Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer's disease (AD) is a progressive neurological disorder for which no effective cure currently exists. Research has identified β-Secretase (BACE1) as a promising therapeutic target for the management of AD. BACE1 is involved in the rate-limiting step and produces toxic amyloid-beta (Aβ) peptides that lead to deposits in the form of amyloid plaques extracellularly, resulting in AD.

Methods

In this connection, 60 small peptides were evaluated for their studies to predict the bonding orientation with BACE1. Next, 5 peptides ( and were selected based on high scoring of Vander Waal interactions with the catalytic site of the enzyme.

Results

The identified hit peptides were synthesized using Solid-Phase Peptide Synthesis (SPPS), and Electrospray Ionization Mass Spectrometry (ESI-MS) elucidated their structures and 1 1 H-NMR spectroscopy. According to their BACE1 inhibitory study, peptides having high Vander Waal forces showed significant BACE1 inhibition with IC = 4.64 ± 0.1µM). Moreover, the kinetic study revealed that peptide is a mixed-type inhibitor and can interact at the active site and the allosteric site of BACE1.

Conclusion

According to the cytotoxicity study, peptide was found to be noncytotoxic at 4.64 µM, 10 µM and 20 µM. The forthcoming target of this study is to evaluate further the effect of peptide 21 in an mice model.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050336253241227102506
2025-02-10
2025-07-17
Loading full text...

Full text loading...

References

  1. HongM. BitanG. Recent advances and future therapy development for Alzheimer’s disease and related disorders.Neural Regen. Res.20241991877187810.4103/1673‑5374.391182 38227506
    [Google Scholar]
  2. HerreroR DiazMY VazquezMH NievesJ GonzalezA Face morphometric profiles of groups as early markers for certain diseases?. Int J Oral Craniof Sci 20239100815
    [Google Scholar]
  3. ZhangT. KimB.M. LeeT.H. Death-associated protein kinase 1 as a therapeutic target for Alzheimer’s disease.Transl. Neurodegener.2024131410.1186/s40035‑023‑00395‑5 38195518
    [Google Scholar]
  4. AlbericioF. BaranyG. An acid‐labile anchoring linkage for solid‐phase synthesis of C‐terminal peptide amides under mild conditions.Int. J. Pept. Protein Res.198730220621610.1111/j.1399‑3011.1987.tb03328.x 3679670
    [Google Scholar]
  5. GoedertM. KlugA. CrowtherR.A. Tau protein, the paired helical filament and Alzheimer’s disease.J. Alzheimers Dis.20069s319520710.3233/JAD‑2006‑9S323 16914859
    [Google Scholar]
  6. GauthierS. AisenP.S. FerrisS.H. Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: Exploratory analyses of the MRI sub-group of the alphase study.J. Nutr. Health Aging200913655055710.1007/s12603‑009‑0106‑x 19536424
    [Google Scholar]
  7. KevadiyaB.D. OttemannB.M. ThomasM.B. Neurotheranostics as personalized medicines.Adv. Drug Deliv. Rev.201914825228910.1016/j.addr.2018.10.011 30421721
    [Google Scholar]
  8. DuboisB. HampelH. FeldmanH.H. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria.Alzheimers Dement.201612329232310.1016/j.jalz.2016.02.002 27012484
    [Google Scholar]
  9. RafiiM.S. WalshS. LittleJ.T. A phase II trial of huperzine A in mild to moderate Alzheimer disease.Neurology201176161389139410.1212/WNL.0b013e318216eb7b 21502597
    [Google Scholar]
  10. ChowV.W. MattsonM.P. WongP.C. GleichmannM. An overview of APP processing enzymes and products.Neuromolecular Med.201012111210.1007/s12017‑009‑8104‑z 20232515
    [Google Scholar]
  11. AmouriE.S.S. ZhuH. YuJ. MarrR. VermaI.M. KindyM.S. Neprilysin: An enzyme candidate to slow the progression of Alzheimer’s disease.Am. J. Pathol.200817251342135410.2353/ajpath.2008.070620 18403590
    [Google Scholar]
  12. GoureW.F. KrafftG.A. JerecicJ. HeftiF. Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics.Alzheimers Res. Ther.2014644210.1186/alzrt272 25045405
    [Google Scholar]
  13. LoS.C. LiX. HenzlM.T. BeamerL.J. HanninkM. Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling.EMBO J.200625153605361710.1038/sj.emboj.7601243 16888629
    [Google Scholar]
  14. KumarN. GahlawatA. KumarR.N. SinghY.P. ModiG. GargP. Drug repurposing for Alzheimer’s disease: In silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors.J. Biomol. Struct. Dyn.20224072878289210.1080/07391102.2020.1844054 33170091
    [Google Scholar]
  15. HayesC.D. DeyD. PalaviciniJ.P. Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of carmustine.BMC Med.20131118110.1186/1741‑7015‑11‑81 23531149
    [Google Scholar]
  16. SinghY.P. PandeyA. VishwakarmaS. ModiG. A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases.Mol. Divers.201923250952610.1007/s11030‑018‑9878‑4 30293116
    [Google Scholar]
  17. SinghB. SharmaB. JaggiA.S. SinghN. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: Possible involvement of PPAR-γ agonistic property.J. Renin Angiotensin Aldosterone Syst.201314212413610.1177/1470320312459977 23060470
    [Google Scholar]
  18. TariotP.N. SchneiderL.S. CummingsJ. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease.Arch. Gen. Psychiatry201168885386110.1001/archgenpsychiatry.2011.72 21810649
    [Google Scholar]
  19. SanchezP.E. ZhuL. VerretL. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model.Proc. Natl. Acad. Sci. 201210942E2895E290310.1073/pnas.1121081109 22869752
    [Google Scholar]
  20. ForloniG. ColomboL. GirolaL. TagliaviniF. SalmonaM. Anti‐amyloidogenic activity of tetracyclines: Studies in vitro.FEBS Lett.2001487340440710.1016/S0014‑5793(00)02380‑2 11163366
    [Google Scholar]
  21. MeulenbroekO O’DwyerS Jong dD, et al. European multicentre double-blind placebo-controlled trial of Nilvadipine in mild-to-moderate Alzheimer’s disease—the substudy protocols: NILVAD frailty; NILVAD blood and genetic biomarkers; NILVAD cerebrospinal fluid biomarkers; NILVAD cerebral blood flow.BMJ Open201667e01158410.1136/bmjopen‑2016‑011584 27436668
    [Google Scholar]
  22. DongY.F. KataokaK. TokutomiY. Perindopril, a centrally active angiotensin‐converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease.FASEB J.20112592911292010.1096/fj.11‑182873 21593435
    [Google Scholar]
  23. MillerB.W. WillettK.C. DesiletsA.R. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease.Ann. Pharmacother.201145111416142410.1345/aph.1Q238 22028424
    [Google Scholar]
  24. HughesR.E. NikolicK. RamsayR.R. One for all? Hitting multiple Alzheimer’s disease targets with one drug.Front. Neurosci.20161017710.3389/fnins.2016.00177 27199640
    [Google Scholar]
  25. AisenP.S. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease.Lancet Neurol.20021527928410.1016/S1474‑4422(02)00133‑3 12849425
    [Google Scholar]
  26. PedersenW.A. McMillanP.J. KulstadJ.J. LeverenzJ.B. CraftS. HaynatzkiG.R. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice.Exp. Neurol.2006199226527310.1016/j.expneurol.2006.01.018 16515786
    [Google Scholar]
  27. KatewaS.D. KatyareS.S. Antimalarials inhibit human erythrocyte membrane acetylcholinesterase.Drug Chem. Toxicol.200528446748210.1080/01480540500262912 16298876
    [Google Scholar]
  28. JeonS.Y. BaeK. SeongY.H. SongK.S. Green tea catechins as a BACE1 (β-Secretase) inhibitor.Bioorg. Med. Chem. Lett.200313223905390810.1016/j.bmcl.2003.09.018 14592472
    [Google Scholar]
  29. MayP.C. DeanR.A. LoweS.L. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor.J. Neurosci.20113146165071651610.1523/JNEUROSCI.3647‑11.2011 22090477
    [Google Scholar]
  30. VillemagneV.L. BurnhamS. BourgeatP. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study.Lancet Neurol.201312435736710.1016/S1474‑4422(13)70044‑9 23477989
    [Google Scholar]
  31. FolchJ. EttchetoM. PetrovD. Review of the advances in treatment for Alzheimer disease: Strategies for combating β-amyloid protein.Neurologia2018331475810.1016/j.nrleng.2015.03.019 25976937
    [Google Scholar]
/content/journals/car/10.2174/0115672050336253241227102506
Loading
/content/journals/car/10.2174/0115672050336253241227102506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test