Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

The association between physical activity (PA) and cognitive function remains controversial, and the impact of gender on this association remains underexplored. Therefore, this study aimed to investigate the association between PA and cognitive function and to explore whether this association was modified by gender among older adults.

Methods

In 2016, a cluster sampling method was used to select community-dwelling older adults aged 65 and above. PA was assessed using the International Physical Activity Questionnaire-Short Form and classified as low, middle, and high. Cognitive function was assessed using the revised Chinese version of the Wechsler Adult Intelligence Scale. The multiple linear regression model was used to explore the association between PA and cognitive function and to assess whether this association differs by gender.

Results

A total of 676 participants with a mean age of 73.63 ± 6.39 were included. The multiple linear regression analysis showed that higher PA was significantly statistically associated with higher Full Intelligence Quotient (FIQ), Performance Intelligence Quotient (PIQ), and verbal Intelligence Quotient (VIQ) scores (<0.05). Among the WAIS-RC subtests, higher PA was significantly statistically associated with higher scores of the similarity subtest, picture completion subtest, and picture arrangement subtest (<0.05). In the gender subgroup analysis, higher PA was significantly statistically associated with higher FIQ and PIQ scores (<0.05), but no significant association was found with VIQ scores (>0.05) in the male group, while in the female group, there was no significant statistical association between higher PA and FIQ, PIQ, or VIQ scores (>0.05).

Conclusion

Higher PA was significantly statistically associated with better cognitive function (<0.05). In the male group, PA was significantly statistically associated with cognitive function, whereas no comparable association was found in the female group.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050347596241111112811
2024-11-25
2025-01-18
Loading full text...

Full text loading...

References

  1. JiaL. QuanM. FuY. ZhaoT. LiY. WeiC. TangY. QinQ. WangF. QiaoY. ShiS. WangY.J. DuY. ZhangJ. ZhangJ. LuoB. QuQ. ZhouC. GauthierS. JiaJ. Dementia in China: Epidemiology, clinical management, and research advances.Lancet Neurol.2020191819210.1016/S1474‑4422(19)30290‑X31494009
    [Google Scholar]
  2. XuY. WangJ. WangH.Z. 2023 Data and strategies of prevention and control for Alzheimer’s disease in China.Chin. J. Alzheimer’s Dis.d Rel. Disorders20236317519210.3969/j.issn.2096‑5516.2023.03.001
    [Google Scholar]
  3. HuangX. DengJ. LiuW. Sex differences in cognitive function among Chinese older adults using data from the Chinese longitudinal healthy longevity survey: A cross-sectional study.Front. Public Health202311118226810.3389/fpubh.2023.118226837457255
    [Google Scholar]
  4. ZimmermanB. RypmaB. GrattonG. FabianiM. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review.Psychophysiology2021587e1379610.1111/psyp.1379633728712
    [Google Scholar]
  5. LövdénM. FratiglioniL. GlymourM.M. LindenbergerU. Tucker-DrobE.M. Education and cognitive functioning across the life span.Psychol. Sci. Public Interest202021164110.1177/152910062092057632772803
    [Google Scholar]
  6. LinliZ. RollsE.T. ZhaoW. KangJ. FengJ. GuoS. Smoking is associated with lower brain volume and cognitive differences: A large population analysis based on the UK Biobank.Prog. Neuropsychopharmacol. Biol. Psychiatry202312311069810.1016/j.pnpbp.2022.11069836528239
    [Google Scholar]
  7. HanL. JiaJ. Long-term effects of alcohol consumption on cognitive function in seniors: A cohort study in China.BMC Geriatr.202121169910.1186/s12877‑021‑02606‑y34911450
    [Google Scholar]
  8. LiuM.L. JiangL.J. WangW.X. ZhangX. XingX.H. DengW. LiT. The relationship between activity level and cognitive function in Chinese community-dwelling elderly.Res. Sports Med.20223019210010.1080/15438627.2021.188809633620005
    [Google Scholar]
  9. CanavanM. O’DonnellM.J. Hypertension and cognitive impairment: A review of mechanisms and key concepts.Front. Neurol.20221382113510.3389/fneur.2022.82113535185772
    [Google Scholar]
  10. TadicM. CuspidiC. HeringD. Hypertension and cognitive dysfunction in elderly: Blood pressure management for this global burden.BMC Cardiovasc. Disord.201616120810.1186/s12872‑016‑0386‑027809779
    [Google Scholar]
  11. JiaR. LiangJ. XuY. WangY. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: A meta-analysis.BMC Geriatr.201919118110.1186/s12877‑019‑1175‑231266451
    [Google Scholar]
  12. ZhouS. ChenS. LiuX. ZhangY. ZhaoM. LiW. Physical activity improves cognition and activities of daily living in adults with Alzheimer’s Disease: A systematic review and meta-analysis of randomized controlled trials.Int. J. Environ. Res. Public Health2022193121610.3390/ijerph1903121635162238
    [Google Scholar]
  13. WangX. ZhangJ. ChenC. LuZ. ZhangD. LiS. The association between physical activity and cognitive function in the elderly in rural areas of northern China.Front. Aging Neurosci.202315116889210.3389/fnagi.2023.116889237409011
    [Google Scholar]
  14. WuZ. ZhangH. MiaoX. LiH. PanH. ZhouD. LiuY. LiZ. WangJ. LiuX. ZhengD. LiX. WangW. GuoX. TaoL. High-intensity physical activity is not associated with better cognition in the elder: Evidence from the China Health and Retirement Longitudinal Study.Alzheimers Res. Ther.202113118210.1186/s13195‑021‑00923‑334732248
    [Google Scholar]
  15. ZhouX. LiaoS. QiL. WangR. Physical activity and its association with cognitive function in middle- and older-aged Chinese: Evidence from China Health and Retirement Longitudinal Study, 2015.Eur. J. Sport Sci.202222693794710.1080/17461391.2021.189716433641627
    [Google Scholar]
  16. FellendorfF.T. KainzbauerN. PlatzerM. DalknerN. BengesserS.A. BirnerA. QueissnerR. RauchP. HammC. PilzR. ReininghausE.Z. Gender differences in the association between physical activity and cognitive function in individuals with bipolar disorder.J. Affect. Disord.201722123223710.1016/j.jad.2017.06.04828654848
    [Google Scholar]
  17. QinJ.S. WangH.L. Changes in blood ammonia and cerebral hemodynamic indicators in patients with mild hepatic encephalopathy and their impact on cognitive function.Jianyan Yixue Yu Linchuang2022190673073310.3969/j.issn.1672‑9455.2022.06.003
    [Google Scholar]
  18. GuoD. JinC.G. XuY.B. The correlation study between body mass index and comorbidities in individuals aged 65 years and older.Chin. J. Prev. Contr. Chron. Dis.2022212913310.16386/j.cjpccd.issn.1004‑6194.2022.02.011
    [Google Scholar]
  19. CraigC.L. MarshallA.L. SjöströmM. BaumanA.E. BoothM.L. AinsworthB.E. PrattM. EkelundU. YngveA. SallisJ.F. OjaP. International physical activity questionnaire: 12-country reliability and validity.Med. Sci. Sports Exerc.20033581381139510.1249/01.MSS.0000078924.61453.FB12900694
    [Google Scholar]
  20. GongY.X. The Chinese Revised Edition of the Wechsler Adult Intelligence Scale ManualHunan Map Publishing HouseChangsha1992
    [Google Scholar]
  21. Al-MakkiA. DiPetteD. WheltonP.K. MuradM.H. MustafaR.A. AcharyaS. BeheiryH.M. ChampagneB. ConnellK. CooneyM.T. EzeigweN. GazianoT.A. GidioA. Lopez-JaramilloP. KhanU.I. KumarapeliV. MoranA.E. SilwimbaM.M. RaynerB. SukonthasanA. YuJ. SaraffzadeganN. ReddyK.S. KhanT. Hypertension pharmacological treatment in adults: A world health organization guideline executive summary.Hypertension202279129330110.1161/HYPERTENSIONAHA.121.1819234775787
    [Google Scholar]
  22. BuysschaertM. MedinaJ.L. BuysschaertB. BergmanM. Definitions (and current controversies) of diabetes and prediabetes.Curr. Diabetes Rev.201512181310.2174/157339981166615012215023325612821
    [Google Scholar]
  23. ZhaoN. LiuC.C. QiaoW. BuG. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease.Biol. Psychiatry201883434735710.1016/j.biopsych.2017.03.00328434655
    [Google Scholar]
  24. CoelhoF.G.M. GobbiS. AndreattoC.A.A. CorazzaD.I. PedrosoR.V. Santos-GaldurózR.F. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly.Arch. Gerontol. Geriatr.2013561101510.1016/j.archger.2012.06.00322749404
    [Google Scholar]
  25. ListaI. SorrentinoG. Biological mechanisms of physical activity in preventing cognitive decline.Cell. Mol. Neurobiol.201030449350310.1007/s10571‑009‑9488‑x20041290
    [Google Scholar]
  26. Lima GiacobboB. DoorduinJ. KleinH.C. DierckxR.A.J.O. BrombergE. de VriesE.F.J. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation.Mol. Neurobiol.20195653295331210.1007/s12035‑018‑1283‑630117106
    [Google Scholar]
  27. MoriY. TsujiM. OguchiT. KasugaK. KimuraA. FutamuraA. SugimotoA. KasaiH. KurodaT. YanoS. HiedaS. KiuchiY. IkeuchiT. OnoK. Serum BDNF as a potential biomarker of Alzheimer’s disease: Verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy.Front. Neurol.20211265326710.3389/fneur.2021.65326733967943
    [Google Scholar]
  28. KislerK. NelsonA.R. MontagneA. ZlokovicB.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease.Nat. Rev. Neurosci.201718741943410.1038/nrn.2017.4828515434
    [Google Scholar]
  29. DuanW. ZhouG.D. BalachandrasekaranA. BhumkarA.B. BorasteP.B. BeckerJ.T. KullerL.H. LopezO.L. GachH.M. DaiW. Cerebral blood flow predicts conversion of mild cognitive impairment into Alzheimer’s disease and cognitive decline: An arterial spin labeling follow-up study.J. Alzheimers Dis.202182129330510.3233/JAD‑21019934024834
    [Google Scholar]
  30. De NysL. AndersonK. OfosuE.F. RydeG.C. ConnellyJ. WhittakerA.C. The effects of physical activity on cortisol and sleep: A systematic review and meta-analysis.Psychoneuroendocrinology202214310584310.1016/j.psyneuen.2022.10584335777076
    [Google Scholar]
  31. JoëlsM. Corticosteroid effects in the brain: U-shape it.Trends Pharmacol. Sci.200627524425010.1016/j.tips.2006.03.00716584791
    [Google Scholar]
  32. WolkowitzO.M. BurkeH. EpelE.S. ReusV.I. Glucocorticoids. Mood, memory, and mechanisms.Ann. N. Y. Acad. Sci.200911791194010.1111/j.1749‑6632.2009.04980.x19906230
    [Google Scholar]
  33. LupienS.J. MaheuF. TuM. FioccoA. SchramekT.E. The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition.Brain Cogn.200765320923710.1016/j.bandc.2007.02.00717466428
    [Google Scholar]
  34. AlmeidaM.F. BahrB.A. KinseyS.T. Endosomal-lysosomal dysfunction in metabolic diseases and Alzheimer’s disease.Int. Rev. Neurobiol.202015430332410.1016/bs.irn.2020.02.01232739009
    [Google Scholar]
  35. WuJ.J. YuH. BiS.G. WangZ.X. GongJ. MaoY.M. WangF.Z. ZhangY.Q. NieY.J. ChaiG.S. Aerobic exercise attenuates autophagy-lysosomal flux deficits by ADRB2/β2-adrenergic receptor-mediated V-ATPase assembly factor VMA21 signaling in APP-PSEN1/PS1 mice.Autophagy20242051015103110.1080/15548627.2023.228113437964627
    [Google Scholar]
  36. ZhangW. XuC. SunJ. ShenH.M. WangJ. YangC. Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential.Acta Pharm. Sin. B20221231019104010.1016/j.apsb.2022.01.00835530153
    [Google Scholar]
  37. GuoN.F. National Vocational Qualification Training Tutorial: Psychological Counselor (Level 3)ChinaEthnic Publishing House2012
    [Google Scholar]
  38. SherwinB.B. Oestrogen and cognitive function throughout the female lifespan.Novartis Found. Symp.200023018819610.1002/0470870818.ch1410965509
    [Google Scholar]
  39. MengQ. ChaoY. ZhangS. DingX. FengH. ZhangC. LiuB. ZhuW. LiY. ZhangQ. TongH. WuL. BianH. Attenuation of estrogen and its receptors in the post-menopausal stage exacerbates dyslipidemia and leads to cognitive impairment.Mol. Brain20231618010.1186/s13041‑023‑01068‑037986006
    [Google Scholar]
  40. KrauseW.C. RodriguezR. GegenhuberB. MatharuN. RodriguezA.N. Padilla-RogerA.M. TomaK. HerberC.B. CorreaS.M. DuanX. AhituvN. TollkuhnJ. IngrahamH.A. Oestrogen engages brain MC4R signalling to drive physical activity in female mice.Nature2021599788313113510.1038/s41586‑021‑04010‑334646010
    [Google Scholar]
  41. KillgoreW.D.S. SchwabZ.J. Sex differences in the association between physical exercise and IQ.Percept. Mot. Skills2012115260561710.2466/06.10.50.PMS.115.5.605‑61723265022
    [Google Scholar]
  42. KumarM. SrivastavaS. MuhammadT. Relationship between physical activity and cognitive functioning among older Indian adults.Sci. Rep.2022121272510.1038/s41598‑022‑06725‑335177736
    [Google Scholar]
/content/journals/car/10.2174/0115672050347596241111112811
Loading
/content/journals/car/10.2174/0115672050347596241111112811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test