Skip to content
2000
image of Age- and Genotype-Dependent Effects of Chronic Nicotine on Presenilin1/2 Double Knockout Mice: From Behavior to Molecular Pathways

Abstract

Introduction

The potential therapeutic role of nicotine in Alzheimer's disease (AD) remains controversial, particularly regarding its age-dependent effects and underlying mechanisms.

Method

This study investigated the impact of chronic nicotine administration on cognitive function and molecular pathways in Presenilin 1/2 double knockout (DKO) mice, an amyloid-β-independent model of AD. Three-month-old and eight-month-old DKO and wild-type (WT) mice received oral nicotine treatment (100 μg/ml) for three months. Behavioral assessments revealed that while the 6-month-old cohort showed no significant differences between nicotine-treated and control groups regardless of genotype, nicotine improved contextual fear memory in 11-month-old DKO mice but impaired nest-building ability and cued fear memory in age-matched WT controls. Transcriptome analysis of the prefrontal cortex identified distinct molecular responses to nicotine between genotypes.

Result

In DKO mice, nicotine modulated neuropeptide signaling and reduced astrocyte activation, while in WT mice, it disrupted cytokine-cytokine receptor interaction and neuroactive ligand-receptor interaction pathways. Western blot analysis revealed that nicotine treatment significantly reduced tau hyperphosphorylation and GFAP expression in 11-month-old DKO mice, which was further confirmed by immunohistochemistry showing decreased astrocyte activation in multiple brain regions.

Conclusion

These findings demonstrate that nicotine's effects on cognition and molecular pathways are both age- and genotype-dependent, suggesting its therapeutic potential may be limited to specific stages of neurodegeneration while potentially having adverse effects in healthy aging brains.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050363992250127072919
2025-02-06
2025-03-26
Loading full text...

Full text loading...

References

  1. Alzheimer’s Disease Facts and Figures. 2019 Available from: https://www.alz.org/media/documents/alzheimers-facts-and-figures-2019-r.pdf
  2. Hampel H. Mesulam M.M. Cuello A.C. Farlow M.R. Giacobini E. Grossberg G.T. Khachaturian A.S. Vergallo A. Cavedo E. Snyder P.J. Khachaturian Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018 141 7 1917 1933 10.1093/brain/awy132 29850777
    [Google Scholar]
  3. Robinson L. Platt B. Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav. Brain Res. 2011 221 2 443 465 10.1016/j.bbr.2011.01.055 21315109
    [Google Scholar]
  4. Wilson M.A. Fadel J.R. Cholinergic regulation of fear learning and extinction. J. Neurosci. Res. 2017 95 3 836 852 10.1002/jnr.23840 27704595
    [Google Scholar]
  5. Zila I. Mokra D. Kopincova J. Kolomaznik M. Javorka M. Calkovska A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiol. Res. 2017 66 Suppl. 2 S139 S145 10.33549/physiolres.933671 28937230
    [Google Scholar]
  6. Panza F. Lozupone M. Logroscino G. Imbimbo B.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2019 15 2 73 88 10.1038/s41582‑018‑0116‑6 30610216
    [Google Scholar]
  7. McGrath-Morrow S.A. Gorzkowski J. Groner J.A. Rule A.M. Wilson K. Tanski S.E. Collaco J.M. Klein J.D. The effects of nicotine on development. Pediatrics 2020 145 3 e20191346 10.1542/peds.2019‑1346 32047098
    [Google Scholar]
  8. Rusted J.M. Newhouse P.A. Levin E.D. Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer’s disease and Parkinson’s disease. Behav. Brain Res. 2000 113 1-2 121 129 10.1016/S0166‑4328(00)00207‑2 10942039
    [Google Scholar]
  9. Zhang W. Lin H. Zou M. Yuan Q. Huang Z. Pan X. Zhang W. Nicotine in inflammatory diseases: Anti-inflammatory and pro-inflammatory effects. Front. Immunol. 2022 13 826889 10.3389/fimmu.2022.826889 35251010
    [Google Scholar]
  10. Levin E.D. McClernon F.J. Rezvani A.H. Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl.) 2006 184 3-4 523 539 10.1007/s00213‑005‑0164‑7 16220335
    [Google Scholar]
  11. Levin E.D. Rezvani A.H. Development of nicotinic drug therapy for cognitive disorders. Eur. J. Pharmacol. 2000 393 1-3 141 146 10.1016/S0014‑2999(99)00885‑7 10771007
    [Google Scholar]
  12. Newhouse P.A. Potter A. Levin E.D. Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics. Drugs Aging 1997 11 3 206 228 10.2165/00002512‑199711030‑00005 9303280
    [Google Scholar]
  13. Rezvani A.H. Levin E.D. Cognitive effects of nicotine. Biol. Psychiatry 2001 49 3 258 267 10.1016/S0006‑3223(00)01094‑5 11230877
    [Google Scholar]
  14. Cox M.A. Bassi C. Saunders M.E. Nechanitzky R. Morgado-Palacin I. Zheng C. Mak T.W. Beyond neurotransmission: Acetylcholine in immunity and inflammation. J. Intern. Med. 2020 287 2 120 133 10.1111/joim.13006 31710126
    [Google Scholar]
  15. Newhouse P. Kellar K. Aisen P. White H. Wesnes K. Coderre E. Pfaff A. Wilkins H. Howard D. Levin E.D. Nicotine treatment of mild cognitive impairment: A 6-month double-blind pilot clinical trial. Neurology 2012 78 2 91 101 10.1212/WNL.0b013e31823efcbb 22232050
    [Google Scholar]
  16. Niemegeers P. Dumont G.J.H. Quisenaerts C. Morrens M. Boonzaier J. Fransen E. de Bruijn E.R.A. Hulstijn W. Sabbe B.G.C. The effects of nicotine on cognition are dependent on baseline performance. Eur. Neuropsychopharmacol. 2014 24 7 1015 1023 10.1016/j.euroneuro.2014.03.011 24766971
    [Google Scholar]
  17. Yan L. Li L. Han W. Pan B. Xue X. Mei B. Age-related neuropsychiatric symptoms in presenilins conditional double knockout mice. Brain Res. Bull. 2013 97 104 111 10.1016/j.brainresbull.2013.06.002 23792007
    [Google Scholar]
  18. Feng R. Wang H. Wang J. Shrom D. Zeng X. Tsien J.Z. Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer’s presenilin-1 and presenilin-2. Proc. Natl. Acad. Sci. USA 2004 101 21 8162 8167 10.1073/pnas.0402733101 15148382
    [Google Scholar]
  19. Dong Z. Yan L. Huang G. Zhang L. Mei B. Meng B. Ibuprofen partially attenuates neurodegenerative symptoms in presenilin conditional double-knockout mice. Neuroscience 2014 270 58 68 10.1016/j.neuroscience.2014.03.048 24699228
    [Google Scholar]
  20. Si Y. Guo C. Xiao F. Mei B. Meng B. Noncognitive species-typical and home-cage behavioral alterations in conditional presenilin 1/presenilin 2 double knockout mice. Behav. Brain Res. 2022 418 113652 10.1016/j.bbr.2021.113652 34758364
    [Google Scholar]
  21. Saura C.A. Choi S.Y. Beglopoulos V. Malkani S. Zhang D. Rao B.S.S. Chattarji S. Kelleher R.J. III Kandel E.R. Duff K. Kirkwood A. Shen J. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 2004 42 1 23 36 10.1016/S0896‑6273(04)00182‑5 15066262
    [Google Scholar]
  22. Lv Y. Meng B. Dong H. Jing T. Wu N. Yang Y. Huang L. Moses R.E. O’Malley B.W. Mei B. Li X. Upregulation of GSK3β contributes to brain disorders in elderly REGγ-knockout mice. Neuropsychopharmacology 2016 41 5 1340 1349 10.1038/npp.2015.285 26370326
    [Google Scholar]
  23. Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods 2014 234 139 146 10.1016/j.jneumeth.2014.02.001 24525328
    [Google Scholar]
  24. Deacon R.M.J. Assessing nest building in mice. Nat. Protoc. 2006 1 3 1117 1119 10.1038/nprot.2006.170 17406392
    [Google Scholar]
  25. Neely C.L.C. Pedemonte K.A. Boggs K.N. Flinn J.M. Nest building behavior as an early indicator of behavioral deficits in mice. J. Vis. Exp. 2019 60139 152 10.3791/60139‑v 31680688
    [Google Scholar]
  26. Gaskill B.N. Pritchett-Corning K.R. Nest building as an indicator of illness in laboratory mice. Appl. Anim. Behav. Sci. 2016 180 140 146 10.1016/j.applanim.2016.04.008
    [Google Scholar]
  27. Wu P. Shen Q. Dong S. Xu Z. Tsien J.Z. Hu Y. Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol. Aging 2008 29 10 1502 1511 10.1016/j.neurobiolaging.2007.03.028 17499883
    [Google Scholar]
  28. Jiang X. Zhang D. Shi J. Chen Y. Zhang P. Mei B. Increased inflammatory response both in brain and in periphery in presenilin 1 and presenilin 2 conditional double knock-out mice. J. Alzheimers Dis. 2009 18 3 515 523 10.3233/JAD‑2009‑1164 19584449
    [Google Scholar]
  29. Dong S. Li C. Wu P. Tsien J.Z. Hu Y. Environment enrichment rescues the neurodegenerative phenotypes in presenilins‐deficient mice. Eur. J. Neurosci. 2007 26 1 101 112 10.1111/j.1460‑9568.2007.05641.x 17614943
    [Google Scholar]
  30. Bussiere R. Oulès B. Mary A. Vaillant-Beuchot L. Martin C. El Manaa W. Vallée D. Duplan E. Paterlini-Bréchot P. Alves Da Costa C. Checler F. Chami M. Upregulation of the sarco-endoplasmic reticulum calcium ATPase 1 truncated isoform plays a pathogenic role in Alzheimer’s disease. Cells 2019 8 12 1539 10.3390/cells8121539 31795302
    [Google Scholar]
  31. Connor D.A. Gould T.J. Chronic fluoxetine ameliorates adolescent chronic nicotine exposure-induced long-term adult deficits in trace conditioning. Neuropharmacology 2017 125 272 283 10.1016/j.neuropharm.2017.07.033 28778833
    [Google Scholar]
  32. Valentine G. Sofuoglu M. Cognitive effects of nicotine: Recent progress. Curr. Neuropharmacol. 2018 16 4 403 414 10.2174/1570159X15666171103152136 29110618
    [Google Scholar]
  33. Yang L. Shen J. Liu C. Kuang Z. Tang Y. Qian Z. Guan M. Yang Y. Zhan Y. Li N. Li X. Nicotine rebalances NAD+ homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat. Commun. 2023 14 1 900 10.1038/s41467‑023‑36543‑8 36797299
    [Google Scholar]
  34. Harris J.G. Kongs S. Allensworth D. Martin L. Tregellas J. Sullivan B. Zerbe G. Freedman R. Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 2004 29 7 1378 1385 10.1038/sj.npp.1300450 15138435
    [Google Scholar]
  35. Warburton D.M. Rusted J.M. Fowler J. A comparison of the attentional and consolidation hypotheses for the facilitation of memory by nicotine. Psychopharmacology (Berl.) 1992 108 4 443 447 10.1007/BF02247418 1410156
    [Google Scholar]
  36. White H.K. Levin E.D. Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment. Psychopharmacology (Berl.) 2004 171 4 465 471 10.1007/s00213‑003‑1614‑8 14534771
    [Google Scholar]
  37. Griesar W.S. Zajdel D.P. Oken B.S. Nicotine effects on alertness and spatial attention in non-smokers. Nicotine Tob. Res. 2002 4 2 185 194 10.1080/14622200210123617 12028851
    [Google Scholar]
  38. Quik M. Mallela A. Ly J. Zhang D. Nicotine reduces established levodopa‐induced dyskinesias in a monkey model of Parkinson’s disease. Mov. Disord. 2013 28 10 1398 1406 10.1002/mds.25594 23836409
    [Google Scholar]
  39. Lu J.Y.D. Su P. Barber J.E.M. Nash J.E. Le A.D. Liu F. Wong A.H.C. The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage. PeerJ 2017 5 e3933 10.7717/peerj.3933 29062606
    [Google Scholar]
  40. Court J. Keverne J. Svedberg M. Lee M. Marutle A. Thomas A. Perry E. Bednar I. Nordberg A. Nordberg A. Nicotine reduces Aβ in the brain and cerebral vessels of APPsw mice. Eur. J. Neurosci. 2004 19 10 2703 2710 10.1111/j.0953‑816X.2004.03377.x 15147304
    [Google Scholar]
  41. Nordberg A. Hellström-Lindahl E. Lee M. Johnson M. Mousavi M. Hall R. Perry E. Bednar I. Court J. Chronic nicotine treatment reduces β‐amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J. Neurochem. 2002 81 3 655 658 10.1046/j.1471‑4159.2002.00874.x 12065674
    [Google Scholar]
  42. Unger C. Svedberg M.M. Yu W.F. Hedberg M.M. Nordberg A. Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice. J. Pharmacol. Exp. Ther. 2006 317 1 30 36 10.1124/jpet.105.098566 16354790
    [Google Scholar]
  43. Oddo S. Caccamo A. Green K.N. Liang K. Tran L. Chen Y. Leslie F.M. LaFerla F.M. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2005 102 8 3046 3051 10.1073/pnas.0408500102 15705720
    [Google Scholar]
  44. Sabbagh M.N. Walker D.G. Reid R.T. Stadnick T. Anand K. Lue L.F. Absence of effect of chronic nicotine administration on amyloid beta peptide levels in transgenic mice overexpressing mutated human APP (Sw, Ind). Neurosci. Lett. 2008 448 2 217 220 10.1016/j.neulet.2008.10.004 18926877
    [Google Scholar]
  45. Esteves I.M. Lopes-Aguiar C. Rossignoli M.T. Ruggiero R.N. Broggini A.C.S. Bueno-Junior L.S. Kandratavicius L. Monteiro M.R. Romcy-Pereira R.N. Leite J.P. Chronic nicotine attenuates behavioral and synaptic plasticity impairments in a streptozotocin model of Alzheimer’s disease. Neuroscience 2017 353 87 97 10.1016/j.neuroscience.2017.04.011 28433649
    [Google Scholar]
  46. Attaway C.M. Compton D.M. Turner M.D. The effects of nicotine on learning and memory: A neuropsychological assessment in young and senescent Fischer 344 rats. Physiol. Behav. 1999 67 3 421 431 10.1016/S0031‑9384(99)00081‑5 10497962
    [Google Scholar]
  47. Vicens P. Carrasco M.C. Redolat R. Effects of early training and nicotine treatment on the performance of male NMRI mice in the water maze. Neural Plast. 2003 10 4 303 317 10.1155/NP.2003.303 15152984
    [Google Scholar]
  48. Harmych S.J. Kumar J. Bouni M.E. Chadee D.N. Nicotine inhibits MAPK signaling and spheroid invasion in ovarian cancer cells. Exp. Cell Res. 2020 394 1 112167 10.1016/j.yexcr.2020.112167 32649943
    [Google Scholar]
  49. Shytle R.D. Mori T. Townsend K. Vendrame M. Sun N. Zeng J. Ehrhart J. Silver A.A. Sanberg P.R. Tan J. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J. Neurochem. 2004 89 2 337 343 10.1046/j.1471‑4159.2004.02347.x 15056277
    [Google Scholar]
  50. Swan G.E. Lessov-Schlaggar C.N. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol. Rev. 2007 17 3 259 273 10.1007/s11065‑007‑9035‑9 17690985
    [Google Scholar]
  51. Quik M. O’Leary K. Tanner C.M. Nicotine and Parkinson’s disease: Implications for therapy. Mov. Disord. 2008 23 12 1641 1652 10.1002/mds.21900 18683238
    [Google Scholar]
  52. Picciotto M.R. Kenny P.J. Mechanisms of nicotine addiction. Cold Spring Harb. Perspect. Med. 2021 11 5 a039610 10.1101/cshperspect.a039610 32341069
    [Google Scholar]
  53. Castro E.M. Lotfipour S. Leslie F.M. Nicotine on the developing brain. Pharmacol. Res. 2023 190 106716 10.1016/j.phrs.2023.106716 36868366
    [Google Scholar]
  54. Singer S. Rossi S. Verzosa S. Hashim A. Lonow R. Cooper T. Sershen H. Lajtha A. Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem. Res. 2004 29 9 1779 1792 10.1023/B:NERE.0000035814.45494.15 15453274
    [Google Scholar]
  55. Guo J. Kim D. Gao J. Kurtyka C. Chen H. Yu C. Wu D. Mittal A. Beg A.A. Chellappan S.P. Haura E.B. Cheng J.Q. RETRACTED ARTICLE: IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. Oncogene 2013 32 2 151 159 10.1038/onc.2012.39 22330135
    [Google Scholar]
  56. Han X. Zhou N. Hu H. Li X. Liu H. Nicotine alleviates cortical neuronal injury by suppressing neuroinflammation and upregulating neuronal PI3K-AKT signaling in an eclampsia-like seizure model. Neurotox. Res. 2020 38 3 665 681 10.1007/s12640‑020‑00265‑2 32767216
    [Google Scholar]
  57. Hoskin J.L. Al-Hasan Y. Sabbagh M.N. Nicotinic acetylcholine receptor agonists for the treatment of Alzheimer’s dementia: An update. Nicotine Tob. Res. 2019 21 3 370 376 10.1093/ntr/nty116 30137524
    [Google Scholar]
  58. Changeux J.P. Bertrand D. Corringer P.J. Dehaene S. Edelstein S. Léna C. Le Novère N. Marubio L. Picciotto M. Zoli M. Brain nicotinic receptors: Structure and regulation, role in learning and reinforcement. Brain Res. Brain Res. Rev. 1998 26 2-3 198 216 10.1016/S0165‑0173(97)00040‑4 9651527
    [Google Scholar]
  59. Durazzo T.C. Mattsson N. Weiner M.W. Alzheimer’s Disease Neuroimaging Initiative Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimers Dement. 2014 10 3S Suppl. S122 S145 10.1016/j.jalz.2014.04.009 24924665
    [Google Scholar]
/content/journals/car/10.2174/0115672050363992250127072919
Loading
/content/journals/car/10.2174/0115672050363992250127072919
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: nicotine ; Presenilin ; Alzheimer’s disease ; RNA sequencing ; behavior
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test