Skip to content
2000
image of Discovery of Selective β-Secretase (BACE-1) Inhibitors by the Solid-Phase Synthesis of Small Molecular-sized Peptides

Abstract

Introduction

Alzheimer's disease (AD) is a progressive neurological disorder for which no effective cure currently exists. Research has identified β-Secretase (BACE1) as a promising therapeutic target for the management of AD. BACE1 is involved in the rate-limiting step and produces toxic amyloid-beta (Aβ) peptides that lead to deposits in the form of amyloid plaques extracellularly, resulting in AD.

Method

In this connection, 60 small peptides were evaluated for their studies to predict the bonding orientation with BACE1. Next, 5 peptides ( and were selected based on high scoring of Vander Waal interactions with the catalytic site of the enzyme.

Results

The identified hit peptides were synthesized using Solid-Phase Peptide Synthesis (SPPS), and Electrospray Ionization Mass Spectrometry (ESI-MS) elucidated their structures and 1 1 H-NMR spectroscopy. According to their BACE1 inhibitory study, peptides having high Vander Waal forces showed significant BACE1 inhibition with IC = 4.64 ± 0.1µM). Moreover, the kinetic study revealed that peptide is a mixed-type inhibitor and can interact at the active site and the allosteric site of BACE1.

Conclusion

According to the cytotoxicity study, peptide 21 was found to be noncytotoxic at 4.64 µM, 10 µM and 20 µM. The forthcoming target of this study is to evaluate further the effect of peptide 21 in an mice model.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050336253241227102506
2025-02-10
2025-03-27
Loading full text...

Full text loading...

References

  1. Hong M. Bitan G. Recent advances and future therapy development for Alzheimer’s disease and related disorders. Neural Regen. Res. 2024 19 9 1877 1878 10.4103/1673‑5374.391182 38227506
    [Google Scholar]
  2. Herrero R Diaz M.Y Vazquez M.H Nieves J Gonzalez A Face morphometric profiles of groups as early markers for certain diseases?. Int. J. Oral Craniof. Sci. 2023 9 1 008 15
    [Google Scholar]
  3. Zhang T. Kim B.M. Lee T.H. Death-associated protein kinase 1 as a therapeutic target for Alzheimer’s disease. Transl. Neurodegener. 2024 13 1 4 10.1186/s40035‑023‑00395‑5 38195518
    [Google Scholar]
  4. Albericio F. Barany G. An acid‐labile anchoring linkage for solid‐phase synthesis of C ‐terminal peptide amides under mild conditions. Int. J. Pept. Protein Res. 1987 30 2 206 216 10.1111/j.1399‑3011.1987.tb03328.x 3679670
    [Google Scholar]
  5. Goedert M. Klug A. Crowther R.A. Tau protein, the paired helical filament and Alzheimer’s disease. J. Alzheimers Dis. 2006 9 s3 195 207 10.3233/JAD‑2006‑9S323 16914859
    [Google Scholar]
  6. Gauthier S. Aisen P.S. Ferris S.H. Saumier D. Duong A. Haine D. Garceau D. Suhy J. Oh J. Lau W. Sampalis J. Effect of tramiprosate in patients with mild-to-moderate alzheimer’s disease: Exploratory analyses of the MRI sub-group of the alphase study. J. Nutr. Health Aging 2009 13 6 550 557 10.1007/s12603‑009‑0106‑x 19536424
    [Google Scholar]
  7. Kevadiya B.D. Ottemann B.M. Thomas M.B. Mukadam I. Nigam S. McMillan J. Gorantla S. Bronich T.K. Edagwa B. Gendelman H.E. Neurotheranostics as personalized medicines. Adv. Drug Deliv. Rev. 2019 148 252 289 10.1016/j.addr.2018.10.011 30421721
    [Google Scholar]
  8. Dubois B. Hampel H. Feldman H.H. Scheltens P. Aisen P. Andrieu S. Bakardjian H. Benali H. Bertram L. Blennow K. Broich K. Cavedo E. Crutch S. Dartigues J.F. Duyckaerts C. Epelbaum S. Frisoni G.B. Gauthier S. Genthon R. Gouw A.A. Habert M.O. Holtzman D.M. Kivipelto M. Lista S. Molinuevo J.L. O’Bryant S.E. Rabinovici G.D. Rowe C. Salloway S. Schneider L.S. Sperling R. Teichmann M. Carrillo M.C. Cummings J. Jack C.R. Jr Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016 12 3 292 323 10.1016/j.jalz.2016.02.002 27012484
    [Google Scholar]
  9. Rafii M.S. Walsh S. Little J.T. Behan K. Reynolds B. Ward C. Jin S. Thomas R. Aisen P.S. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 2011 76 16 1389 1394 10.1212/WNL.0b013e318216eb7b 21502597
    [Google Scholar]
  10. Chow V.W. Mattson M.P. Wong P.C. Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010 12 1 1 12 10.1007/s12017‑009‑8104‑z 20232515
    [Google Scholar]
  11. Amouri E.S.S. Zhu H. Yu J. Marr R. Verma I.M. Kindy M.S. Neprilysin: An enzyme candidate to slow the progression of Alzheimer’s disease. Am. J. Pathol. 2008 172 5 1342 1354 10.2353/ajpath.2008.070620 18403590
    [Google Scholar]
  12. Goure W.F. Krafft G.A. Jerecic J. Hefti F. Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2014 6 4 42 10.1186/alzrt272 25045405
    [Google Scholar]
  13. Lo S.C. Li X. Henzl M.T. Beamer L.J. Hannink M. Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 2006 25 15 3605 3617 10.1038/sj.emboj.7601243 16888629
    [Google Scholar]
  14. Kumar N. Gahlawat A. Kumar R.N. Singh Y.P. Modi G. Garg P. Drug repurposing for Alzheimer’s disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. J. Biomol. Struct. Dyn. 2022 40 7 2878 2892 10.1080/07391102.2020.1844054 33170091
    [Google Scholar]
  15. Hayes C.D. Dey D. Palavicini J.P. Wang H. Patkar K.A. Minond D. Nefzi A. Lakshmana M.K. Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of carmustine. BMC Med. 2013 11 1 81 10.1186/1741‑7015‑11‑81 23531149
    [Google Scholar]
  16. Singh Y.P. Pandey A. Vishwakarma S. Modi G. A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol. Divers. 2019 23 2 509 526 10.1007/s11030‑018‑9878‑4 30293116
    [Google Scholar]
  17. Singh B. Sharma B. Jaggi A.S. Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: Possible involvement of PPAR-γ agonistic property. J. Renin Angiotensin Aldosterone Syst. 2013 14 2 124 136 10.1177/1470320312459977 23060470
    [Google Scholar]
  18. Tariot P.N. Schneider L.S. Cummings J. Thomas R.G. Raman R. Jakimovich L.J. Loy R. Bartocci B. Fleisher A. Ismail M.S. Porsteinsson A. Weiner M. Jack C.R. Jr Thal L. Aisen P.S. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch. Gen. Psychiatry 2011 68 8 853 861 10.1001/archgenpsychiatry.2011.72 21810649
    [Google Scholar]
  19. Sanchez P.E. Zhu L. Verret L. Vossel K.A. Orr A.G. Cirrito J.R. Devidze N. Ho K. Yu G.Q. Palop J.J. Mucke L. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. 2012 109 42 E2895 E2903 10.1073/pnas.1121081109 22869752
    [Google Scholar]
  20. Forloni G. Colombo L. Girola L. Tagliavini F. Salmona M. Anti‐amyloidogenic activity of tetracyclines: Studies in vitro. FEBS Lett. 2001 487 3 404 407 10.1016/S0014‑5793(00)02380‑2 11163366
    [Google Scholar]
  21. Meulenbroek O. O’Dwyer S. Jong d.D. Spijker v.G. Kennelly S. Cregg F. Rikkert O.M. Abdullah L. Wallin A. Walsh C. Coen R. Kenny R.A. Daly L. Segurado R. Hanson B.A. Crawford F. Mullan M. Lucca U. Banzi R. Pasquier F. Breuilh L. Riepe M. Kalman J. Molloy W. Tsolaki M. Howard R. Adams J. Gaynor S. Lawlor B. European multicentre double-blind placebo-controlled trial of Nilvadipine in mild-to-moderate Alzheimer’s disease—the substudy protocols: NILVAD frailty; NILVAD blood and genetic biomarkers; NILVAD cerebrospinal fluid biomarkers; NILVAD cerebral blood flow. BMJ Open 2016 6 7 e011584 10.1136/bmjopen‑2016‑011584 27436668
    [Google Scholar]
  22. Dong Y.F. Kataoka K. Tokutomi Y. Nako H. Nakamura T. Toyama K. Sueta D. Koibuchi N. Yamamoto E. Ogawa H. Mitsuyama K.S. Perindopril, a centrally active angiotensin‐converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. FASEB J. 2011 25 9 2911 2920 10.1096/fj.11‑182873 21593435
    [Google Scholar]
  23. Miller B.W. Willett K.C. Desilets A.R. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Ann. Pharmacother. 2011 45 11 1416 1424 10.1345/aph.1Q238 22028424
    [Google Scholar]
  24. Hughes R.E. Nikolic K. Ramsay R.R. One for all? Hitting multiple Alzheimer’s disease targets with one drug. Front. Neurosci. 2016 10 177 10.3389/fnins.2016.00177 27199640
    [Google Scholar]
  25. Aisen P.S. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 2002 1 5 279 284 10.1016/S1474‑4422(02)00133‑3 12849425
    [Google Scholar]
  26. Pedersen W.A. McMillan P.J. Kulstad J.J. Leverenz J.B. Craft S. Haynatzki G.R. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp. Neurol. 2006 199 2 265 273 10.1016/j.expneurol.2006.01.018 16515786
    [Google Scholar]
  27. Katewa S.D. Katyare S.S. Antimalarials inhibit human erythrocyte membrane acetylcholinesterase. Drug Chem. Toxicol. 2005 28 4 467 482 10.1080/01480540500262912 16298876
    [Google Scholar]
  28. Jeon S.Y. Bae K. Seong Y.H. Song K.S. Green tea catechins as a BACE1 (β-Secretase) inhibitor. Bioorg. Med. Chem. Lett. 2003 13 22 3905 3908 10.1016/j.bmcl.2003.09.018 14592472
    [Google Scholar]
  29. May P.C. Dean R.A. Lowe S.L. Martenyi F. Sheehan S.M. Boggs L.N. Monk S.A. Mathes B.M. Mergott D.J. Watson B.M. Stout S.L. Timm D.E. LaBell S.E. Gonzales C.R. Nakano M. Jhee S.S. Yen M. Ereshefsky L. Lindstrom T.D. Calligaro D.O. Cocke P.J. Hall G.D. Friedrich S. Citron M. Audia J.E. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J. Neurosci. 2011 31 46 16507 16516 10.1523/JNEUROSCI.3647‑11.2011 22090477
    [Google Scholar]
  30. Villemagne V.L. Burnham S. Bourgeat P. Brown B. Ellis K.A. Salvado O. Szoeke C. Macaulay S.L. Martins R. Maruff P. Ames D. Rowe C.C. Masters C.L. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol. 2013 12 4 357 367 10.1016/S1474‑4422(13)70044‑9 23477989
    [Google Scholar]
  31. Folch J. Ettcheto M. Petrov D. Abad S. Pedrós I. Marin M. Olloquequi J. Camins A. Review of the advances in treatment for Alzheimer disease: Strategies for combating β-amyloid protein. Neurología 2018 33 1 47 58 10.1016/j.nrleng.2015.03.019 25976937
    [Google Scholar]
/content/journals/car/10.2174/0115672050336253241227102506
Loading
/content/journals/car/10.2174/0115672050336253241227102506
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Alzheimer's disease ; β-secretase (BACE1) ; ESI-MS ; peptides synthesis ; in-vitro ; in silico ; 1H-NMR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test