003307129730510.1124/jpet.103.05369412893840
    [Google Scholar]
  35. LauterbornJ.C. PinedaE. ChenL.Y. RamirezE.A. LynchG. GallC.M. Ampakines cause sustained increases in brain-derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression.Neuroscience2009159128329510.1016/j.neuroscience.2008.12.01819141314
    [Google Scholar]
  36. RadinD.P. JohnsonS. PurcellR. LippaA.S. Effects of chronic systemic low-impact ampakine treatment on neurotrophin expression in rat brain.Biomed. Pharmacother.201810554054410.1016/j.biopha.2018.06.00829886374
    [Google Scholar]
  37. AraiA.C. KesslerM. RogersG. LynchG. Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: Interactions with cyclothiazide and GYKI 52466.Mol. Pharmacol.200058480281310.1124/mol.58.4.80210999951
    [Google Scholar]
  38. AraiA.C. XiaY.F. RogersG. LynchG. KesslerM. Benzamide-type AMPA receptor modulators form two subfamilies with distinct modes of action.J. Pharmacol. Exp. Ther.200230331075108510.1124/jpet.102.04036012438530
    [Google Scholar]
  39. MontgomeryK.E. KesslerM. AraiA.C. Modulation of agonist binding to AMPA receptors by 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546): Differential effects across brain regions and GluA1-4/transmembrane AMPA receptor regulatory protein combinations.J. Pharmacol. Exp. Ther.2009331396597410.1124/jpet.109.15801419717789
    [Google Scholar]
  40. RadinD.P. ZhongS. CerneR. SmithJ.L. WitkinJ.M. LippaA. Preclinical pharmacology of the low-impact ampakine CX717.Future Pharmacology20244349450910.3390/futurepharmacol4030028
    [Google Scholar]
  41. RadinD.P. ZhongS. CerneR. ShoaibM. WitkinJ.M. LippaA. Low-impact ampakine CX1739 exerts pro-cognitive effects and reverses opiate-induced respiratory depression in rodents.Future Pharmacology20244117318710.3390/futurepharmacol4010012
    [Google Scholar]
  42. SimmonsD.A. MehtaR.A. LauterbornJ.C. GallC.M. LynchG. Brief ampakine treatments slow the progression of Huntington’s disease phenotypes in R6/2 mice.Neurobiol. Dis.201141243644410.1016/j.nbd.2010.10.01520977939
    [Google Scholar]
  43. ClarksonA.N. OvermanJ.J. ZhongS. MuellerR. LynchG. CarmichaelS.T. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.J. Neurosci.201131103766377510.1523/JNEUROSCI.5780‑10.201121389231
    [Google Scholar]
  44. ClarksonA.N. ParkerK. NilssonM. WalkerF.R. GowingE.K. Combined ampakine and BDNF treatments enhance poststroke functional recovery in aged mice via AKT-CREB signaling.J. Cereb. Blood Flow Metab.20153581272127910.1038/jcbfm.2015.3325757752
    [Google Scholar]
  45. LasztócziB. KardosJ. Cyclothiazide prolongs low [Mg2+]-induced seizure-like events.J. Neurophysiol.20069663538354410.1152/jn.00287.200616914619
    [Google Scholar]
  46. KongS. QianB. LiuJ. FanM. ChenG. WangY. Cyclothiazide induces seizure behavior in freely moving rats.Brain Res.2010135520721310.1016/j.brainres.2010.07.08820678492
    [Google Scholar]
  47. ShafferC.L. HurstR.S. ScialisR.J. OsgoodS.M. BryceD.K. HoffmannW.E. LazzaroJ.T. HanksA.N. LotarskiS. WeberM.L. LiuJ. MennitiF.S. SchmidtC.J. HajósM. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: The interspecies exposure-response continuum of the novel potentiator PF-4778574.J. Pharmacol. Exp. Ther.2013347121222410.1124/jpet.113.20473523899905
    [Google Scholar]
  48. KongS. ChengZ. LiuJ. WangY. Downregulated GABA and BDNF-TrkB pathway in chronic cyclothiazide seizure model.Neural Plast.2014201411110.1155/2014/31014624757570
    [Google Scholar]
  49. WanL. LiuX. WuZ. RenW. KongS. DarghamR.A. ChengL. WangY. Activation of extrasynaptic GABAA receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons.Neurosci. Bull.201430586687610.1007/s12264‑014‑1466‑825260800
    [Google Scholar]
  50. KunugiA. TanakaM. SuzukiA. TajimaY. SuzukiN. SuzukiM. NakamuraS. KunoH. YokotaA. SogabeS. KosugiY. AwasakiY. KakuT. KimuraH. TAK-137, an AMPA-R potentiator with little agonistic effect, has a wide therapeutic window.Neuropsychopharmacology201944596197010.1038/s41386‑018‑0213‑730209408
    [Google Scholar]
  51. AraiA. KesslerM. RogersG. LynchG. Effects of a memory-enhancing drug on DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus.J. Pharmacol. Exp. Ther.199627826276388768713
    [Google Scholar]
  52. EnnaceurA. MichalikovaS. BradfordA. AhmedS. Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks.Behav. Brain Res.2005159224726610.1016/j.bbr.2004.11.00615817188
    [Google Scholar]
  53. BrownM.F. GiumettiG.W. Spatial pattern learning in the radial arm maze.Learn. Behav.200634110210810.3758/BF0319287516786888
    [Google Scholar]
  54. Gökçek-SaraçÇ. WesierskaM. Jakubowska-DoğruE. Comparison of spatial learning in the partially baited radial-arm maze task between commonly used rat strains: Wistar, Spargue-Dawley, Long-Evans, and outcrossed Wistar/Sprague-Dawley.Learn. Behav.2015431839410.3758/s13420‑014‑0163‑925537841
    [Google Scholar]
  55. RobbinsT. The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry.Psychopharmacology20021633-436238010.1007/s00213‑002‑1154‑712373437
    [Google Scholar]
  56. RadinD.P. ZhongS. CerneR. ShoaibM. WitkinJ.M. LippaA. Preclinical characterization of a water-soluble low-impact ampakine prodrug, CX1942 and its active moiety, CX1763.Future Med. Chem.202416222325233610.1080/17568919.2024.240131239301929
    [Google Scholar]
  57. RobinsonE.S.J. EagleD.M. MarA.C. BariA. BanerjeeG. JiangX. DalleyJ.W. RobbinsT.W. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat.Neuropsychopharmacology20083351028103710.1038/sj.npp.130148717637611
    [Google Scholar]
  58. DongZ. HanH. LiH. BaiY. WangW. TuM. PengY. ZhouL. HeW. WuX. TanT. LiuM. WuX. ZhouW. JinW. ZhangS. SacktorT.C. LiT. SongW. WangY.T. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis.J. Clin. Invest.2015125123424710.1172/JCI7788825437879
    [Google Scholar]
  59. NicollR.A. A brief history of long-term potentiation.Neuron201793228129010.1016/j.neuron.2016.12.01528103477
    [Google Scholar]
  60. LynchG. GallC.M. Ampakines and the threefold path to cognitive enhancement.Trends Neurosci.2006291055456210.1016/j.tins.2006.07.00716890999
    [Google Scholar]
  61. GocelJ. LarsonJ. Evidence for loss of synaptic AMPA receptors in anterior piriform cortex of aged mice.Front. Aging Neurosci.201353910.3389/fnagi.2013.0003923964238
    [Google Scholar]
  62. LuoY. ZhouJ. LiM.X. WuP.F. HuZ.L. NiL. JinY. ChenJ.G. WangF. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors.Aging Cell201514217017910.1111/acel.1228225564942
    [Google Scholar]
  63. RogersS.L. FarlowM.R. DoodyR.S. MohsR. FriedhoffL.T. Donepezil Study Group A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease.Neurology199850113614510.1212/WNL.50.1.1369443470
    [Google Scholar]
  64. WoolleyM.L. WatersK.A. GartlonJ.E. LacroixL.P. JenningsC. ShaughnessyF. OngA. PembertonD.J. HarriesM.H. SouthamE. JonesD.N.C. DawsonL.A. Evaluation of the pro-cognitive effects of the AMPA receptor positive modulator, 5-(1-piperidinylcarbonyl)-2,1,3-benzoxadiazole (CX691), in the rat.Psychopharmacology20092021-334335410.1007/s00213‑008‑1325‑218795266
    [Google Scholar]
  65. XueL. DengJ. ZhuL. ShenF. WeiJ. WangL. ChenQ. WangL. Effects of predictive nursing intervention on cognitive impairment and neurological function in ischemic stroke patients.Brain Behav.2023133e289010.1002/brb3.289036738135
    [Google Scholar]
  66. FanL. Quijano-RuizA. WangC. ZhaoH. WangD. WuH. LiuL. ZhanY. ZhouX. Effects of personalized music listening on post-stroke cognitive impairment: A randomized controlled trial.Complement. Ther. Clin. Pract.20245710188510.1016/j.ctcp.2024.10188539098085
    [Google Scholar]
  67. SiowI. NarasimhaluK. LeeK.S. TanH.K. TingS.K.S. HameedS. ChangH.M. SilvaD.D.A. ChenC.L.H. TanE.K. Predictors of post stroke cognitive impairment: VITATOPS cognition substudy.J. Stroke Cerebrovasc. Dis.202433610771810.1016/j.jstrokecerebrovasdis.2024.10771838604352
    [Google Scholar]
  68. DeijleI.A. JonkersI.M. HooghiemstraA.M. EngelsG. TwiskJ.W.R. WeinsteinH.C. SchaikV.S.M. Van den Berg-VosR.M. Effects of a 1 year aerobic and strength training on cognitive functioning after transient ischemic attack or minor stroke: A randomized controlled trial.J. Stroke Cerebrovasc. Dis.202433110744110.1016/j.jstrokecerebrovasdis.2023.10744137966094
    [Google Scholar]
/content/journals/car/10.2174/0115672050365821250127055828
Loading
/content/journals/car/10.2174/0115672050365821250127055828
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AMPA receptor; AMPAkine; BDNF; cognitive deficit; LTP; memory formation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test