Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

The potential therapeutic role of nicotine in Alzheimer's disease (AD) remains controversial, particularly regarding its age-dependent effects and underlying mechanisms.

Methods

This study investigated the impact of chronic nicotine administration on cognitive function and molecular pathways in Presenilin 1/2 double knockout (DKO) mice, an amyloid-β (Aβ)-independent model of AD. Three-month-old and eight-month-old DKO and wild-type (WT) mice received oral nicotine treatment (100 μg/ml) for three months. Behavioral assessments revealed that while the 6-month-old cohort showed no significant differences between nicotine-treated and control groups regardless of genotype, nicotine improved contextual fear memory in 11-month-old DKO mice but impaired nest-building ability and cued fear memory in age-matched WT controls. Transcriptome analysis of the prefrontal cortex identified distinct molecular responses to nicotine between genotypes.

Results

In DKO mice, nicotine modulated neuropeptide signaling and reduced astrocyte activation, while in WT mice, it disrupted cytokine-cytokine receptor interaction and neuroactive ligand-receptor interaction pathways. Western blot analysis revealed that nicotine treatment significantly reduced tau hyperphosphorylation and Glial Fibrillary Acidic Protein (GFAP) expression in 11-month-old DKO mice, which was further confirmed by immunohistochemistry showing decreased astrocyte activation in multiple brain regions.

Conclusion

These findings demonstrate that nicotine's effects on cognition and molecular pathways are both age- and genotype-dependent, suggesting its therapeutic potential may be limited to specific stages of neurodegeneration while potentially having adverse effects in healthy aging brains.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050363992250127072919
2025-02-06
2025-07-03
Loading full text...

Full text loading...

References

  1. Alzheimer’s Disease Facts and Figures.2019Available from: https://www.alz.org/media/documents/alzheimers-facts-and-figures-2019-r.pdf
  2. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  3. RobinsonL. PlattB. RiedelG. Involvement of the cholinergic system in conditioning and perceptual memory.Behav. Brain Res.2011221244346510.1016/j.bbr.2011.01.05521315109
    [Google Scholar]
  4. WilsonM.A. FadelJ.R. Cholinergic regulation of fear learning and extinction.J. Neurosci. Res.201795383685210.1002/jnr.2384027704595
    [Google Scholar]
  5. ZilaI. MokraD. KopincovaJ. KolomaznikM. JavorkaM. CalkovskaA. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway.Physiol. Res.201766Suppl. 2S139S14510.33549/physiolres.93367128937230
    [Google Scholar]
  6. PanzaF. LozuponeM. LogroscinoG. ImbimboB.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.2019152738810.1038/s41582‑018‑0116‑630610216
    [Google Scholar]
  7. McGrath-MorrowS.A. GorzkowskiJ. GronerJ.A. RuleA.M. WilsonK. TanskiS.E. CollacoJ.M. KleinJ.D. The effects of nicotine on development.Pediatrics20201453e2019134610.1542/peds.2019‑134632047098
    [Google Scholar]
  8. RustedJ.M. NewhouseP.A. LevinE.D. Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer’s disease and Parkinson’s disease.Behav. Brain Res.20001131-212112910.1016/S0166‑4328(00)00207‑210942039
    [Google Scholar]
  9. ZhangW. LinH. ZouM. YuanQ. HuangZ. PanX. ZhangW. Nicotine in inflammatory diseases: Anti-inflammatory and pro-inflammatory effects.Front. Immunol.20221382688910.3389/fimmu.2022.82688935251010
    [Google Scholar]
  10. LevinE.D. McClernonF.J. RezvaniA.H. Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization.Psychopharmacology (Berl.)20061843-452353910.1007/s00213‑005‑0164‑716220335
    [Google Scholar]
  11. LevinE.D. RezvaniA.H. Development of nicotinic drug therapy for cognitive disorders.Eur. J. Pharmacol.20003931-314114610.1016/S0014‑2999(99)00885‑710771007
    [Google Scholar]
  12. NewhouseP.A. PotterA. LevinE.D. Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics.Drugs Aging199711320622810.2165/00002512‑199711030‑000059303280
    [Google Scholar]
  13. RezvaniA.H. LevinE.D. Cognitive effects of nicotine.Biol. Psychiatry200149325826710.1016/S0006‑3223(00)01094‑511230877
    [Google Scholar]
  14. CoxM.A. BassiC. SaundersM.E. NechanitzkyR. Morgado-PalacinI. ZhengC. MakT.W. Beyond neurotransmission: Acetylcholine in immunity and inflammation.J. Intern. Med.2020287212013310.1111/joim.1300631710126
    [Google Scholar]
  15. NewhouseP. KellarK. AisenP. WhiteH. WesnesK. CoderreE. PfaffA. WilkinsH. HowardD. LevinE.D. Nicotine treatment of mild cognitive impairment: A 6-month double-blind pilot clinical trial.Neurology20127829110110.1212/WNL.0b013e31823efcbb22232050
    [Google Scholar]
  16. NiemegeersP. DumontG.J.H. QuisenaertsC. MorrensM. BoonzaierJ. FransenE. de BruijnE.R.A. HulstijnW. SabbeB.G.C. The effects of nicotine on cognition are dependent on baseline performance.Eur. Neuropsychopharmacol.20142471015102310.1016/j.euroneuro.2014.03.01124766971
    [Google Scholar]
  17. YanL. LiL. HanW. PanB. XueX. MeiB. Age-related neuropsychiatric symptoms in presenilins conditional double knockout mice.Brain Res. Bull.20139710411110.1016/j.brainresbull.2013.06.00223792007
    [Google Scholar]
  18. FengR. WangH. WangJ. ShromD. ZengX. TsienJ.Z. Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer’s presenilin-1 and presenilin-2.Proc. Natl. Acad. Sci. USA2004101218162816710.1073/pnas.040273310115148382
    [Google Scholar]
  19. DongZ. YanL. HuangG. ZhangL. MeiB. MengB. Ibuprofen partially attenuates neurodegenerative symptoms in presenilin conditional double-knockout mice.Neuroscience2014270586810.1016/j.neuroscience.2014.03.04824699228
    [Google Scholar]
  20. SiY. GuoC. XiaoF. MeiB. MengB. Noncognitive species-typical and home-cage behavioral alterations in conditional presenilin 1/presenilin 2 double knockout mice.Behav. Brain Res.202241811365210.1016/j.bbr.2021.11365234758364
    [Google Scholar]
  21. SauraC.A. ChoiS.Y. BeglopoulosV. MalkaniS. ZhangD. RaoB.S.S. ChattarjiS. KelleherR.J.III KandelE.R. DuffK. KirkwoodA. ShenJ. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration.Neuron2004421233610.1016/S0896‑6273(04)00182‑515066262
    [Google Scholar]
  22. LvY. MengB. DongH. JingT. WuN. YangY. HuangL. MosesR.E. O’MalleyB.W. MeiB. LiX. Upregulation of GSK3β contributes to brain disorders in elderly REGγ-knockout mice.Neuropsychopharmacology20164151340134910.1038/npp.2015.28526370326
    [Google Scholar]
  23. JirkofP. Burrowing and nest building behavior as indicators of well-being in mice.J. Neurosci. Methods201423413914610.1016/j.jneumeth.2014.02.00124525328
    [Google Scholar]
  24. DeaconR.M.J. Assessing nest building in mice.Nat. Protoc.2006131117111910.1038/nprot.2006.17017406392
    [Google Scholar]
  25. NeelyC.L.C. PedemonteK.A. BoggsK.N. FlinnJ.M. Nest building behavior as an early indicator of behavioral deficits in mice.J. Vis. Exp.201915210.3791/6013910.3791/60139‑v31680688
    [Google Scholar]
  26. GaskillB.N. Pritchett-CorningK.R. Nest building as an indicator of illness in laboratory mice.Appl. Anim. Behav. Sci.201618014014610.1016/j.applanim.2016.04.008
    [Google Scholar]
  27. WuP. ShenQ. DongS. XuZ. TsienJ.Z. HuY. Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice.Neurobiol. Aging200829101502151110.1016/j.neurobiolaging.2007.03.02817499883
    [Google Scholar]
  28. JiangX. ZhangD. ShiJ. ChenY. ZhangP. MeiB. Increased inflammatory response both in brain and in periphery in presenilin 1 and presenilin 2 conditional double knock-out mice.J. Alzheimers Dis.200918351552310.3233/JAD‑2009‑116419584449
    [Google Scholar]
  29. DongS. LiC. WuP. TsienJ.Z. HuY. Environment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient mice.Eur. J. Neurosci.200726110111210.1111/j.1460‑9568.2007.05641.x17614943
    [Google Scholar]
  30. BussiereR. OulèsB. MaryA. Vaillant-BeuchotL. MartinC. El ManaaW. ValléeD. DuplanE. Paterlini-BréchotP. Alves Da CostaC. CheclerF. ChamiM. Upregulation of the sarco-endoplasmic reticulum calcium ATPase 1 truncated isoform plays a pathogenic role in Alzheimer’s disease.Cells2019812153910.3390/cells812153931795302
    [Google Scholar]
  31. ConnorD.A. GouldT.J. Chronic fluoxetine ameliorates adolescent chronic nicotine exposure-induced long-term adult deficits in trace conditioning.Neuropharmacology201712527228310.1016/j.neuropharm.2017.07.03328778833
    [Google Scholar]
  32. ValentineG. SofuogluM. Cognitive effects of nicotine: Recent progress.Curr. Neuropharmacol.201816440341410.2174/1570159X1566617110315213629110618
    [Google Scholar]
  33. YangL. ShenJ. LiuC. KuangZ. TangY. QianZ. GuanM. YangY. ZhanY. LiN. LiX. Nicotine rebalances NAD+ homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity.Nat. Commun.202314190010.1038/s41467‑023‑36543‑836797299
    [Google Scholar]
  34. HarrisJ.G. KongsS. AllensworthD. MartinL. TregellasJ. SullivanB. ZerbeG. FreedmanR. Effects of nicotine on cognitive deficits in schizophrenia.Neuropsychopharmacology20042971378138510.1038/sj.npp.130045015138435
    [Google Scholar]
  35. WarburtonD.M. RustedJ.M. FowlerJ. A comparison of the attentional and consolidation hypotheses for the facilitation of memory by nicotine.Psychopharmacology (Berl.)1992108444344710.1007/BF022474181410156
    [Google Scholar]
  36. WhiteH.K. LevinE.D. Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment.Psychopharmacology (Berl.)2004171446547110.1007/s00213‑003‑1614‑814534771
    [Google Scholar]
  37. GriesarW.S. ZajdelD.P. OkenB.S. Nicotine effects on alertness and spatial attention in non-smokers.Nicotine Tob. Res.20024218519410.1080/1462220021012361712028851
    [Google Scholar]
  38. QuikM. MallelaA. LyJ. ZhangD. Nicotine reduces established levodopa‐induced dyskinesias in a monkey model of Parkinson’s disease.Mov. Disord.201328101398140610.1002/mds.2559423836409
    [Google Scholar]
  39. LuJ.Y.D. SuP. BarberJ.E.M. NashJ.E. LeA.D. LiuF. WongA.H.C. The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage.PeerJ20175e393310.7717/peerj.393329062606
    [Google Scholar]
  40. CourtJ. KeverneJ. SvedbergM. LeeM. MarutleA. ThomasA. PerryE. BednarI. NordbergA. NordbergA. Nicotine reduces Aβ in the brain and cerebral vessels of APPsw mice.Eur. J. Neurosci.200419102703271010.1111/j.0953‑816X.2004.03377.x15147304
    [Google Scholar]
  41. NordbergA. Hellström-LindahlE. LeeM. JohnsonM. MousaviM. HallR. PerryE. BednarI. CourtJ. Chronic nicotine treatment reduces β-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw).J. Neurochem.200281365565810.1046/j.1471‑4159.2002.00874.x12065674
    [Google Scholar]
  42. UngerC. SvedbergM.M. YuW.F. HedbergM.M. NordbergA. Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice.J. Pharmacol. Exp. Ther.20063171303610.1124/jpet.105.09856616354790
    [Google Scholar]
  43. OddoS. CaccamoA. GreenK.N. LiangK. TranL. ChenY. LeslieF.M. LaFerlaF.M. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA200510283046305110.1073/pnas.040850010215705720
    [Google Scholar]
  44. SabbaghM.N. WalkerD.G. ReidR.T. StadnickT. AnandK. LueL.F. Absence of effect of chronic nicotine administration on amyloid beta peptide levels in transgenic mice overexpressing mutated human APP (Sw, Ind).Neurosci. Lett.2008448221722010.1016/j.neulet.2008.10.00418926877
    [Google Scholar]
  45. EstevesI.M. Lopes-AguiarC. RossignoliM.T. RuggieroR.N. BrogginiA.C.S. Bueno-JuniorL.S. KandrataviciusL. MonteiroM.R. Romcy-PereiraR.N. LeiteJ.P. Chronic nicotine attenuates behavioral and synaptic plasticity impairments in a streptozotocin model of Alzheimer’s disease.Neuroscience2017353879710.1016/j.neuroscience.2017.04.01128433649
    [Google Scholar]
  46. AttawayC.M. ComptonD.M. TurnerM.D. The effects of nicotine on learning and memory: A neuropsychological assessment in young and senescent Fischer 344 rats.Physiol. Behav.199967342143110.1016/S0031‑9384(99)00081‑510497962
    [Google Scholar]
  47. VicensP. CarrascoM.C. RedolatR. Effects of early training and nicotine treatment on the performance of male NMRI mice in the water maze.Neural Plast.200310430331710.1155/NP.2003.30315152984
    [Google Scholar]
  48. HarmychS.J. KumarJ. BouniM.E. ChadeeD.N. Nicotine inhibits MAPK signaling and spheroid invasion in ovarian cancer cells.Exp. Cell Res.2020394111216710.1016/j.yexcr.2020.11216732649943
    [Google Scholar]
  49. ShytleR.D. MoriT. TownsendK. VendrameM. SunN. ZengJ. EhrhartJ. SilverA.A. SanbergP.R. TanJ. Cholinergic modulation of microglial activation by α7 nicotinic receptors.J. Neurochem.200489233734310.1046/j.1471‑4159.2004.02347.x15056277
    [Google Scholar]
  50. GuoJ. KimD. GaoJ. KurtykaC. ChenH. YuC. WuD. MittalA. BegA.A. ChellappanS.P. HauraE.B. ChengJ.Q. RETRACTED ARTICLE: IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer.Oncogene201332215115910.1038/onc.2012.3922330135
    [Google Scholar]
  51. HanX. ZhouN. HuH. LiX. LiuH. Nicotine alleviates cortical neuronal injury by suppressing neuroinflammation and upregulating neuronal PI3K-AKT signaling in an eclampsia-like seizure model.Neurotox. Res.202038366568110.1007/s12640‑020‑00265‑232767216
    [Google Scholar]
  52. HoskinJ.L. Al-HasanY. SabbaghM.N. Nicotinic acetylcholine receptor agonists for the treatment of Alzheimer’s dementia: An update.Nicotine Tob. Res.201921337037610.1093/ntr/nty11630137524
    [Google Scholar]
  53. ChangeuxJ.P. BertrandD. CorringerP.J. DehaeneS. EdelsteinS. LénaC. Le NovèreN. MarubioL. PicciottoM. ZoliM. Brain nicotinic receptors: Structure and regulation, role in learning and reinforcement.Brain Res. Brain Res. Rev.1998262-319821610.1016/S0165‑0173(97)00040‑49651527
    [Google Scholar]
  54. DurazzoT.C. MattssonN. WeinerM.W. Alzheimer’s Disease Neuroimaging Initiative Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms.Alzheimers Dement.2014103SS122S14510.1016/j.jalz.2014.04.00924924665
    [Google Scholar]
/content/journals/car/10.2174/0115672050363992250127072919
Loading
/content/journals/car/10.2174/0115672050363992250127072919
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Alzheimer’s disease; behavior; genotypes; nicotine; Presenilin; RNA sequencing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test