Skip to content
2000
image of Quantitative Proteomic Analysis of APP/PS1 Transgenic Mice

Abstract

Background

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the central nervous system (CNS), with its etiology still shrouded in uncertainty. The interplay of extracellular amyloid-β (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) composed of tau protein, cholinergic neuronal impairment, and other pathogenic factors is implicated in the progression of AD.

Objective

The current study endeavors to delineate the proteomic landscape alterations in the hippocampus of an AD murine model, utilizing proteomic analysis to identify key physiological and pathological shifts induced by the disease. This endeavor aims to shed light on the underlying pathogenic mechanisms, which could facilitate early diagnosis and pave the way for novel therapeutic interventions for AD.

Methods

To dissect the proteomic perturbations induced by Aβ and Presenilin-1 (PS1) in the AD pathogenesis, we undertook a label-free quantitative (LFQ) proteomic analysis focusing on the hippocampal proteome of the APP/PS1 transgenic mouse model. Employing a multi-faceted approach that included differential protein functional enrichment, cluster analysis, and protein-protein interaction (PPI) network analysis, we conducted a comprehensive comparative proteomic study between APP/PS1 transgenic mice and their wild-type C57BL/6 counterparts.

Results

Mass spectrometry identified a total of 4817 proteins in the samples, with 2762 proteins being quantifiable. Comparative analysis revealed 396 proteins with differential expression between the APP/PS1 and control groups. Notably, 35 proteins exhibited consistent temporal regulation trends in the hippocampus, with concomitant alterations in biological pathways and PPI networks.

Conclusions

This study presents a comparative proteomic profile of transgenic (APP/PS1) and wild-type mice, highlighting the proteomic divergences. Furthermore, it charts the trajectory of proteomic changes in the AD mouse model across the developmental stages from 2 to 12 months, providing insights into the physiological and pathological implications of the disease-associated genetic mutations.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050345431241113112608
2024-12-02
2025-01-29
Loading full text...

Full text loading...

References

  1. Peng Y. Jin H. Xue Y. Chen Q. Yao S. Du M. Liu S. Current and future therapeutic strategies for Alzheimer’s disease: an overview of drug development bottlenecks. Front. Aging Neurosci. 2023 15 1206572 10.3389/fnagi.2023.1206572 37600514
    [Google Scholar]
  2. Bobkova N.V. Poltavtseva R.A. Leonov S.V. Sukhikh G.T. Neuroregeneration: Regulation in neurodegenerative diseases and aging. Biochemistry (Mosc.) 2020 85 S1 Suppl. 1 108 130 10.1134/S0006297920140060 32087056
    [Google Scholar]
  3. Hardy J. Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991 12 10 383 388 10.1016/0165‑6147(91)90609‑V 1763432
    [Google Scholar]
  4. Goedert M. Spillantini M.G. Crowther R.A. Tau proteins and neurofibrillary degeneration. Brain Pathol. 1991 1 4 279 286 10.1111/j.1750‑3639.1991.tb00671.x 1669718
    [Google Scholar]
  5. Francis P.T. Palmer A.M. Snape M. Wilcock G.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 1999 66 2 137 147 10.1136/jnnp.66.2.137 10071091
    [Google Scholar]
  6. Teixeira J.P. de Castro A.A. Soares F.V. da Cunha E.F.F. Ramalho T.C. Future therapeutic perspectives into the alzheimer’s disease targeting the oxidative stress hypothesis. Molecules 2019 24 23 4410 10.3390/molecules24234410 31816853
    [Google Scholar]
  7. Sachdeva P. Narayanan K.B. Sinha J.K. Gupta S. Ghosh S. Singh K.K. Bhaskar R. Almutary A.G. Zothantluanga J.H. Kotta K.K. Nelson V.K. Paiva-Santos A.C. Abomughaid M.M. Kamal M. Iqbal D. ALHarbi M.H. ALMutairi A.A. Dewanjee S. Nuli M.V. Vippamakula S. Jha S.K. Ojha S. Jha N.K. Recent advances in drug delivery systems targeting insulin signalling for the treatment of alzheimer’s disease. J. Alzheimers Dis. 2024 98 4 1169 1179 10.3233/JAD‑231181 38607755
    [Google Scholar]
  8. Pluta R. A look at the etiology of alzheimer’s disease based on the brain ischemia model. Curr. Alzheimer Res. 2024 21 3 166 182 10.2174/0115672050320921240627050736 38963100
    [Google Scholar]
  9. Hadi F. Mortaja M. Hadi Z. Calcium (Ca 2+ ) hemostasis, mitochondria, autophagy, and mitophagy contribute to Alzheimer’s disease as early moderators. Cell Biochem. Funct. 2024 42 5 e4085 10.1002/cbf.4085 38951992
    [Google Scholar]
  10. O’Day D.H. The complex interplay between toxic hallmark proteins, calmodulin-binding proteins, ion channels, and receptors involved in calcium dyshomeostasis in neurodegeneration. Biomolecules 2024 14 2 173 10.3390/biom14020173 38397410
    [Google Scholar]
  11. Mirra S.S. The CERAD neuropathology protocol and consensus recommendations for the postmortem diagnosis of Alzheimer’s disease: A commentary. Neurobiol. Aging 1997 18 4 Suppl. S91 S94 10.1016/S0197‑4580(97)00058‑4 9330994
    [Google Scholar]
  12. Querfurth H.W. LaFerla F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010 362 4 329 344 10.1056/NEJMra0909142 20107219
    [Google Scholar]
  13. McKhann G. Drachman D. Folstein M. Katzman R. Price D. Stadlan E.M. Clinical diagnosis of Alzheimer’s disease. Neurology 1984 34 7 939 944 10.1212/WNL.34.7.939 6610841
    [Google Scholar]
  14. Mattson M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004 430 7000 631 639 10.1038/nature02621 15295589
    [Google Scholar]
  15. Chen H. Xu J. Xu H. Luo T. Li Y. Jiang K. Shentu Y. Tong Z. New insights into Alzheimer’s Disease: Novel pathogenesis, drug target and delivery. Pharmaceutics 2023 15 4 1133 10.3390/pharmaceutics15041133 37111618
    [Google Scholar]
  16. Jiang T. Yu J.T. Tian Y. Tan L. Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr. Alzheimer Res. 2013 10 8 852 867 10.2174/15672050113109990155 23919770
    [Google Scholar]
  17. Duyckaerts C. Potier M.C. Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008 115 1 5 38 10.1007/s00401‑007‑0312‑8 18038275
    [Google Scholar]
  18. Sasaguri H. Nilsson P. Hashimoto S. Nagata K. Saito T. De Strooper B. Hardy J. Vassar R. Winblad B. Saido T.C. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 2017 36 17 2473 2487 10.15252/embj.201797397 28768718
    [Google Scholar]
  19. Chintapaludi S.R. Uyar A. Jackson H.M. Acklin C.J. Wang X. Sasner M. Carter G.W. Howell G.R. Staging Alzheimer’s Disease in the Brain and Retina of B6.APP/PS1 Mice by Transcriptional Profiling. J. Alzheimers Dis. 2020 73 4 1421 1434 10.3233/JAD‑190793 31929156
    [Google Scholar]
  20. Ma N. Pan J. Ye X. Yu B. Zhang W. Wan J. Whole-transcriptome analysis of APP/PS1 mouse brain and identification of circRNA-miRNA-mRNA networks to investigate AD pathogenesis. Mol. Ther. Nucleic Acids 2019 18 1049 1062 10.1016/j.omtn.2019.10.030 31786335
    [Google Scholar]
  21. Onos K.D. Sukoff Rizzo S.J. Howell G.R. Sasner M. Toward more predictive genetic mouse models of Alzheimer’s disease. Brain Res. Bull. 2016 122 1 11 10.1016/j.brainresbull.2015.12.003 26708939
    [Google Scholar]
  22. Aebersold R. Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016 537 7620 347 355 10.1038/nature19949 27629641
    [Google Scholar]
  23. Cho W.C.S. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics 2007 5 2 77 85 10.1016/S1672‑0229(07)60018‑7 17893073
    [Google Scholar]
  24. Cox J. Hein M.Y. Luber C.A. Paron I. Nagaraj N. Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 2014 13 9 2513 2526 10.1074/mcp.M113.031591 24942700
    [Google Scholar]
  25. Tyanova S. Temu T. Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016 11 12 2301 2319 10.1038/nprot.2016.136 27809316
    [Google Scholar]
  26. Patel V.J. Thalassinos K. Slade S.E. Connolly J.B. Crombie A. Murrell J.C. Scrivens J.H. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J. Proteome Res. 2009 8 7 3752 3759 10.1021/pr900080y 19435289
    [Google Scholar]
  27. Li Z. Adams R.M. Chourey K. Hurst G.B. Hettich R.L. Pan C. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J. Proteome Res. 2012 11 3 1582 1590 10.1021/pr200748h 22188275
    [Google Scholar]
  28. Pei S-q. Tan Z. Exploration of Exosome Component Differences in Gliomas Based on Tandem Mass Tag Mass Spectrometry. Analysis and Testing Technology and Instruments 2023 29 63 67
    [Google Scholar]
  29. Pei S. Wang X. Wang X. Huang H. Tao H. Xie B. Yang A. Qiu M. Tan Z. Aberrant nuclear lamina contributes to the malignancy of human gliomas. J. Genet. Genomics 2022 49 2 132 144 10.1016/j.jgg.2021.08.013 34530169
    [Google Scholar]
  30. Liu W. Sun F. Wan M. Jiang F. Bo X. Lin L. Tang H. Xu S. β-Sheet Breaker Peptide-HPYD for the Treatment of Alzheimer’s Disease: Primary Studies on Behavioral Test and Transcriptional Profiling. Front. Pharmacol. 2018 8 969 10.3389/fphar.2017.00969 29358920
    [Google Scholar]
  31. Shen Y. Wang X. Guo S. Qiu M. Hou G. Tan Z. Evolutionary genomics analysis of human nucleus-encoded mitochondrial genes: implications for the roles of energy production and metabolic pathways in the pathogenesis and pathophysiology of demyelinating diseases. Neurosci. Lett. 2020 715 134600 10.1016/j.neulet.2019.134600 31726178
    [Google Scholar]
  32. Gu B. Zhang J. Wu Y. Zhang X. Tan Z. Lin Y. Huang X. Chen L. Yao K. Zhang M. Proteomic analyses reveal common promiscuous patterns of cell surface proteins on human embryonic stem cells and sperms. PLoS One 2011 6 5 e19386 10.1371/journal.pone.0019386 21559292
    [Google Scholar]
  33. Musunuri S. Khoonsari P.E. Mikus M. Wetterhall M. Häggmark-Mänberg A. Lannfelt L. Erlandsson A. Bergquist J. Ingelsson M. Shevchenko G. Nilsson P. Kultima K. Lehmann S. Increased Levels of Extracellular Microvesicle Markers and Decreased Levels of Endocytic/Exocytic Proteins in the Alzheimer’s Disease Brain. J. Alzheimers Dis. 2016 54 4 1671 1686 10.3233/JAD‑160271 27636840
    [Google Scholar]
  34. Puris E. Saveleva L. de Sousa Maciel I. Kanninen K.M. Auriola S. Fricker G. Protein Expression of Amino Acid Transporters Is Altered in Isolated Cerebral Microvessels of 5xFAD Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2023 60 2 732 748 10.1007/s12035‑022‑03111‑y 36367657
    [Google Scholar]
  35. Meseke M. Rosenberger G. Förster E. Reelin and the Cdc42/Rac1 guanine nucleotide exchange factor α PIX /Arhgef6 promote dendritic Golgi translocation in hippocampal neurons. Eur. J. Neurosci. 2013 37 9 1404 1412 10.1111/ejn.12153 23406282
    [Google Scholar]
  36. Chen K. Jiang X. Wu M. Cao X. Bao W. Zhu L.Q. Ferroptosis, a Potential Therapeutic Target in Alzheimer’s Disease. Front. Cell Dev. Biol. 2021 9 704298 10.3389/fcell.2021.704298 34422824
    [Google Scholar]
  37. Wang X. Zhou X. Lee J. Furdui C.M. Ma T. In-Depth Proteomic Analysis of De Novo Proteome in a Mouse Model of Alzheimer’s Disease. J. Alzheimers Dis. 2023 91 4 1471 1482 10.3233/JAD‑221044 36641677
    [Google Scholar]
  38. Deng L. Gupta V.K. Wu Y. Pushpitha K. Chitranshi N. Gupta V.B. Fitzhenry M.J. Moghaddam M.Z. Karl T. Salekdeh G.H. Graham S.L. Haynes P.A. Mirzaei M. Mouse model of Alzheimer’s disease demonstrates differential effects of early disease pathology on various brain regions. Proteomics 2021 21 7-8 2000213 10.1002/pmic.202000213 33559908
    [Google Scholar]
  39. Gao Y. Li J. Hu K. Wang S. Yang S. Ai Q. Yan J. Phosphoproteomic analysis of APP/PS1 mice of Alzheimer’s disease by DIA based mass spectrometry analysis with PRM verification. J. Proteomics 2024 299 105157 10.1016/j.jprot.2024.105157 38462170
    [Google Scholar]
  40. Shen X.N. Huang S.Y. Cui M. Zhao Q.H. Guo Y. Huang Y.Y. Zhang W. Ma Y.H. Chen S.D. Zhang Y.R. Chen S.F. Chen K.L. Cheng W. Zuo C.T. Tan L. Ding D. Dong Q. Jeromin A. Yen T.C. Yu J.T. Plasma Glial Fibrillary Acidic Protein in the Alzheimer Disease Continuum: Relationship to Other Biomarkers, Differential Diagnosis, and Prediction of Clinical Progression. Clin. Chem. 2023 69 4 411 421 10.1093/clinchem/hvad018 36861369
    [Google Scholar]
  41. Odaka H. Hiemori K. Shimoda A. Akiyoshi K. Tateno H. Platelet‐derived extracellular vesicles are increased in sera of Alzheimer’s disease patients, as revealed by Tim4‐based assays. FEBS Open Bio 2021 11 3 741 752 10.1002/2211‑5463.13068 33345458
    [Google Scholar]
  42. Gynther M. Puris E. Peltokangas S. Auriola S. Kanninen K.M. Koistinaho J. Huttunen K.M. Ruponen M. Vellonen K.S. Alzheimer’s Disease Phenotype or Inflammatory Insult Does Not Alter Function of L-Type Amino Acid Transporter 1 in Mouse Blood-Brain Barrier and Primary Astrocytes. Pharm. Res. 2019 36 1 17 10.1007/s11095‑018‑2546‑7 30488131
    [Google Scholar]
  43. Kutsche K. Yntema H. Brandt A. Jantke I. Gerd Nothwang H. Orth U. Boavida M.G. David D. Chelly J. Fryns J.P. Moraine C. Ropers H.H. Hamel B.C.J. van Bokhoven H. Gal A. Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat. Genet. 2000 26 2 247 250 10.1038/80002 11017088
    [Google Scholar]
  44. Mary A. Eysert F. Checler F. Chami M. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches. Mol. Psychiatry 2023 28 1 202 216 10.1038/s41380‑022‑01631‑6 35665766
    [Google Scholar]
  45. Pan X.J. Misrani A. Tabassum S. Yang L. Mitophagy pathways and Alzheimer’s disease: From pathogenesis to treatment. Mitochondrion 2021 59 37 47 10.1016/j.mito.2021.04.007 33872797
    [Google Scholar]
  46. Ashrafi G. Schlehe J.S. LaVoie M.J. Schwarz T.L. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 2014 206 5 655 670
    [Google Scholar]
/content/journals/car/10.2174/0115672050345431241113112608
Loading
/content/journals/car/10.2174/0115672050345431241113112608
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hippocampus ; Alzheimer's disease ; proteomics ; APP/PS1 ; ferroptosis ; mitophagy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test