Skip to content
2000
image of Tauopathy in AD: Therapeutic Potential of MARK-4

Abstract

Alzheimer's disease (AD) is one of the leading causes of cognitive decline, which leads to dementia and poses significant challenges for its therapy. The reason is primarily the ineffective available treatments targeting the underlying pathology of AD. It is a neurodegenerative disease that is mainly characterised by the various molecular pathways contributing to its complex pathology, including extracellular amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles (NFTs), oxidative stress, and neuroinflammation. One of the crucial features is the hyperphosphorylation of tau proteins, which is facilitated by microtubule affinity-regulating kinase-4 (MARK-4). The kinase plays a crucial role in the disease development by modifying microtubule integrity, leading to neuronal dysfunction and death. MARK-4 is thus a druggable target and has a pivotal role in AD. Amongst MARK-4 inhibitors, 16 compounds demonstrate significant capacity in molecular docking studies, showing high binding affinity to MARK-4 and promising potential for tau inhibition. Further, investigations provide evidence of their neuroprotective properties. The present review mainly focuses on the role of MARK-4 and its potential inhibitors used in treating AD, which have been thoroughly investigated and .

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050358397250126151707
2025-02-10
2025-03-26
Loading full text...

Full text loading...

References

  1. Breijyeh Z. Karaman R. Comprehensive review on alzheimer’s Disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  2. Kumar A. Singh A. Ekavali A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep. 2015 67 2 195 203 10.1016/j.pharep.2014.09.004 25712639
    [Google Scholar]
  3. Brookmeyer R. Johnson E. Ziegler-Graham K. Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007 3 3 186 191 10.1016/j.jalz.2007.04.381 19595937
    [Google Scholar]
  4. Liang C.S. Li D.J. Yang F.C. Tseng P.T. Carvalho A.F. Stubbs B. Thompson T. Mueller C. Shin J.I. Radua J. Stewart R. Rajji T.K. Tu Y.K. Chen T.Y. Yeh T.C. Tsai C.K. Yu C.L. Pan C.C. Chu C.S. Mortality rates in Alzheimer’s disease and non-Alzheimer’s dementias: A systematic review and meta-analysis. Lancet Healthy Longev. 2021 2 8 e479 e488 10.1016/S2666‑7568(21)00140‑9 36097997
    [Google Scholar]
  5. Better M.A. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  6. Culberson J.W. Kopel J. Sehar U. Reddy P.H. Urgent needs of caregiving in ageing populations with Alzheimer’s disease and other chronic conditions: Support our loved ones. Ageing Res. Rev. 2023 90 102001 10.1016/j.arr.2023.102001 37414157
    [Google Scholar]
  7. Holtzman D.M. Morris J.C. Goate A.M. Alzheimer’s disease: The challenge of the second century. Vol. 3. Sci. Transl. Med. 2011 3 77 10.1126/scitranslmed.3002369 21471435
    [Google Scholar]
  8. Selkoe D.J. Schenk D. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 2003 43 1 545 584 10.1146/annurev.pharmtox.43.100901.140248 12415125
    [Google Scholar]
  9. Calabrò M. Rinaldi C. Santoro G. Crisafulli C. The biological pathways of Alzheimer disease: A review. AIMS Neurosci. 2021 8 1 86 132 10.3934/Neuroscience.2021005 33490374
    [Google Scholar]
  10. Jellinger K.A. Neuropathology of the Alzheimer’s continuum: An update. Free. Neuropathol. 2020 1 1 32 10.17879/freeneuropathology‑2020‑3050 37283686
    [Google Scholar]
  11. Kinghorn K.J. Woodling N.S. Gray S.C. Shifting equilibriums in Alzheimer’s disease: The complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis. Neural Regen. Res. 2020 15 7 1208 1219 10.4103/1673‑5374.272571 31960800
    [Google Scholar]
  12. Gadhave K. Kumar D. Uversky V.N. Giri R. A multitude of signaling pathways associated with Alzheimer’s disease and their roles in AD pathogenesis and therapy. Med. Res. Rev. 2021 41 5 2689 2745 10.1002/med.21719 32783388
    [Google Scholar]
  13. Gibson P.H. Tomlinson B.E. Numbers of Hirano bodies in the hippocampus of normal and demented people with alzheimer’s disease. J. Neurol. Sci. 1977 33 1-2 199 206 10.1016/0022‑510X(77)90193‑9 903782
    [Google Scholar]
  14. Shareena G. Kumar D. Exploring the role of tau proteins in alzheimer’s disease from typical functioning maps to aberrant fibrillary deposits in the brain. Deciphering Drug Targets for Alzheimer’s Disease Singapore Springer 2023 321 349 10.1007/978‑981‑99‑2657‑2_14
    [Google Scholar]
  15. Kesharwani P. Malaiya A. Singhai M. Singh M. Prajapati S.K. Choudhury H. Fatima M. Alexander A. Dubey S.K. Greish K. Recent update on the alzheimer’s disease progression, Diagnosis and treatment approaches. Curr. Drug Targets 2022 23 10 978 1001 10.2174/1389450123666220526155144 35657283
    [Google Scholar]
  16. Ittner A. Ke Y.D. Eersel J. Gladbach A. Götz J. Ittner L.M. Brief update on different roles of tau in neurodegeneration. IUBMB Life 2011 63 7 495 502 10.1002/iub.467 21698753
    [Google Scholar]
  17. Gendron T.F. Petrucelli L. The role of tau in neurodegeneration. Mol. Neurodegener. 2009 4 1 13 10.1186/1750‑1326‑4‑13 19284597
    [Google Scholar]
  18. Engin A.B. Engin A. Alzheimer’s disease and protein kinases. Adv. Exp. Med. Biol. 2021 285 321 10.1007/978‑3‑030‑49844‑3_11 33539020
    [Google Scholar]
  19. Ferrer I. Gomez-Isla T. Puig B. Freixes M. Ribé E. Dalfó E. Avila J. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr. Alzheimer Res. 2005 2 1 3 18 10.2174/1567205052772713 15977985
    [Google Scholar]
  20. Oba T. Saito T. Asada A. Shimizu S. Iijima K.M. Ando K. Microtubule affinity–regulating kinase 4 with an alzheimer’s disease-related mutation promotes tau accumulation and exacerbates neurodegeneration. J. Biol. Chem. 2020 295 50 17138 17147 10.1074/jbc.RA120.014420 33020179
    [Google Scholar]
  21. Sun W. Lee S. Huang X. Liu S. Inayathullah M. Kim K.M. Tang H. Ashford J.W. Rajadas J. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer’s disease treatment. Sci. Rep. 2016 6 1 34784 10.1038/srep34784 27708431
    [Google Scholar]
  22. Naz F. Anjum F. Islam A. Ahmad F. Hassan M.I. Microtubule affinity-regulating kinase 4: Structure, function, and regulation. Cell Biochem. Biophys. 2013 67 2 485 499 10.1007/s12013‑013‑9550‑7 23471664
    [Google Scholar]
  23. Miller C.R. Oliver K.E. Farley J.H. MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol. Oncol. 2014 133 1 128 137 10.1016/j.ygyno.2014.01.008 24434059
    [Google Scholar]
  24. Alam M. Ahmed S. Abid M. Hasan G.M. Islam A. Hassan M.I. Therapeutic targeting of microtubule affinity‐regulating kinase 4 in cancer and neurodegenerative diseases. J. Cell. Biochem. 2023 124 9 1223 1240 10.1002/jcb.30468 37661636
    [Google Scholar]
  25. Waseem R. Anwar S. Khan S. Shamsi A. Hassan M.I. Anjum F. Shafie A. Islam A. Yadav D.K. MAP/microtubule affinity regulating kinase 4 inhibitory potential of irisin: A new therapeutic strategy to combat cancer and alzheimer’s disease. int. j. mol. sci. 2021 22 20 10986 10.3390/ijms222010986 34681645
    [Google Scholar]
  26. Annadurai N. Agrawal K. Džubák P. Hajdúch M. Das V. Microtubule affinity-regulating kinases are potential druggable targets for alzheimer’s disease. Cell. Mol. Life Sci. 2017 74 22 4159 4169 10.1007/s00018‑017‑2574‑1 28634681
    [Google Scholar]
  27. Anwar S. Shahwan M. Hasan G.M. Islam A. Hassan M.I. Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell. Signal. 2022 99 110434 10.1016/j.cellsig.2022.110434 35961526
    [Google Scholar]
  28. Trinczek B. Brajenovic M. Ebneth A. Drewes G. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J. Biol. Chem. 2004 279 7 5915 5923 10.1074/jbc.M304528200 14594945
    [Google Scholar]
  29. Drewes G. Trinczek B. Illenberger S. Biernat J. Mandelkow E.M. Mandelkow E. 758 Microtubule Affinity Regulating Kinase (MARK), a potential regulator of the microtubule cytoskeleton. Neurobiol. Aging 1996 17 4 S188 10.1016/S0197‑4580(96)80760‑3
    [Google Scholar]
  30. Pang K. Wang W. Qin J.X. Shi Z.D. Hao L. Ma Y.Y. Xu H. Wu Z.X. Pan D. Chen Z.S. Han C.H. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm 2022 3 4 e175 10.1002/mco2.175 36349142
    [Google Scholar]
  31. Carlomagno Y. Chung D.C. Yue M. Castanedes-Casey M. Madden B.J. Dunmore J. Tong J. DeTure M. Dickson D.W. Petrucelli L. Cook C. An acetylation–phosphorylation switch that regulates tau aggregation propensity and function. J. Biol. Chem. 2017 292 37 15277 15286 10.1074/jbc.M117.794602 28760828
    [Google Scholar]
  32. Cook C. Carlomagno Y. Gendron T.F. Dunmore J. Scheffel K. Stetler C. Davis M. Dickson D. Jarpe M. DeTure M. Petrucelli L. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum. Mol. Genet. 2014 23 1 104 116 10.1093/hmg/ddt402 23962722
    [Google Scholar]
  33. Duan Y. Dong S. Gu F. Hu Y. Zhao Z. Advances in the pathogenesis of alzheimer’s disease: Focusing on tau-mediated neurodegeneration. Transl. Neurodegener. 2012 1 1 24 10.1186/2047‑9158‑1‑24 23241453
    [Google Scholar]
  34. Annadurai N. Das V. Microtubule affinity regulating kinase 4: A potential drug target from cancers to neurodegenerative diseases. Protein Kinase Inhibitors. Discovery to Therapeutics USA 2022 10.1016/B978‑0‑323‑91287‑7.00017‑X
    [Google Scholar]
  35. Gu G.J. Lund H. Wu D. Blokzijl A. Classon C. von Euler G. Landegren U. Sunnemark D. Kamali-Moghaddam M. Role of individual MARK isoforms in phosphorylation of tau at Ser²⁶² in Alzheimer’s disease. Neuromolecular Med. 2013 15 3 458 469 10.1007/s12017‑013‑8232‑3 23666762
    [Google Scholar]
  36. Sultanakhmetov G. Kato I. Asada A. Saito T. Ando K. Microtubule‐affinity regulating kinase family members distinctively affect tau phosphorylation and promote its toxicity in a Drosophila model. Genes Cells 2024 29 4 337 346 10.1111/gtc.13101 38329182
    [Google Scholar]
  37. Adnan M. DasGupta D. Anwar S. Shamsi A. Siddiqui A.J. Snoussi M. Bardakci F. Patel M. Hassan M.I. Mechanistic insights into MARK4 inhibition by galantamine toward therapeutic targeting of Alzheimer’s disease. Front. Pharmacol. 2023 14 1276179 10.3389/fphar.2023.1276179 37795023
    [Google Scholar]
  38. Sack J.S. Gao M. Kiefer S.E. Myers J.E. Jr Newitt J.A. Wu S. Yan C. Crystal structure of microtubule affinity-regulating kinase 4 catalytic domain in complex with a pyrazolopyrimidine inhibitor. Acta Crystallogr. F Struct. Biol. Commun. 2016 72 2 129 134 10.1107/S2053230X15024747 26841763
    [Google Scholar]
  39. Naz F. Sami N. Islam A. Ahmad F. Hassan M.I. Ubiquitin-associated domain of MARK4 provides stability at physiological pH. Int. J. Biol. Macromol. 2016 93 Pt A 1147 1154 10.1016/j.ijbiomac.2016.09.087 27677563
    [Google Scholar]
  40. Drewes G. Ebneth A. Preuss U. Mandelkow E.M. Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 1997 89 2 297 308 10.1016/S0092‑8674(00)80208‑1 9108484
    [Google Scholar]
  41. Grundke-Iqbal I. Iqbal K. Tung Y.C. Quinlan M. Wisniewski H.M. Binder L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986 83 13 4913 4917 10.1073/pnas.83.13.4913 3088567
    [Google Scholar]
  42. Timm T. Marx A. Panneerselvam S. Mandelkow E. Mandelkow E.M. Structure and regulation of mark, a kinase involved in abnormal phosphorylation of tau protein. 2008 9 S2 S9 10.1186/1471‑2202‑9‑S2‑S9 19090997
    [Google Scholar]
  43. Schmidt S.H. Weng J.H. Aoto P.C. Boassa D. Mathea S. Silletti S. Hu J. Wallbott M. Komives E.A. Knapp S. Herberg F.W. Taylor S.S. Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proc. Natl. Acad. Sci. USA 2021 118 23 e2100844118 10.1073/pnas.2100844118 34088839
    [Google Scholar]
  44. Zhong Q. Xiao X. Qiu Y. Xu Z. Chen C. Chong B. Zhao X. Hai S. Li S. An Z. Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. Med. Comm. 2020 4 3 10.1002/mco2.261 37143582
    [Google Scholar]
  45. Lund H. Gustafsson E. Svensson A. Nilsson M. Berg M. Sunnemark D. von Euler G. MARK4 and MARK3 associate with early tau phosphorylation in Alzheimer’s disease granulovacuolar degeneration bodies. Acta Neuropathol. Commun. 2014 2 1 22 10.1186/2051‑5960‑2‑22 24533944
    [Google Scholar]
  46. Basheer N. Smolek T. Hassan I. Liu F. Iqbal K. Zilka N. Novak P. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer’s disease? From preclinical studies to the clinical trials. Mol. Psychiatry 2023 28 6 2197 2214 10.1038/s41380‑023‑02113‑z 37264120
    [Google Scholar]
  47. Lizcano J.M. Göransson O. Toth R. Deak M. Morrice N.A. Boudeau J. Hawley S.A. Udd L. Mäkelä T.P. Hardie D.G. Alessi D.R. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004 23 4 833 843 10.1038/sj.emboj.7600110 14976552
    [Google Scholar]
  48. Wang Y.T. Salter M.W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 1994 369 6477 233 235 10.1038/369233a0 7514272
    [Google Scholar]
  49. Hooper C. Killick R. Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 2008 104 6 1433 1439 10.1111/j.1471‑4159.2007.05194.x 18088381
    [Google Scholar]
  50. D.P. H A. S, W. N. mediators of tau phosphorylation in the pathogenesis of alzheimer’s disease. Expert Rev. Neurother. 2009 9 11
    [Google Scholar]
  51. Llorens-Martín M. Jurado J. Hernández F. Ávila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front. Mol. Neurosci. 2014 7 46 10.3389/fnmol.2014.00046 24904272
    [Google Scholar]
  52. Sayas C.L. Ávila J. GSK-3 and tau: A key duet in alzheimer’s disease. Vol. 10. Cells 2021 10 4 721 10.3390/cells10040721 24904272
    [Google Scholar]
  53. Wang J.W. Imai Y. Lu B. Activation of PAR-1 kinase and stimulation of tau phosphorylation by diverse signals require the tumor suppressor protein LKB1. J. Neurosci. 2007 27 3 574 581 10.1523/JNEUROSCI.5094‑06.2007 17234589
    [Google Scholar]
  54. Pachima Y.I. Zhou L. Lei P. Gozes I. Microtubule-tau interaction as a therapeutic Target for Alzheimer’s Disease. J. Mol. Neurosci. 2016 58 2 145 152 10.1007/s12031‑016‑0715‑x 26816082
    [Google Scholar]
  55. Hoffmann I. Clarke P.R. Marcote M.J. Karsenti E. Draetta G. Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 1993 12 1 53 63 10.1002/j.1460‑2075.1993.tb05631.x 8428594
    [Google Scholar]
  56. Rovina D. Fontana L. Monti L. Novielli C. Panini N. Sirchia S.M. Erba E. Magnani I. Larizza L. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics. Eur. J. Cell Biol. 2014 93 8-9 355 365 10.1016/j.ejcb.2014.07.004 25123532
    [Google Scholar]
  57. Kaech S. Ludin B. Matus A. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 1996 17 6 1189 1199 10.1016/S0896‑6273(00)80249‑4 8982165
    [Google Scholar]
  58. Paudel Y.N. Angelopoulou E. Jones N.C. O’Brien T.J. Kwan P. Piperi C. Othman I. Shaikh M.F. Tau related pathways as a connecting link between epilepsy and alzheimer’s disease. ACS Chem. Neurosci. 2019 10 10 4199 4212 10.1021/acschemneuro.9b00460 31532186
    [Google Scholar]
  59. Fišar Z. Linking the amyloid, tau, and mitochondrial hypotheses of alzheimer’s disease and identifying promising drug targets. Biomolecules 2022 12 11 1676 10.3390/biom12111676 36421690
    [Google Scholar]
  60. Ittner A Chua SW Bertz J Volkerling A Van Der Hoven J Gladbach A Przybyla M. Bi M. Hummel A.V. Stevens C.H. Ippati S. Suh L.S. Macmillan A. Sutherland G. Kril J.J. Silva A.P.G. Mackay J.P. Poljak A. Delerue F. K. Y.D. Ittner L.M. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in alzheimer’s mice. Science. 2016 354 6314 904 908 10.1126/science.aah6205 27856911
    [Google Scholar]
  61. Rúa J. de Arriaga D. García-Armesto M.R. Busto F. del Valle P. Binary combinations of natural phenolic compounds with gallic acid or with its alkyl esters: An approach to understand the antioxidant interactions. Eur. Food Res. Technol. 2017 243 7 1211 1217 10.1007/s00217‑016‑2838‑2
    [Google Scholar]
  62. Sanchez-Martin V. Plaza-Calonge M.C. Soriano-Lerma A. Ortiz-Gonzalez M. Linde-Rodriguez A. Perez-Carrasco V. Ramirez-Macias I. Cuadros M. Gutierrez-Fernandez J. Murciano-Calles J. Rodríguez-Manzaneque J.C. Soriano M. Garcia-Salcedo J.A. Gallic acid: A natural phenolic compound exerting antitumoral activities in colorectal cancer via interaction with g-quadruplexes. Cancers (Basel) 2022 14 11 2648 10.3390/cancers14112648 35681628
    [Google Scholar]
  63. Khan P. Rahman S. Queen A. Manzoor S. Naz F. Hasan G.M. Luqman S. Kim J. Islam A. Ahmad F. Hassan M.I. Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: In silico and In vitro Studies. Sci. Rep. 2017 7 1 9470 10.1038/s41598‑017‑09941‑4 28842631
    [Google Scholar]
  64. Anwar S. Khan S. Shamsi A. Anjum F. Shafie A. Islam A. Ahmad F. Hassan M.I. Structure‐based investigation of MARK4 inhibitory potential of Naringenin for therapeutic management of cancer and neurodegenerative diseases. J. Cell. Biochem. 2021 122 10 1445 1459 10.1002/jcb.30022 34121218
    [Google Scholar]
  65. Dubey T. Kushwaha P. Thulasiram H.V. Chandrashekar M. Chinnathambi S. Bacopa monnieri reduces Tau aggregation and Tau-mediated toxicity in cells. Int. J. Biol. Macromol. 2023 234 123171 10.1016/j.ijbiomac.2023.123171 36716837
    [Google Scholar]
  66. Fatima U. Roy S. Ahmad S. Al-Keridis L.A. Alshammari N. Adnan M. Islam A. Hassan M.I. Investigating neuroprotective roles of bacopa monnieri extracts: Mechanistic insights and therapeutic implications. Biomed. Pharmacother. 2022 153 113469 10.1016/j.biopha.2022.113469 36076495
    [Google Scholar]
  67. Abdul Manap A.S. Vijayabalan S. Madhavan P. Chia Y.Y. Arya A. Wong E.H. Rizwan F. Bindal U. Koshy S. Bacopa monnieri, a neuroprotective lead in alzheimer disease: A review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights 2019 13 10.1177/1177392819866412 31391778
    [Google Scholar]
  68. Banerjee S. Anand U. Ghosh S. Ray D. Ray P. Nandy S. Deshmukh G.D. Tripathi V. Dey A. Bacosides fromBacopa monnieri extract: An overview of the effects on neurological disorders. Phytother. Res. 2021 35 10 5668 5679 10.1002/ptr.7203 34254371
    [Google Scholar]
  69. Fatima U. Roy S. Ahmad S. Ali S. Elkady W.M. Khan I. Alsaffar R.M. Adnan M. Islam A. Hassan M.I. Pharmacological attributes of Bacopa monnieri extract: Current updates and clinical manifestation. Front. Nutr. 2022 9 972379 10.3389/fnut.2022.972379
    [Google Scholar]
  70. Valotto Neto L.J. Reverete de Araujo M. Moretti Junior R.C. Mendes Machado N. Joshi R.K. dos Santos Buglio D. Barbalho Lamas C. Direito R. Fornari Laurindo L. Tanaka M. Barbalho S.M. Investigating the neuroprotective and cognitive-enhancing effects of Bacopa monnieri: A systematic review focused on inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Antioxidants 2024 13 4 393 10.3390/antiox13040393 38671841
    [Google Scholar]
  71. Adnan M. Anwar S. DasGupta D. Patel M. Elasbali A.M. Alhassan H.H. Shafie A. Siddiqui A.J. Bardakci F. Snoussi M. Hassan M.I. Targeting inhibition of microtubule affinity regulating kinase 4 by harmaline: Strategy to combat Alzheimer’s disease. Int. J. Biol. Macromol. 2023 224 188 195 10.1016/j.ijbiomac.2022.10.115 36257368
    [Google Scholar]
  72. Alrouji M. DasGupta D. Ashraf G.M. Bilgrami A.L. Alhumaydhi F.A. Al Abdulmonem W. Shahwan M. Alsayari A. Atiya A. Shamsi A. Inhibition of microtubule affinity regulating kinase 4 by an acetylcholinesterase inhibitor, Huperzine A: Computational and experimental approaches. Int. J. Biol. Macromol. 2023 235 123831 10.1016/j.ijbiomac.2023.123831 36870649
    [Google Scholar]
  73. Guo L. Sun X. Liao Y. Li W. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Neural Regen. Res. 2017 12 6 953 958 10.4103/1673‑5374.208590 28761429
    [Google Scholar]
  74. Wu K.J. Wang S.Q. Shi R.P. Qin L.H. Ahmed B.Y. Lu C.F. Wang S-X. Wang F-F. Wang G. Zhou S. Neuroprotective effect of ganoderma lucidum polysaccharides in an epileptic rat model. Curr. Top. Nutraceutical Res. 2021 20 2 416 423 10.37290/ctnr2641‑452X.20:416‑423
    [Google Scholar]
  75. Ahmad F. Singh G. Soni H. Tandon S. Identification of potential neuroprotective compound from Ganoderma lucidum extract targeting microtubule affinity regulation kinase 4 involved in Alzheimer’s disease through molecular dynamics simulation and MMGBSA. Aging Med. (Milton) 2023 6 2 144 154 10.1002/agm2.12232 37287673
    [Google Scholar]
  76. Majdalawieh A.F. Terro T.M. Ahari S.H. Abu-Yousef I.A. α-Mangostin: A xanthone derivative in mangosteen with potent anti-cancer properties. Biomolecules 2024 14 11 1382 10.3390/biom14111382 39595559
    [Google Scholar]
  77. Yang A. Liu C. Wu J. Kou X. Shen R. A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease. Eur. J. Pharmacol. 2021 897 173950 10.1016/j.ejphar.2021.173950 33607107
    [Google Scholar]
  78. Khan P. Queen A. Mohammad T. Smita Khan N.S. Hafeez Z.B. Hassan M.I. Ali S. Identification of α-mangostin as a potential inhibitor of microtubule affinity regulating kinase 4. J. Nat. Prod. 2019 82 8 2252 2261 10.1021/acs.jnatprod.9b00372 31343173
    [Google Scholar]
  79. Parveen I. Khan P. Ali S. Hassan M.I. Ahmed N. Synthesis, molecular docking and inhibition studies of novel 3-N-aryl substituted-2-heteroarylchromones targeting microtubule affinity regulating kinase 4 inhibitors. Eur. J. Med. Chem. 2018 159 166 177 10.1016/j.ejmech.2018.09.030 30290280
    [Google Scholar]
  80. Shamsi A. Anwar S. Mohammad T. Alajmi M.F. Hussain A. Rehman M.T. Hasan G.M. Islam A. Hassan M.I. MARK4 inhibited by AChE inhibitors, donepezil and rivastigmine tartrate: Insights into alzheimer’s disease therapy. Biomolecules 2020 10 5 789 10.3390/biom10050789 32443670
    [Google Scholar]
  81. Li FJ Liu Y Yuan Y Yang B Liu ZM Huang LQ Molecular interaction studies of acetylcholinesterase with potential acetylcholinesterase inhibitors from the root of rhodiola crenulata using molecular docking and isothermal titration calorimetry methods. J. Biomol. Struct. Dyn. 2017 104 527 532 10.1016/j.ijbiomac.2017.06.066 28625836
    [Google Scholar]
  82. Naqvi A.A.T. Jairajpuri D.S. Noman O.M.A. Hussain A. Islam A. Ahmad F. Alajmi M.F. Hassan M.I. Evaluation of pyrazolopyrimidine derivatives as microtubule affinity regulating kinase 4 inhibitors: Towards therapeutic management of Alzheimer’s disease. J. Biomol. Struct. Dyn. 2020 38 13 3892 3907 10.1080/07391102.2019.1666745 31512980
    [Google Scholar]
  83. Ahmed S. Queen A. Irfan I. Siddiqui M.N. Abdulhameed Almuqdadi H.T. Setia N. Ansari J. Hussain A. Hassan M.I. Abid M. Vanillin-isatin hybrid-induced mark4 inhibition as a promising therapeutic strategy against hepatocellular carcinoma. ACS Omega 2024 9 24 25945 25959 10.1021/acsomega.4c00661 38911744
    [Google Scholar]
  84. Hruba L. Polishchuk P. Das V. Hajduch M. Dzubak P. An identification of MARK inhibitors using high throughput MALDI-TOF mass spectrometry. Biomed. Pharmacother. 2022 146 112549 10.1016/j.biopha.2021.112549 34923338
    [Google Scholar]
  85. Anwar S. Shamsi A. Kar R.K. Queen A. Islam A. Ahmad F. Structural and biochemical investigation of MARK4 inhibitory potential of cholic acid: Towards therapeutic implications in neurodegenerative diseases. Int. J. Biol. Macromol. 2020 161 596 604
    [Google Scholar]
  86. Samra S. Sharma M. Vaseghi-Shanjani M Del Bel A. Byres K.L Lin S. Gain-of-function MARK4 variant associates with pediatric neurodevelopmental disorder and dysmorphism. HGG Adv. 2023 5 1 100259 10.1016/j.xhgg.2023.100259 38041405
    [Google Scholar]
  87. Li F. Liu Z. Sun H. Li C. Wang W. Ye L. Yan C. Tian J. Wang H. PCC0208017, a novel small-molecule inhibitor of MARK3/MARK4, suppresses glioma progression in vitro and in vivo. Acta Pharm. Sin. B 2020 10 2 289 300 10.1016/j.apsb.2019.09.004 32082974
    [Google Scholar]
  88. Shamsi A. DasGupta D. Alhumaydhi F.A. Khan M.S. Alsagaby S.A. Al Abdulmonem W. Hassan M.I. Yadav D.K. Inhibition of MARK4 by serotonin as an attractive therapeutic approach to combat Alzheimer’s disease and neuroinflammation. RSC Medicinal Chemistry 2022 13 6 737 745 10.1039/D2MD00053A 35814926
    [Google Scholar]
  89. Pathak G.A. Zhou Z. Silzer T.K. Barber R.C. Phillips N.R. Two‐stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer’s and cancer. Alzheimers Dement. 2020 16 1 162 177 10.1002/alz.12003 31914222
    [Google Scholar]
  90. Bachhav Y Mannhold R Buschmann H Holenz J. Targeted drug delivery. Methods and Principles in Medicinal Chemistry New York Wiley‐VCH GmbH 2022 1 438 10.1002/9783527827855
    [Google Scholar]
  91. Lochhead J.J. Yang J. Ronaldson P.T. Davis T.P. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front. Physiol. 2020 11 914 10.3389/fphys.2020.00914 32848858
    [Google Scholar]
  92. Abbott N.J. Patabendige A.A.K. Dolman D.E.M. Yusof S.R. Begley D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010 37 1 13 25 10.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  93. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w
    [Google Scholar]
  94. Johanson C.E. Stopa E.G. McMillan P.N. The blood-cerebrospinal fluid barrier: Structure and functional significance. Methods Mol. Biol. 2011 686 101 131 10.1007/978‑1‑60761‑938‑3_4 21082368
    [Google Scholar]
  95. Chahar R.K. Tiwari C. Malik P. Jaiswal P.K. Brain-targeted drug delivery system: A novel approach. J. Drug Deliv. Ther. 2022 12 6 171 178 10.22270/jddt.v12i6.5776
    [Google Scholar]
  96. Jamal A. Yuan T. Galvan S. Castellano A. Riva M. Secoli R. Falini A. Bello L. Rodriguez y Baena F. Dini D. Insights into infusion-based targeted drug delivery in the brain: Perspectives, challenges and opportunities. Int. J. Mol. Sci. 2022 23 6 3139 10.3390/ijms23063139
    [Google Scholar]
  97. Zlokovic B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008 57 2 178 201 10.1016/j.neuron.2008.01.003 18215617
    [Google Scholar]
  98. Carvey P.M. Hendey B. Monahan A.J. The blood–brain barrier in neurodegenerative disease: A rhetorical perspective. J. Neurochem. 2009 111 2 291 314 10.1111/j.1471‑4159.2009.06319.x 19659460
    [Google Scholar]
  99. Salwa.   Kumar L. Pathak Y.V. Expert opinion on current challenges and future directions of nanocarriers for brain targeted drug delivery. Biomed. Pharmacother. 2022 777 796 10.1016/B978‑0‑323‑90773‑6.00016‑6
    [Google Scholar]
  100. Nguyen T.T. Dung Nguyen T.T. Vo T.K. Tran N.M.A. Nguyen M.K. Van Vo T. Van Vo G. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother. 2021 143 112117 10.1016/j.biopha.2021.112117 34479020
    [Google Scholar]
  101. Duan L. Li X. Ji R. Hao Z. Kong M. Wen X. Guan F. Ma S. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases. Polymers (Basel) 2023 15 9 2196 10.3390/polym15092196 37177342
    [Google Scholar]
  102. Shea T.B. Ortiz D. Nicolosi R.J. Kumar R. Watterson A.C. Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. J. Alzheimers Dis. 2005 7 4 297 301 10.3233/JAD‑2005‑7405 16131731
    [Google Scholar]
  103. Karthivashan G. Ganesan P. Park S.Y. Kim J.S. Choi D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018 25 1 307 320 10.1080/10717544.2018.1428243 29350055
    [Google Scholar]
  104. Chung S. Peters J.M. Detyniecki K. Tatum W. Rabinowicz A.L. Carrazana E. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters. Epilepsy Behav. Rep. 2023 21 100581 10.1016/j.ebr.2022.100581 36636458
    [Google Scholar]
  105. Du L.N. Jin Y.G. Brain-targeted nasal drug delivery systems for the treatment of neurodegenerative diseases. J. Int. Pharma. Res. 2016 43 1
    [Google Scholar]
  106. Huang Q. Chen X. Yu S. Gong G. Shu H. Research progress in brain-targeted nasal drug delivery. Front. Agin. Neurosci. 2023 15 1341295 10.3389/fnagi.2023.1341295
    [Google Scholar]
  107. Sauna Z.E. Lagassé H.A.D. Alexaki A. Simhadri V.L. Katagiri N.H. Jankowski W. Recent advances in (therapeutic protein) drug development. F1000 Res. 2017 6 113 10.12688/f1000research.9970.1 28232867
    [Google Scholar]
  108. Reddy A.S. Pati S.P. Kumar P.P. Pradeep H.N. Sastry G.N. Virtual screening in drug discovery -- a computational perspective. Curr. Protein Pept. Sci. 2007 8 4 329 351 10.2174/138920307781369427 17696867
    [Google Scholar]
  109. Mukerjee N. Al-Khafaji K. Maitra S. Suhail Wadi J. Sachdeva P. Ghosh A. Buchade R.S. Chaudhari S.Y. Jadhav S.B. Das P. Hasan M.M. Rahman M.H. Albadrani G.M. Altyar A.E. Kamel M. Algahtani M. Shinan K. Theyab A. Abdel-Daim M.M. Ashraf G.M. Rahman M.M. Sharma R. Recognizing novel drugs against Keap1 in Alzheimer’s disease using machine learning grounded computational studies. Front. Mol. Neurosci. 2022 15 1036552 10.3389/fnmol.2022.1036552 36561895
    [Google Scholar]
  110. Şahin S. A single-molecule with multiple investigations: Synthesis, characterization, computational methods, inhibitory activity against Alzheimer’s disease, toxicity, and ADME studies. Comput. Biol. Med. 2022 146 105514 10.1016/j.compbiomed.2022.105514 35462270
    [Google Scholar]
  111. Chang Y. Hawkins B.A. Du J.J. Groundwater P.W. Hibbs D.E. Lai F. A guide to in silico drug design. Vol. 15. Pharmaceutics 2023 15 1 49 10.3390/pharmaceutics15010049 36678678
    [Google Scholar]
  112. Peerzada M.N. Khan P. Khan N.S. Avecilla F. Siddiqui S.M. Hassan M.I. Azam A. Design and development of small-molecule arylaldoxime/5-nitroimidazole hybrids as potent inhibitors of MARK4: A promising approach for target-based cancer therapy. ACS Omega 2020 5 36 22759 22771 10.1021/acsomega.0c01703 32954123
    [Google Scholar]
  113. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  114. Jaki T. Chang C. Kuhlemeier A. Van Horn M.L. Predicting individual treatment effects: Challenges and opportunities for machine learning and artificial intelligence. Switzerland KI - Kunstliche Intelligenz 2024 1 6
    [Google Scholar]
/content/journals/car/10.2174/0115672050358397250126151707
Loading
/content/journals/car/10.2174/0115672050358397250126151707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: in silico ; Alzheimer’s disease ; in vitro ; treatment therapeutics ; MARK-4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test