Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer’s Disease (AD) is characterized by synapse loss and neurodegeneration, which leads to cognitive and psychiatric symptoms. Researchers worldwide have been studying therapeutic approaches aiming to induce plasticity and neuroprotection once AD has no cure and the existing treatments are limited. Environmental Enrichment (EE) is a change in housing conditions that promotes increased cognitive stimulus. Studies have demonstrated that EE acts as a plasticity modulator in several conditions and experimental models. In this review, we analyze and discuss the potential role of EE on plasticity modulation in different animal models but primarily on AD models. The data were extracted from the PubMed and ScienceDirect databases. The EE was shown to induce plasticity. LTP and behavior were enhanced in animals under different conditions, such as the AD model. The mechanisms were related to the glutamatergic system and excitatory/inhibitory balance. Moreover, many studies have evidenced that EE promotes the upregulation of BDNF and the synaptic proteins SYN and PSD95. These data also suggest a neuroprotective function performed by EE in different contexts, such as aging and AD. Therefore, an enriched environment can be a target of new therapeutic approaches that aim to induce neuroplasticity and neuroprotection against AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050348227241128095209
2024-12-02
2025-01-18
Loading full text...

Full text loading...

References

  1. ZhaoQ. TangX.C. Effects of huperzine A on acetylcholinesterase isoforms in vitro: Comparison with tacrine, donepezil, rivastigmine and physostigmine.Eur. J. Pharmacol.20024552-310110710.1016/S0014‑2999(02)02589‑X12445575
    [Google Scholar]
  2. Alzheimer’s Disease International World Alzheimer Report 2023.Alzheimer’s Disease International2023
    [Google Scholar]
  3. LivingstonG. SommerladA. OrgetaV. CostafredaS.G. HuntleyJ. AmesD. BallardC. BanerjeeS. BurnsA. Cohen-MansfieldJ. CooperC. FoxN. GitlinL.N. HowardR. KalesH.C. LarsonE.B. RitchieK. RockwoodK. SampsonE.L. SamusQ. SchneiderL.S. SelbækG. TeriL. MukadamN. Dementia prevention, intervention, and care.Lancet2017390101132673273410.1016/S0140‑6736(17)31363‑628735855
    [Google Scholar]
  4. BarkerW.W. LuisC.A. KashubaA. LuisM. HarwoodD.G. LoewensteinD. WatersC. JimisonP. ShepherdE. SevushS. Graff-RadfordN. NewlandD. ToddM. MillerB. GoldM. HeilmanK. DotyL. GoodmanI. RobinsonB. PearlG. DicksonD. DuaraR. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank.Alzheimer Dis. Assoc. Disord.200216420321210.1097/00002093‑200210000‑0000112468894
    [Google Scholar]
  5. JiaJ. WeiC. ChenS. LiF. TangY. QinW. ZhaoL. JinH. XuH. WangF. ZhouA. ZuoX. WuL. HanY. HanY. HuangL. WangQ. LiD. ChuC. ShiL. GongM. DuY. ZhangJ. ZhangJ. ZhouC. LvJ. LvY. XieH. JiY. LiF. YuE. LuoB. WangY. YangS. QuQ. GuoQ. LiangF. ZhangJ. TanL. ShenL. ZhangK. ZhangJ. PengD. TangM. LvP. FangB. ChuL. JiaL. GauthierS. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide.Alzheimers Dement.201814448349110.1016/j.jalz.2017.12.00629433981
    [Google Scholar]
  6. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  7. WangZ. JacksonR.J. HongW. TaylorW.M. CorbettG.T. MorenoA. LiuW. LiS. FroschM.P. SlutskyI. Young-PearseT.L. Spires-JonesT.L. WalshD.M. Human brain-derived Aβ oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP.J. Neurosci.20173749119471196610.1523/JNEUROSCI.2009‑17.201729101243
    [Google Scholar]
  8. De FeliceF.G. VieiraM.N.N. BomfimT.R. DeckerH. VelascoP.T. LambertM.P. ViolaK.L. ZhaoW.Q. FerreiraS.T. KleinW.L. Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Aβ oligomers.Proc. Natl. Acad. Sci. USA200910661971197610.1073/pnas.080915810619188609
    [Google Scholar]
  9. MattsonM.P. Pathways towards and away from Alzheimer’s disease.Nature2004430700063163910.1038/nature0262115295589
    [Google Scholar]
  10. GaoY. TanL. YuJ.T. TanL. Tau in alzheimer’s disease: Mechanisms and therapeutic strategies.Curr. Alzheimer Res.201815328330010.2174/156720501466617041711185928413986
    [Google Scholar]
  11. De FeliceF.G. WuD. LambertM.P. FernandezS.J. VelascoP.T. LacorP.N. BigioE.H. JerecicJ. ActonP.J. ShughrueP.J. Chen-DodsonE. KinneyG.G. KleinW.L. Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers.Neurobiol. Aging20082991334134710.1016/j.neurobiolaging.2007.02.02917403556
    [Google Scholar]
  12. BloomG.S. Amyloid-β and Tau.JAMA Neurol.201471450550810.1001/jamaneurol.2013.584724493463
    [Google Scholar]
  13. WinbladB. AmouyelP. AndrieuS. BallardC. BrayneC. BrodatyH. Cedazo-MinguezA. DuboisB. EdvardssonD. FeldmanH. FratiglioniL. FrisoniG.B. GauthierS. GeorgesJ. GraffC. IqbalK. JessenF. JohanssonG. JönssonL. KivipeltoM. KnappM. MangialascheF. MelisR. NordbergA. RikkertM.O. QiuC. SakmarT.P. ScheltensP. SchneiderL.S. SperlingR. TjernbergL.O. WaldemarG. WimoA. ZetterbergH. Defeating Alzheimer’s disease and other dementias: A priority for European science and society.Lancet Neurol.201615545553210.1016/S1474‑4422(16)00062‑426987701
    [Google Scholar]
  14. GoedertM. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein.Science20153496248125555510.1126/science.125555526250687
    [Google Scholar]
  15. VasicV. BarthK. SchmidtM.H.H. Neurodegeneration and neuro-regeneration—alzheimer’s disease and stem cell therapy.Int. J. Mol. Sci.20192017427210.3390/ijms2017427231480448
    [Google Scholar]
  16. AaltenP. VerheyF.R.J. BozikiM. BullockR. ByrneE.J. CamusV. CaputoM. CollinsD. De DeynP.P. ElinaK. FrisoniG. GirtlerN. HolmesC. HurtC. MarriottA. MecocciP. NobiliF. OussetP.J. ReynishE. SalmonE. TsolakiM. VellasB. RobertP.H. Neuropsychiatric syndromes in dementia. Results from the European Alzheimer Disease Consortium: Part I.Dement. Geriatr. Cogn. Disord.200724645746310.1159/00011073817986816
    [Google Scholar]
  17. DeTureM.A. DicksonD.W. The neuropathological diagnosis of Alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑531375134
    [Google Scholar]
  18. OboudiyatC. GlazerH. SeifanA. GreerC. IsaacsonR. Alzheimer’s disease.Semin. Neurol.201333431332910.1055/s‑0033‑135931924234352
    [Google Scholar]
  19. CarmonaS. HardyJ. GuerreiroR. The genetic landscape of Alzheimer disease.Handb. Clin. Neurol.2018148Part II39540810.1016/B978‑0‑444‑64076‑5.00026‑029478590
    [Google Scholar]
  20. RabinoviciG.D. Late-onset Alzheimer disease.Continuum2019251143310.1212/CON.000000000000070030707185
    [Google Scholar]
  21. CorderE.H. SaundersA.M. StrittmatterW.J. SchmechelD.E. GaskellP.C. SmallG.W. RosesA.D. HainesJ.L. Pericak-VanceM.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families.Science1993261512392192310.1126/science.83464438346443
    [Google Scholar]
  22. AtriA. The alzheimer’s disease clinical spectrum.Med. Clin. North Am.2019103226329310.1016/j.mcna.2018.10.009
    [Google Scholar]
  23. ZhaoJ. FuY. YamazakiY. RenY. DavisM.D. LiuC.C. LuW. WangX. ChenK. CherukuriY. JiaL. MartensY.A. JobL. ShueF. NguyenT.T. YounkinS.G. Graff-RadfordN.R. WszolekZ.K. BrafmanD.A. AsmannY.W. Ertekin-TanerN. KanekiyoT. BuG. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids.Nat. Commun.2020111554010.1038/s41467‑020‑19264‑033139712
    [Google Scholar]
  24. GuerreiroR. WojtasA. BrasJ. CarrasquilloM. RogaevaE. MajounieE. CruchagaC. SassiC. KauweJ.S.K. YounkinS. HazratiL. CollingeJ. PocockJ. LashleyT. WilliamsJ. LambertJ-C. AmouyelP. GoateA. RademakersR. MorganK. PowellJ. St George-HyslopP. SingletonA. HardyJ. Alzheimer Genetic Analysis Group TREM2 variants in Alzheimer’s disease.N. Engl. J. Med.2013368211712710.1056/NEJMoa121185123150934
    [Google Scholar]
  25. Van CauwenbergheC. Van BroeckhovenC. SleegersK. The genetic landscape of Alzheimer disease: Clinical implications and perspectives.Genet. Med.201618542143010.1038/gim.2015.11726312828
    [Google Scholar]
  26. Alzheimer’s Association 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  27. LoyC.T. SchofieldP.R. TurnerA.M. KwokJ.B.J. Genetics of dementia.Lancet2014383991982884010.1016/S0140‑6736(13)60630‑323927914
    [Google Scholar]
  28. BettensK. SleegersK. Van BroeckhovenC. Genetic insights in Alzheimer’s disease.Lancet Neurol.20131219210410.1016/S1474‑4422(12)70259‑423237904
    [Google Scholar]
  29. QingH. LiN-M. LiuK-F. QiuY-J. ZhangH-H. NakanishiH. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer’s disease pathogenesis.Neural Regen. Res.201914465866510.4103/1673‑5374.24746930632506
    [Google Scholar]
  30. WeggenS. BeherD. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease.Alzheimers Res. Ther.201242910.1186/alzrt10722494386
    [Google Scholar]
  31. PedriniS. ThomasC. BrautigamH. SchmeidlerJ. HoL. FraserP. WestawayD. HyslopP.S.G. MartinsR.N. BuxbaumJ.D. PasinettiG.M. DicksteinD.L. HofP.R. EhrlichM.E. GandyS. Dietary composition modulates brain mass and solubilizable Aβ levels in a mouse model of aggressive Alzheimer’s amyloid pathology.Mol. Neurodegener.2009414010.1186/1750‑1326‑4‑4019845940
    [Google Scholar]
  32. GannonO.J. RobisonL.S. SalineroA.E. Abi-GhanemC. MansourF.M. KellyR.D. TyagiA. BrawleyR.R. OggJ.D. ZuloagaK.L. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer’s disease and mixed dementia in a sex-dependent manner.J. Neuroinflammation202219111010.1186/s12974‑022‑02466‑235568928
    [Google Scholar]
  33. AltyJ. FarrowM. LawlerK. Exercise and dementia prevention.Pract. Neurol.202020323424010.1136/practneurol‑2019‑00233531964800
    [Google Scholar]
  34. LourencoM.V. FrozzaR.L. de FreitasG.B. ZhangH. KincheskiG.C. RibeiroF.C. GonçalvesR.A. ClarkeJ.R. BeckmanD. StaniszewskiA. BermanH. GuerraL.A. Forny-GermanoL. MeierS. WilcockD.M. de SouzaJ.M. Alves-LeonS. PradoV.F. PradoM.A.M. AbisambraJ.F. Tovar-MollF. MattosP. ArancioO. FerreiraS.T. De FeliceF.G. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models.Nat. Med.201925116517510.1038/s41591‑018‑0275‑430617325
    [Google Scholar]
  35. SundströmA. AdolfssonA.N. NordinM. AdolfssonR. Loneliness increases the risk of all-cause dementia and alzheimer’s disease.J. Gerontol. B Psychol. Sci. Soc. Sci.202075591992610.1093/geronb/gbz13931676909
    [Google Scholar]
  36. WilsonR.S. KruegerK.R. ArnoldS.E. SchneiderJ.A. KellyJ.F. BarnesL.L. TangY. BennettD.A. Loneliness and risk of Alzheimer disease.Arch. Gen. Psychiatry200764223424010.1001/archpsyc.64.2.23417283291
    [Google Scholar]
  37. DonovanN.J. OkerekeO.I. VanniniP. AmariglioR.E. RentzD.M. MarshallG.A. JohnsonK.A. SperlingR.A. Association of higher cortical amyloid burden with loneliness in cognitively normal older adults.JAMA Psychiatry201673121230123710.1001/jamapsychiatry.2016.265727806159
    [Google Scholar]
  38. HuangH. WangL. CaoM. MarshallC. GaoJ. XiaoN. HuG. XiaoM. Isolation housing exacerbates alzheimer’s disease-like pathophysiology in aged APP/PS1 mice.Int. J. Neuropsychopharmacol.2015187pyu116pyu11610.1093/ijnp/pyu11625568286
    [Google Scholar]
  39. BarnesD.E. YaffeK. The projected effect of risk factor reduction on Alzheimer’s disease prevalence.Lancet Neurol.201110981982810.1016/S1474‑4422(11)70072‑221775213
    [Google Scholar]
  40. HebbD. The effects of early experience on problem solving at maturity.Am. Psychol.19472306307
    [Google Scholar]
  41. van PraagH. KempermannG. GageF.H. Neural consequences of enviromental enrichment.Nat. Rev. Neurosci.20001319119810.1038/3504455811257907
    [Google Scholar]
  42. NithianantharajahJ. HannanA.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system.Nat. Rev. Neurosci.20067969770910.1038/nrn197016924259
    [Google Scholar]
  43. ConsortiA. SanseveroG. TorelliC. BerardiN. SaleA. From basic visual science to neurodevelopmental disorders: The voyage of environmental enrichment-like stimulation.Neural Plast.201920191910.1155/2019/565318031198418
    [Google Scholar]
  44. SaleA. BerardiN. MaffeiL. Environment and brain plasticity: Towards an endogenous pharmacotherapy.Physiol. Rev.201494118923410.1152/physrev.00036.201224382886
    [Google Scholar]
  45. StuartK.E. KingA.E. Fernandez-MartosC.M. DittmannJ. SummersM.J. VickersJ.C. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Aβ-associated pathology and positively influences synaptic and cognitive health in healthy ageing.J. Comp. Neurol.201752581797181010.1002/cne.2415627987205
    [Google Scholar]
  46. SeoJ.H. KangS.W. KimK. WiS. LeeJ.W. ChoS.R. Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T α-synuclein transgenic mouse model of parkinson’s disease.Antioxidants202091092810.3390/antiox910092832998299
    [Google Scholar]
  47. GorantlaV.R. ThomasS.E. MillisR.M. Environmental enrichment and brain neuroplasticity in the kainate rat model of temporal lobe epilepsy.J. Epilepsy Res.201991516410.14581/jer.1900631482057
    [Google Scholar]
  48. TangY. LiM.Y. ZhangX. JinX. LiuJ. WeiP.H. Delayed exposure to environmental enrichment improves functional outcome after stroke.J. Pharmacol. Sci.2019140213714310.1016/j.jphs.2019.05.00231255517
    [Google Scholar]
  49. StairsD.J. ChachoN.M. WunschC. PipitoneL. DravidS.M. Environmental enrichment increases cue-dependent freezing and behavioral despair but decreases anxiety-like behavior in rats.Pharmacol. Biochem. Behav.202019617297910.1016/j.pbb.2020.17297932593789
    [Google Scholar]
  50. BrenesJ.C. FornagueraJ. Sequeira-CorderoA. Environmental enrichment and physical exercise attenuate the depressive-like effects induced by social isolation stress in rats.Front. Pharmacol.20201180410.3389/fphar.2020.0080432547399
    [Google Scholar]
  51. HuangJ. LiuF. TengZ. ChenJ. ZhaoJ. WangX. WuR. Care for the psychological status of frontline medical staff fighting against covid-19.Clin. Infect. Dis.202071123268326910.1093/cid/ciaa38532246142
    [Google Scholar]
  52. RubinG.J. WesselyS. The psychological effects of quarantining a city.BMJ2020368m31310.1136/bmj.m31331992552
    [Google Scholar]
  53. PullaP. Covid-19: India imposes lockdown for 21 days and cases rise.BMJ2020368m125110.1136/bmj.m125132217534
    [Google Scholar]
  54. BrooksS.K. WebsterR.K. SmithL.E. WoodlandL. WesselyS. GreenbergN. RubinG.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence.Lancet20203951022791292010.1016/S0140‑6736(20)30460‑832112714
    [Google Scholar]
  55. GilR. Arroyo-AnllóE.M. Alzheimer’s disease and face masks in times of covid-19.J. Alzheimers Dis.202179191410.3233/JAD‑20123333252083
    [Google Scholar]
  56. SinghalG. MorganJ. JawaharM.C. CorriganF. JaehneE.J. TobenC. BreenJ. PedersonS.M. HannanA.J. BauneB.T. The effects of short-term and long-term environmental enrichment on locomotion, mood-like behavior, cognition and hippocampal gene expression.Behav. Brain Res.201936811191710.1016/j.bbr.2019.11191731004685
    [Google Scholar]
  57. Murueta-GoyenaA. Morera-HerrerasT. MiguélezC. Gutiérrez-CeballosA. UgedoL. LafuenteJ.V. BengoetxeaH. Effects of adult enriched environment on cognition, hippocampal-prefrontal plasticity and NMDAR subunit expression in MK-801-induced schizophrenia model.Eur. Neuropsychopharmacol.201929559060010.1016/j.euroneuro.2019.03.00930926324
    [Google Scholar]
  58. HuangY. JiangH. ZhengQ. FokA.H.K. LiX. LauC.G. LaiC.S.W. Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence.Mol. Psychiatry20212662533255210.1038/s41380‑020‑01005‑w33473150
    [Google Scholar]
  59. Clipperton-AllenA.E. ZhangA. CohenO.S. PageD.T. Environmental enrichment rescues social behavioral deficits and synaptic abnormalities in pten haploinsufficient mice.Genes2021129136610.3390/genes1209136634573348
    [Google Scholar]
  60. Rico-BarrioI. PeñascoS. LekunberriL. SerranoM. Egaña-HuguetJ. MimenzaA. Soria-GomezE. RamosA. BucetaI. GerrikagoitiaI. Mendizabal-ZubiagaJ. ElezgaraiI. PuenteN. GrandesP. Environmental enrichment rescues endocannabinoid-dependent synaptic plasticity lost in young adult male mice after ethanol exposure during adolescence.Biomedicines20219782510.3390/biomedicines907082534356889
    [Google Scholar]
  61. WuY. WangC-J. ZhangQ. YuK.W. WangY.Y. An enriched environment promotes synaptic plasticity and cognitive recovery after permanent middle cerebral artery occlusion in mice.Neural Regen. Res.201914346246910.4103/1673‑5374.24547030539814
    [Google Scholar]
  62. GrivaM. LagoudakiR. TouloumiO. NousiopoulouE. KaralisF. GeorgiouT. KokarakiG. SimeonidouC. TataD.A. SpandouE. Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior, BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF.Brain Res.20171667556710.1016/j.brainres.2017.05.00428495306
    [Google Scholar]
  63. SongS.Y. PyoS. ChoiS. OhH.S. SeoJ.H. YuJ.H. BaekA. ShinY.K. LeeH.Y. ChoiJ.Y. ChoS.R. Environmental enrichment enhances Cav 2.1 channel-mediated presynaptic plasticity in hypoxic–ischemic encephalopathy.Int. J. Mol. Sci.2021227341410.3390/ijms2207341433810296
    [Google Scholar]
  64. Durán-CarabaliL.E. ArcegoD.M. SanchesE.F. OdorcykF.K. MarquesM.R. TostaA. ReichertL. CarvalhoA.S. DalmazC. NettoC.A. Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia.Behav. Brain Res.201935948549710.1016/j.bbr.2018.11.03630496770
    [Google Scholar]
  65. Durán-CarabaliL.E. OdorcykF.K. GreggioS. VenturinG.T. SanchesE.F. SchuG.G. CarvalhoA.S. PedrosoT.A. de Sá Couto-PereiraN. Da CostaJ.C. DalmazC. ZimmerE.R. NettoC.A. Pre- and early postnatal enriched environmental experiences prevent neonatal hypoxia-ischemia late neurodegeneration via metabolic and neuroplastic mechanisms.J. Neurochem.202115761911192910.1111/jnc.1522133098090
    [Google Scholar]
  66. ZhangX. ShiX. WangJ. XuZ. HeJ. Enriched environment remedies cognitive dysfunctions and synaptic plasticity through NMDAR-Ca2+-Activin A circuit in chronic cerebral hypoperfusion rats.Aging20211316207482076110.18632/aging.20346234462377
    [Google Scholar]
  67. WangX.M. PanW. XuN. ZhouZ.Q. ZhangG.F. ShenJ.C. Environmental enrichment improves long-term memory impairment and aberrant synaptic plasticity by BDNF/TrkB signaling in nerve-injured mice.Neurosci. Lett.2019694939810.1016/j.neulet.2018.11.04930496785
    [Google Scholar]
  68. ZhaoX. Rondón-OrtizA.N. LimaE.P. PuracchioM. RoderickR.C. KentnerA.C. Therapeutic efficacy of environmental enrichment on behavioral, endocrine, and synaptic alterations in an animal model of maternal immune activation.Brain Behav. Immun. Health2020310004310.1016/j.bbih.2020.10004332368757
    [Google Scholar]
  69. BurgosH. HernándezA. ConstandilL. RíosM. FloresO. PuentesG. HernándezK. MorganC. ValladaresL. CastilloA. CofreC. MillaL.A. Sáez-BrionesP. BarraR. Early postnatal environmental enrichment restores neurochemical and functional plasticities of the cerebral cortex and improves learning performance in hidden-prenatally-malnourished young-adult rats.Behav. Brain Res.201936318219010.1016/j.bbr.2019.02.00130721762
    [Google Scholar]
  70. GergerliogluH.S. OzM. DemirE.A. Nurullahoglu-AtalikK.E. YerlikayaF.H. Environmental enrichment reverses cognitive impairments provoked by Western diet in rats: Role of corticosteroid receptors.Life Sci.201614827928510.1016/j.lfs.2016.02.01126855000
    [Google Scholar]
  71. Aghighi BidgoliF. SalamiM. TalaeiS.A. Environmental enrichment restores impaired spatial memory and synaptic plasticity in prenatally stress exposed rats: The role of GABAergic neurotransmission.Int. J. Dev. Neurosci.202080757358510.1002/jdn.1005232706909
    [Google Scholar]
  72. BhagyaV.R. SrikumarB.N. VeenaJ. Shankaranarayana RaoB.S. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.J. Neurosci. Res.20179581602161010.1002/jnr.2399227862185
    [Google Scholar]
  73. CordnerZ.A. Marshall-ThomasI. BoersmaG.J. LeeR.S. PotashJ.B. TamashiroK.L.K. Fluoxetine and environmental enrichment similarly reverse chronic social stress-related depression- and anxiety-like behavior, but have differential effects on amygdala gene expression.Neurobiol. Stress20211510039210.1016/j.ynstr.2021.10039234568521
    [Google Scholar]
  74. ZhangZ. ZhangX. LiZ. ZhangX. Effects of different levels of environmental enrichment on the sheltering behaviors, brain development and cortisol levels of black rockfish Sebastes schlegelii.Appl. Anim. Behav. Sci.201921810482510.1016/j.applanim.2019.06.006
    [Google Scholar]
  75. MahatiK. BhagyaV. ChristoferT. SnehaA. Shankaranarayana RaoB.S. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity.Neurobiol. Learn. Mem.2016134Pt B37939110.1016/j.nlm.2016.08.01727555234
    [Google Scholar]
  76. ChenG. ZhangY. LiR. JinL. HaoK. RongJ. DuanH. DuY. YaoL. XiangD. LiuZ. Environmental enrichment attenuates depressive-like behavior in maternal rats by inhibiting neuroinflammation and apoptosis and promoting neuroplasticity.Neurobiol. Stress20243010062410062410.1016/j.ynstr.2024.10062438524250
    [Google Scholar]
  77. HüttenrauchM. SalinasG. WirthsO. Effects of long-term environmental enrichment on anxiety, memory, hippocampal plasticity and overall brain gene expression in C57BL6 mice.Front. Mol. Neurosci.201696210.3389/fnmol.2016.0006227536216
    [Google Scholar]
  78. CampêloC.L.C. SantosJ.R. SilvaA.F. DierschnabelA.L. PontesA. CavalcanteJ.S. RibeiroA.M. SilvaR.H. Exposure to an enriched environment facilitates motor recovery and prevents short-term memory impairment and reduction of striatal BDNF in a progressive pharmacological model of parkinsonism in mice.Behav. Brain Res.201732813814810.1016/j.bbr.2017.04.02828432010
    [Google Scholar]
  79. SalomovaM. TichanekF. JelinkovaD. CendelinJ. Forced activity and environmental enrichment mildly improve manifestation of rapid cerebellar degeneration in mice.Behav. Brain Res.202140111306010.1016/j.bbr.2020.11306033316321
    [Google Scholar]
  80. KentnerA.C. KhouryA. Lima QueirozE. MacRaeM. Environmental enrichment rescues the effects of early life inflammation on markers of synaptic transmission and plasticity.Brain Behav. Immun.20165715116010.1016/j.bbi.2016.03.01327002704
    [Google Scholar]
  81. CordierJ.M. AguggiaJ.P. DanelonV. MirF.R. RivarolaM.A. MascóD. Postweaning enriched environment enhances cognitive function and brain-derived neurotrophic factor signaling in the hippocampus in maternally separated rats.Neuroscience202145313814710.1016/j.neuroscience.2020.09.05833039520
    [Google Scholar]
  82. DandiΕ. KalamariA. TouloumiO. LagoudakiR. NousiopoulouE. SimeonidouC. SpandouE. TataD.A. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress.Int. J. Dev. Neurosci.2018671193210.1016/j.ijdevneu.2018.03.00329545098
    [Google Scholar]
  83. LuC.Q. ZhongL. YanC.H. TianY. ShenX.M. Effects of preweaning environmental enrichment on hippocampus-dependent learning and memory in developing rats.Neurosci. Lett.201764011712210.1016/j.neulet.2016.12.05328013093
    [Google Scholar]
  84. BuschlerA. Manahan-VaughanD. Metabotropic glutamate receptor, mGlu5, mediates enhancements of hippocampal long-term potentiation after environmental enrichment in young and old mice.Neuropharmacology2017115425010.1016/j.neuropharm.2016.06.00327267685
    [Google Scholar]
  85. CorteseG.P. OlinA. O’RiordanK. HullingerR. BurgerC. Environmental enrichment improves hippocampal function in aged rats by enhancing learning and memory, LTP, and mGluR5-Homer1c activity.Neurobiol. Aging20186311110.1016/j.neurobiolaging.2017.11.00429207276
    [Google Scholar]
  86. KimM.S. YuJ.H. KimC.H. ChoiJ.Y. SeoJ.H. LeeM.Y. YiC.H. ChoiT.H. RyuY.H. LeeJ.E. LeeB.H. KimH. ChoS.R. Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters.J. Cereb. Blood Flow Metab.201636122122213310.1177/0271678X1561352526661218
    [Google Scholar]
  87. SteinL.R. O’DellK.A. FunatsuM. ZorumskiC.F. IzumiY. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats.Neuroscience201632929430510.1016/j.neuroscience.2016.05.02027208617
    [Google Scholar]
  88. KuboK. OgasawaraA. TsuganeH. IinumaM. TakahashiT. AzumaK. Environmental enrichment improves hypomyelination, synaptic alterations, and memory deficits caused by tooth loss in aged SAMP8 mice.Arch. Oral Biol.202112310503910.1016/j.archoralbio.2021.10503933454419
    [Google Scholar]
  89. BirchA.M. KellyÁ.M. Lifelong environmental enrichment in the absence of exercise protects the brain from age-related cognitive decline.Neuropharmacology2019145Pt A597410.1016/j.neuropharm.2018.03.04229630903
    [Google Scholar]
  90. BayatM. KohlmeierK.A. HaghaniM. HaghighiA.B. KhaliliA. BayatG. HooshmandiE. ShabaniM. Co-treatment of vitamin D supplementation with enriched environment improves synaptic plasticity and spatial learning and memory in aged rats.Psychopharmacology (Berl.)202123882297231210.1007/s00213‑021‑05853‑433991198
    [Google Scholar]
  91. StaziM. WirthsO. Physical activity and cognitive stimulation ameliorate learning and motor deficits in a transgenic mouse model of Alzheimer’s disease.Behav. Brain Res.202139711295110.1016/j.bbr.2020.11295133027669
    [Google Scholar]
  92. Prado LimaM.G. SchimidtH.L. GarciaA. DaréL.R. CarpesF.P. IzquierdoI. Mello-CarpesP.B. Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity.Proc. Natl. Acad. Sci. USA201811510E2403E240910.1073/pnas.171843511529463708
    [Google Scholar]
  93. PfefferA. MunderT. SchreyerS. KleinC. RasińskaJ. WinterY. SteinerB. Behavioral and psychological symptoms of dementia (BPSD) and impaired cognition reflect unsuccessful neuronal compensation in the pre-plaque stage and serve as early markers for Alzheimer’s disease in the APP23 mouse model.Behav. Brain Res.201834730031310.1016/j.bbr.2018.03.03029572105
    [Google Scholar]
  94. SalminV.V. KomlevaY.K. KuvachevaN.V. MorgunA.V. KhilazhevaE.D. LopatinaO.L. PozhilenkovaE.A. ShapovalovK.A. UspenskayaY.A. SalminaA.B. Differential roles of environmental enrichment in alzheimer’s type of neurodegeneration and physiological aging.Front. Aging Neurosci.2017924510.3389/fnagi.2017.0024528798684
    [Google Scholar]
  95. Ziegler-WaldkirchS. MarksteinerK. StollJ. d´ErricoP. FriesenM. EilerD. NeudelL. SturnV. OpperI. DattaM. PrinzM. Meyer-LuehmannM. Environmental enrichment reverses Aβ pathology during pregnancy in a mouse model of Alzheimer’s disease.Acta Neuropathol. Commun.2018614410.1186/s40478‑018‑0549‑629855361
    [Google Scholar]
  96. GholamiJ. NegahS.S. RajabianA. SaburiE. HajaliV. The effect of combination pretreatment of donepezil and environmental enrichment on memory deficits in amyloid-beta-induced Alzheimer-like rat model.Biochem. Biophys. Rep.20223210139210.1016/j.bbrep.2022.10139236438603
    [Google Scholar]
  97. FulopovaB. StuartK.E. BennettW. BindoffA. KingA.E. VickersJ.C. CantyA.J. Regional differences in beta amyloid plaque deposition and variable response to midlife environmental enrichment in the cortex of APP / PS1 mice.J. Comp. Neurol.202152981849186210.1002/cne.2506033104234
    [Google Scholar]
  98. SelviY. GergerliogluH.S. AkbabaN. OzM. KandegerA. DemirE.A. YerlikayaF.H. Nurullahoglu-AtalikK.E. Impact of enriched environment on production of tau, amyloid precursor protein and, amyloid-β peptide in high-fat and high-sucrose-fed rats.Acta Neuropsychiatr.201729529129810.1017/neu.2016.6327923413
    [Google Scholar]
  99. NamY. KimS. ParkY.H. KimB.H. ShinS.J. LeemS.H. ParkH.H. JungG. LeeJ. KimH.G. YooD.H. KimH.S. MoonM. Investigating the impact of environmental enrichment on proteome and neurotransmitter-related profiles in an animal model of Alzheimer’s disease.Aging Cell2024239e1423110.1111/acel.1423138952076
    [Google Scholar]
  100. ZhuG. GuoM. ZhaoJ. ZhangH. WangG. ChenW. Bifidobacterium breve intervention combined with environmental enrichment alleviates cognitive impairment by regulating the gut microbiota and microbial metabolites in Alzheimer’s disease mice.Front. Immunol.202213101366410.3389/fimmu.2022.101366436203603
    [Google Scholar]
  101. StozickaZ. KorenovaM. UhrinovaI. CubinkovaV. CenteM. KovacechB. BabindakovaN. MatyasovaK. VargovaG. NovakM. NovakP. ZilkaN. JadhavS. Environmental enrichment rescues functional deficit and alters neuroinflammation in a transgenic model of tauopathy.J. Alzheimers Dis.202074395196410.3233/JAD‑19111232116255
    [Google Scholar]
  102. XuH. GelyanaE. RajsombathM. YangT. LiS. SelkoeD. Environmental enrichment potently prevents microglia-mediated neuroinflammation by human amyloid -protein oligomers.J. Neurosci.201636359041905610.1523/JNEUROSCI.1023‑16.201627581448
    [Google Scholar]
  103. XuH. RajsombathM.M. WeikopP. SelkoeD.J. Enriched environment enhances β-adrenergic signaling to prevent microglia inflammation by amyloid-β.EMBO Mol. Med.2018109e893110.15252/emmm.20180893130093491
    [Google Scholar]
  104. Ziegler-WaldkirchS. d’ErricoP. SauerJ.F. ErnyD. SavanthrapadianS. LorethD. KatzmarskiN. BlankT. BartosM. PrinzM. Meyer-LuehmannM. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer’s disease.EMBO J.201837216718210.15252/embj.20179702129229786
    [Google Scholar]
  105. PuangS.J. ElanggovanB. ChingT. SngJ.C.G. MEF2C and HDAC5 regulate Egr1 and Arc genes to increase dendritic spine density and complexity in early enriched environment.Neuronal Signal.202043NS2019014710.1042/NS2019014732714604
    [Google Scholar]
  106. BenitoE. KerimogluC. RamachandranB. Pena-CentenoT. JainG. StillingR.M. IslamM.R. CapeceV. ZhouQ. EdbauerD. DeanC. FischerA. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment.Cell Rep.201823254655410.1016/j.celrep.2018.03.05929642011
    [Google Scholar]
  107. WeiZ. MengX. El FatimyR. SunB. MaiD. ZhangJ. AroraR. ZengA. XuP. QuS. KrichevskyA.M. SelkoeD.J. LiS. Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways.Neurobiol. Dis.202013410461710.1016/j.nbd.2019.10461731669733
    [Google Scholar]
  108. Griñán-FerréC. IzquierdoV. OteroE. Puigoriol-IllamolaD. CorpasR. SanfeliuC. Ortuño-SahagúnD. PallàsM. Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model.Front. Cell. Neurosci.20181222410.3389/fncel.2018.0022430158856
    [Google Scholar]
  109. NakanoM. KubotaK. HashizumeS. KobayashiE. ChikenjiT.S. SaitoY. FujimiyaM. An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexus.Brain Behav. Immun. Health2020910014910014910.1016/j.bbih.2020.10014934589894
    [Google Scholar]
  110. HüttenrauchM. WalterS. KaufmannM. WeggenS. WirthsO. Limited effects of prolonged environmental enrichment on the pathology of 5XFAD mice.Mol. Neurobiol.20175486542655510.1007/s12035‑016‑0167‑x27734334
    [Google Scholar]
  111. PetermanJ.L. WhiteJ.D. CalcagnoA. HagenC. QuiringM. PaulhusK. GurneyT. EimerbrinkM.J. CurtisM. BoehmG.W. ChumleyM.J. Prolonged isolation stress accelerates the onset of Alzheimer’s disease-related pathology in 5xFAD mice despite running wheels and environmental enrichment.Behav. Brain Res.202037911236610.1016/j.bbr.2019.11236631743728
    [Google Scholar]
  112. CaoM. HuP.P. ZhangY.L. YanY.X. ShieldsC.B. ZhangY.P. HuG. XiaoM. Enriched physical environment reverses spatial cognitive impairment of socially isolated APP swe/ PS 1dE9 transgenic mice before amyloidosis onset.CNS Neurosci. Ther.201824320221110.1111/cns.1279029274291
    [Google Scholar]
/content/journals/car/10.2174/0115672050348227241128095209
Loading
/content/journals/car/10.2174/0115672050348227241128095209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test