Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer's Disease (AD) is the most common neurodegenerative disease, and timely and effective diagnosis is essential for the prevention and treatment of AD. Peripheral blood is readily available, inexpensive, and non-invasive, making it an ideal substrate for screening diagnostic biomarkers.

Methods

The Notch signaling pathway is closely related to AD, so genes related to the Notch signaling pathway may be candidate diagnostic biomarkers for AD. Here, we have performed an integrated analysis of peripheral blood cells transcriptomics from two AD cohorts (GSE63060: Ctrl = 104, MCI = 80, AD = 145; GSE63061: Ctrl = 134, MCI = 109, AD = 139) to reveal the expression levels of 16 Notch signals involving 100 genes.

Results

The results have shown the changes in Notch signaling-related genes to be highly consistent in both AD cohorts. Bioinformatics analysis has found Differentially Expressed Genes (DEGs) related to Notch signaling to mainly play important roles in Alzheimer's disease, the Notch signaling pathway, and the C-type lectin receptor signaling pathway. Multiple machine learning analyses have revealed IKBKB, HDAC2, and PIK3R1 to exhibit good diagnostic value in both AD cohorts and that they may be ideal biomarkers for early diagnosis of AD.

Conclusion

This study has provided a comprehensive description of the molecular signatures of the Notch signaling pathway in AD peripheral blood and a potential diagnostic model for AD clinical screening.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050339307241108101528
2024-11-29
2025-01-18
Loading full text...

Full text loading...

References

  1. FeiginV.L. NicholsE. AlamT. BannickM.S. BeghiE. BlakeN. CulpepperW.J. DorseyE.R. ElbazA. EllenbogenR.G. FisherJ.L. FitzmauriceC. GiussaniG. GlennieL. JamesS.L. JohnsonC.O. KassebaumN.J. LogroscinoG. MarinB. Mountjoy-VenningW.C. NguyenM. Ofori-AsensoR. PatelA.P. PiccininniM. RothG.A. SteinerT.J. StovnerL.J. SzoekeC.E.I. TheadomA. VollsetS.E. WallinM.T. WrightC. ZuntJ.R. AbbasiN. Abd-AllahF. AbdelalimA. AbdollahpourI. AboyansV. AbrahaH.N. AcharyaD. AdamuA.A. AdebayoO.M. AdeoyeA.M. AdsuarJ.C. AfaridehM. AgrawalS. AhmadiA. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemiR.O. AkseerN. Al-EyadhyA. Al-Shahi SalmanR. AlahdabF. AleneK.A. AljunidS.M. AltirkawiK. Alvis-GuzmanN. AnberN.H. AntonioC.A.T. ArablooJ. AremuO. ÄrnlövJ. AsayeshH. AsgharR.J. AtalayH.T. AwasthiA. Ayala QuintanillaB.P. AyukT.B. BadawiA. BanachM. BanoubJ.A.M. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BauneB.T. BediN. BehzadifarM. BehzadifarM. BéjotY. BekeleB.B. BelachewA.B. BennettD.A. BensenorI.M. BerhaneA. BeuranM. BhattacharyyaK. BhuttaZ.A. BiadgoB. BijaniA. BililignN. Bin SayeedM.S. BlazesC.K. BrayneC. ButtZ.A. Campos-NonatoI.R. Cantu-BritoC. CarM. CárdenasR. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. CastroF. Catalá-LópezF. CerinE. ChaiahY. ChangJ-C. ChatziralliI. ChiangP.P-C. ChristensenH. ChristopherD.J. CooperC. CortesiP.A. CostaV.M. CriquiM.H. CroweC.S. DamascenoA.A.M. DaryaniA. De la Cruz-GóngoraV. De la HozF.P. De LeoD. DemozG.T. DeribeK. DharmaratneS.D. DiazD. DinberuM.T. DjalaliniaS. DokuD.T. DubeyM. DubljaninE. DukenE.E. EdvardssonD. El-KhatibZ. EndresM. EndriesA.Y. EskandariehS. EsteghamatiA. EsteghamatiS. FarhadiF. FaroA. FarzadfarF. FarzaeiM.H. FatimaB. FereshtehnejadS-M. FernandesE. FeyissaG.T. FilipI. FischerF. FukumotoT. GanjiM. GankpeF.G. Garcia-GordilloM.A. GebreA.K. GebremichaelT.G. GelawB.K. GeleijnseJ.M. GeremewD. GezaeK.E. Ghasemi-KasmanM. GideyM.Y. GillP.S. GillT.K. GirmaE.T. GnedovskayaE.V. GoulartA.C. GradaA. GrossoG. GuoY. GuptaR. GuptaR. HaagsmaJ.A. HagosT.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HankeyG.J. HaoY. HaroJ.M. HassankhaniH. HassenH.Y. HavmoellerR. HayS.I. HegazyM.I. HeidariB. HenokA. HeydarpourF. HoangC.L. HoleM.K. Homaie RadE. HosseiniS.M. HuG. IgumborE.U. IlesanmiO.S. IrvaniS.S.N. IslamS.M.S. JakovljevicM. JavanbakhtM. JhaR.P. JobanputraY.B. JonasJ.B. JozwiakJ.J. JürissonM. KahsayA. KalaniR. KalkondeY. KamilT.A. KanchanT. KaramiM. KarchA. KarimiN. KasaeianA. KassaT.D. KassaZ.Y. KaulA. KefaleA.T. KeiyoroP.N. KhaderY.S. KhafaieM.A. KhalilI.A. KhanE.A. KhangY-H. KhazaieH. KiadaliriA.A. KiirithioD.N. KimA.S. KimD. KimY-E. KimY.J. KisaA. KokuboY. KoyanagiA. KrishnamurthiR.V. Kuate DefoB. Kucuk BicerB. KumarM. LaceyB. LafranconiA. LansinghV.C. LatifiA. LeshargieC.T. LiS. LiaoY. LinnS. LoW.D. LopezJ.C.F. LorkowskiS. LotufoP.A. LucasR.M. LuneviciusR. MackayM.T. MahotraN.B. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. ManafiN. MansourniaM.A. MantovaniL.G. MärzW. Mashamba-ThompsonT.P. MassenburgB.B. MateK.K.V. McAlindenC. McGrathJ.J. MehtaV. MeierT. MelesH.G. MeleseA. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MengistuG. MeretojaA. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MillerT.R. MiniG.K. MirrakhimovE.M. MoazenB. MohajerB. Mohammad Gholi MezerjiN. MohammadiM. Mohammadi-KhanaposhtaniM. MohammadibakhshR. Mohammadnia-AfrouziM. MohammedS. MohebiF. MokdadA.H. MonastaL. MondelloS. MoodleyY. MoosazadehM. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. Moreno VelásquezI. MorrisonS.D. MousaviS.M. MuhammedO.S. MuruetW. MusaK.I. MustafaG. NaderiM. NagelG. NaheedA. NaikG. NajafiF. NangiaV. NegoiI. NegoiR.I. NewtonC.R.J. NgunjiriJ.W. NguyenC.T. NguyenL.H. NingrumD.N.A. NirayoY.L. NixonM.R. NorrvingB. NoubiapJ.J. Nourollahpour ShiadehM. NyasuluP.S. OgahO.S. OhI-H. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OnwujekweO.E. OrenE. OwolabiM.O. PaM. PakpourA.H. PanW-H. Panda-JonasS. PandianJ.D. PatelS.K. PereiraD.M. PetzoldM. PillayJ.D. PiradovM.A. PolanczykG.V. PolinderS. PostmaM.J. PoultonR. PoustchiH. PrakashS. PrakashV. QorbaniM. RadfarA. RafayA. RafieiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.H.U. RahmanM.A. RajatiF. RamU. RantaA. RawafD.L. RawafS. ReinigN. ReisC. RenzahoA.M.N. ResnikoffS. RezaeianS. RezaiM.S. Rios GonzálezC.M. RobertsN.L.S. RoeverL. RonfaniL. RoroE.M. RoshandelG. RostamiA. SabbaghP. SaccoR.L. SachdevP.S. SaddikB. SafariH. Safari-FaramaniR. SafiS. SafiriS. SagarR. SahathevanR. SahebkarA. SahraianM.A. SalamatiP. Salehi ZahabiS. SalimiY. SamyA.M. SanabriaJ. SantosI.S. Santric MilicevicM.M. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SchneiderI.J.C. SchöttkerB. SchwebelD.C. SeedatS. SepanlouS.G. ShabaninejadH. ShafieesabetA. ShaikhM.A. ShakirR.A. Shams-BeyranvandM. ShamsizadehM. SharifM. Sharif-AlhoseiniM. SheJ. SheikhA. ShethK.N. ShigematsuM. ShiriR. ShirkoohiR. ShiueI. SiabaniS. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilberbergD.H. SilvaJ.P. SilveiraD.G.A. SinghJ.A. SinhaD.N. SkiadaresiE. SmithM. SobaihB.H. SobhaniS. SoofiM. SoyiriI.N. SposatoL.A. SteinD.J. SteinM.B. StokesM.A. SufiyanM.B. SykesB.L. SylajaP.N. Tabarés-SeisdedosR. Te AoB.J. Tehrani-BanihashemiA. TemsahM-H. TemsahO. ThakurJ.S. ThriftA.G. Topor-MadryR. Tortajada-GirbésM. Tovani-PaloneM.R. TranB.X. TranK.B. TruelsenT.C. TsadikA.G. Tudor CarL. UkwajaK.N. UllahI. UsmanM.S. UthmanO.A. ValdezP.R. VasankariT.J. VasanthanR. VeisaniY. VenketasubramanianN. ViolanteF.S. VlassovV. VosoughiK. VuG.T. VujcicI.S. WagnewF.S. WaheedY. WangY-P. WeiderpassE. WeissJ. WhitefordH.A. WijeratneT. WinklerA.S. WiysongeC.S. WolfeC.D.A. XuG. YadollahpourA. YamadaT. YanoY. YaseriM. YatsuyaH. YimerE.M. YipP. YismaE. YonemotoN. YousefifardM. YuC. ZaidiZ. ZamanS.B. ZamaniM. ZandianH. ZareZ. ZhangY. ZodpeyS. NaghaviM. MurrayC.J.L. VosT. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X
    [Google Scholar]
  2. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑4
    [Google Scholar]
  3. HodsonR. Alzheimer’s disease.Nature20185597715S110.1038/d41586‑018‑05717‑6
    [Google Scholar]
  4. SurguchovA. EmamzadehF.N. TitovaM. SurguchevA.A. Controversial properties of amyloidogenic proteins and peptides: New data in the COVID era.Biomedicines2023114121510.3390/biomedicines11041215
    [Google Scholar]
  5. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑1
    [Google Scholar]
  6. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes.N. Engl. J. Med.2008358242560257210.1056/NEJMoa0802987
    [Google Scholar]
  7. WangT.J. GonaP. LarsonM.G. ToflerG.H. LevyD. Newton-ChehC. JacquesP.F. RifaiN. SelhubJ. RobinsS.J. BenjaminE.J. D’AgostinoR.B. VasanR.S. Multiple biomarkers for the prediction of first major cardiovascular events and death.N. Engl. J. Med.2006355252631263910.1056/NEJMoa055373
    [Google Scholar]
  8. GreenR.H. BrightlingC.E. McKennaS. HargadonB. ParkerD. BraddingP. WardlawA.J. PavordI.D. Asthma exacerbations and sputum eosinophil counts: A randomised controlled trial.Lancet200236093471715172110.1016/S0140‑6736(02)11679‑5
    [Google Scholar]
  9. ChengY. XuS.M. TakenakaK. LindnerG. Curry-HydeA. JanitzM. A unique circular RNA expression pattern in the peripheral blood of myalgic encephalomyelitis/chronic fatigue syndrome patients.Gene202387714756810.1016/j.gene.2023.147568
    [Google Scholar]
  10. YuH. LiuY. HeB. HeT. ChenC. HeJ. YangX. WangJ.Z. Platelet biomarkers for a descending cognitive function: A proteomic approach.Aging Cell2021205e1335810.1111/acel.13358
    [Google Scholar]
  11. YuH. LiuY. HeT. ZhangY. HeJ. LiM. JiangB. GaoY. ChenC. KeD. LiuJ. HeB. YangX. WangJ.Z. Platelet biomarkers identifying mild cognitive impairment in type 2 diabetes patients.Aging Cell20212010e1346910.1111/acel.13469
    [Google Scholar]
  12. JiaD. WangF. YuH. Systemic alterations of tricarboxylic acid cycle enzymes in alzheimer’s disease.Front. Neurosci.202317120668810.3389/fnins.2023.1206688
    [Google Scholar]
  13. YuH. WangF. WuJ. GongJ. BiS. MaoY. JiaD. ChaiG. Integrated transcriptomics reveals the brain and blood biomarkers in alzheimer’s disease.CNS Neurosci. Ther.202329123943395110.1111/cns.14316
    [Google Scholar]
  14. HuangB. OuG. ZhangN. Identification of key regulatory molecules in the early development stage of alzheimer’s disease.J. Cell. Mol. Med.2024286e1815110.1111/jcmm.18151
    [Google Scholar]
  15. NakamuraA. KanekoN. VillemagneV.L. KatoT. DoeckeJ. DoréV. FowlerC. LiQ.X. MartinsR. RoweC. TomitaT. MatsuzakiK. IshiiK. IshiiK. ArahataY. IwamotoS. ItoK. TanakaK. MastersC.L. YanagisawaK. High performance plasma amyloid-β biomarkers for alzheimer’s disease.Nature2018554769124925410.1038/nature25456
    [Google Scholar]
  16. PreischeO. SchultzS.A. ApelA. KuhleJ. KaeserS.A. BarroC. GräberS. Kuder-BulettaE. LaFougereC. LaskeC. VögleinJ. LevinJ. MastersC.L. MartinsR. SchofieldP.R. RossorM.N. Graff-RadfordN.R. SallowayS. GhettiB. RingmanJ.M. NobleJ.M. ChhatwalJ. GoateA.M. BenzingerT.L.S. MorrisJ.C. BatemanR.J. WangG. FaganA.M. McDadeE.M. GordonB.A. JuckerM. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic alzheimer’s disease.Nat. Med.201925227728310.1038/s41591‑018‑0304‑3
    [Google Scholar]
  17. KarikariT.K. PascoalT.A. AshtonN.J. JanelidzeS. BenedetA.L. RodriguezJ.L. ChamounM. SavardM. KangM.S. TherriaultJ. SchöllM. MassarwehG. SoucyJ.P. HöglundK. BrinkmalmG. MattssonN. PalmqvistS. GauthierS. StomrudE. ZetterbergH. HanssonO. Rosa-NetoP. BlennowK. Blood phosphorylated tau 181 as a biomarker for alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts.Lancet Neurol.202019542243310.1016/S1474‑4422(20)30071‑5
    [Google Scholar]
  18. PalmqvistS. JanelidzeS. QuirozY.T. ZetterbergH. LoperaF. StomrudE. SuY. ChenY. SerranoG.E. LeuzyA. Mattsson-CarlgrenN. StrandbergO. SmithR. VillegasA. Sepulveda-FallaD. ChaiX. ProctorN.K. BeachT.G. BlennowK. DageJ.L. ReimanE.M. HanssonO. Discriminative Accuracy of Plasma Phospho-tau217 for alzheimer disease vs other neurodegenerative disorders.JAMA2020324877278110.1001/jama.2020.12134
    [Google Scholar]
  19. Artavanis-TsakonasS. RandM.D. LakeR.J. Notch signaling: Cell fate control and signal integration in development.Science1999284541577077610.1126/science.284.5415.770
    [Google Scholar]
  20. AguirreA. RubioM.E. GalloV. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal.Nature2010467731332332710.1038/nature09347
    [Google Scholar]
  21. GaianoN. FishellG. The role of notch in promoting Glial and neural stem cell fates.Annu. Rev. Neurosci.200225147149010.1146/annurev.neuro.25.030702.130823
    [Google Scholar]
  22. LiuZ.J. ShirakawaT. LiY. SomaA. OkaM. DottoG.P. FairmanR.M. VelazquezO.C. HerlynM. Regulation of Notch1 and Dll4 by vascular Endothelial growth factor in arterial endothelial cells: Implications for modulating Arteriogenesis and Angiogenesis.Mol. Cell. Biol.2003231142510.1128/MCB.23.1.14‑25.2003
    [Google Scholar]
  23. JanelidzeS. StomrudE. PalmqvistS. ZetterbergH. van WestenD. JerominA. SongL. HanlonD. Tan HehirC.A. BakerD. BlennowK. HanssonO. Plasma β-amyloid in alzheimer’s disease and vascular disease.Sci. Rep.2016612680110.1038/srep26801
    [Google Scholar]
  24. WangM.M. CADASIL.Handb. Clin. Neurol.201814873374310.1016/B978‑0‑444‑64076‑5.00047‑8
    [Google Scholar]
  25. GrayF. RobertF. LabrecqueR. ChrétienF. BaudrimontM. Fallet-BiancoC. MikoiJ. VintersH.V. Autosomal dominant arteriopathic leuko-encephalopathy and alzheimer’s disease.Neuropathol. Appl. Neurobiol.1994201223010.1111/j.1365‑2990.1994.tb00953.x
    [Google Scholar]
  26. ThijsV. RobberechtW. De VosR. SciotR. Coexistence of CADASIL and alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry200374679079210.1136/jnnp.74.6.790
    [Google Scholar]
  27. GuerreiroR.J. LohmannE. KinsellaE. BrásJ.M. LuuN. GurunlianN. DursunB. BilgicB. SantanaI. HanagasiH. GurvitH. GibbsJ.R. OliveiraC. EmreM. SingletonA. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with alzheimer’s disease.Neurobiol. Aging20123351008.e171008.e2310.1016/j.neurobiolaging.2011.10.009
    [Google Scholar]
  28. NagarshethM.H. ViehmanA. LippaS.M. LippaC.F. Notch-1 immunoexpression is increased in alzheimer’s and pick’s disease.J. Neurol. Sci.20062441-211111610.1016/j.jns.2006.01.007
    [Google Scholar]
  29. ChenB.K. MurawskiN.J. CincottaC. McKissickO. FinkelsteinA. HamidiA.B. MerfeldE. DoucetteE. GrellaS.L. ShpokayteM. ZakiY. FortinA. RamirezS. Artificially enhancing and suppressing Hippocampus-mediated memories.Curr. Biol.2019291118851894.e410.1016/j.cub.2019.04.065
    [Google Scholar]
  30. DrachmanD.A. SmithT.W. AlkamachiB. KaneK. Microvascular changes in down syndrome with Alzheimer’s-type pathology: Insights into a potential vascular mechanism for Down syndrome and alzheimer’s disease.Alzheimers Dement.201713121389139610.1016/j.jalz.2017.05.003
    [Google Scholar]
  31. EnglerA. ZhangR. TaylorV. Notch and neurogenesis.Adv. Exp. Med. Biol.2018106622323410.1007/978‑3‑319‑89512‑3_11
    [Google Scholar]
  32. YanY. LiS. GaoZ. ZouS. LiH. TaoZ. SongJ. YangJ. Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway.Life Sci.201616613113810.1016/j.lfs.2016.10.004
    [Google Scholar]
  33. KellyM.J. BreathnachC. TraceyK.J. DonnellyS.C. Manipulation of the inflammatory reflex as a therapeutic strategy.Cell Rep. Med.20223710069610.1016/j.xcrm.2022.100696
    [Google Scholar]
  34. AnderssonE.R. LendahlU. Therapeutic modulation of Notch signalling — are we there yet?Nat. Rev. Drug Discov.201413535737810.1038/nrd4252
    [Google Scholar]
  35. BarrettT. WilhiteS.E. LedouxP. EvangelistaC. KimI.F. TomashevskyM. MarshallK.A. PhillippyK.H. ShermanP.M. HolkoM. YefanovA. LeeH. ZhangN. RobertsonC.L. SerovaN. DavisS. SobolevaA. NCBI GEO: Archive for functional genomics data sets—update.Nucleic Acids Res.201241D1D991D99510.1093/nar/gks1193
    [Google Scholar]
  36. JiaA. XuL. WangY. Venn diagrams in bioinformatics.Brief. Bioinform.2021225bbab10810.1093/bib/bbab108
    [Google Scholar]
  37. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6
    [Google Scholar]
  38. FranzM. LopesC.T. FongD. KuceraM. CheungM. SiperM.C. HuckG. DongY. SumerO. BaderG.D. Cytoscape.js 2023 update: A graph theory library for visualization and analysis.Bioinformatics2023391btad03110.1093/bioinformatics/btad031
    [Google Scholar]
  39. MullahM.A.S. HanleyJ.A. BenedettiA. LASSO type penalized spline regression for binary data.BMC Med. Res. Methodol.20212118310.1186/s12874‑021‑01234‑9
    [Google Scholar]
  40. SanzH. ValimC. VegasE. OllerJ.M. ReverterF. SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels.BMC Bioinformatics201819143210.1186/s12859‑018‑2451‑4
    [Google Scholar]
  41. WallaceM.L. MentchL. WheelerB.J. TapiaA.L. RichardsM. ZhouS. YiL. RedlineS. BuysseD.J. Use and misuse of random forest variable importance metrics in medicine: Demonstrations through incident stroke prediction.BMC Med. Res. Methodol.202323114410.1186/s12874‑023‑01965‑x
    [Google Scholar]
  42. KumarV. KunduS. SinghA. SinghS. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective.Curr. Neuropharmacol.202220115817810.2174/1570159X19666210609160017
    [Google Scholar]
  43. BiS. PengQ. LiuW. ZhangC. LiuZ. MicroRNA‑342‑5p activates the Akt signaling pathway by downregulating PIK3R1 to modify the proliferation and differentiation of vascular smooth muscle cells.Exp. Ther. Med.2020206110.3892/etm.2020.9369
    [Google Scholar]
  44. BredesenD.E. Neural apoptosis.Ann. Neurol.199538683985110.1002/ana.410380604
    [Google Scholar]
  45. FranssonS. UvA. ErikssonH. AnderssonM.K. WettergrenY. BergoM. EjeskärK. p37δ is a new isoform of PI3K p110δ that increases cell proliferation and is overexpressed in tumors.Oncogene201231273277328610.1038/onc.2011.492
    [Google Scholar]
  46. XiaoL. GongL-L. YuanD. DengM. ZengX-M. ChenL-L. ZhangL. YanQ. LiuJ-P. HuX-H. SunS-M. LiuJ. MaH-L. ZhengC-B. FuH. ChenP-C. ZhaoJ-Q. XieS-S. ZouL-J. XiaoY-M. LiuW-B. ZhangJ. LiuY. LiD.W-C. Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation.Cell Death Differ.20101791448146210.1038/cdd.2010.16
    [Google Scholar]
  47. MorinakaK. KoyamaS. NakashimaS. HinoiT. OkawaK. IwamatsuA. KikuchiA. Epsin binds to the EH domain of POB1 and regulates receptor-mediated endocytosis.Oncogene199918435915592210.1038/sj.onc.1202974
    [Google Scholar]
  48. BerezovskaO. XiaM.Q. HymanB.T. Notch is expressed in adult brain, is Coexpressed with Presenilin-1, and is altered in alzheimer disease.J. Neuropathol. Exp. Neurol.199857873874510.1097/00005072‑199808000‑00003
    [Google Scholar]
  49. KapoorA. NationD.A. Role of Notch signaling in neurovascular aging and alzheimer’s disease.Semin. Cell Dev. Biol.2021116909710.1016/j.semcdb.2020.12.011
    [Google Scholar]
  50. DoA.N. AliM. TimsinaJ. WangL. WesternD. LiuM. SanfordJ. Rosende-RocaM. BoadaM. PuertaR. WilsonT. RuizA. PastorP. CSF proteomic profiling with amyloid/tau positivity identifies distinctive sex-different alteration of multiple proteins involved in Alzheimer’s disease.MedRxiv20242024.03.15.2430416410.1101/2024.03.15.24304164
    [Google Scholar]
  51. ZhangS. CaiF. WuY. BozorgmehrT. WangZ. ZhangS. HuangD. GuoJ. ShenL. RankinC. TangB. SongW. A presenilin-1 mutation causes alzheimer disease without affecting Notch signaling.Mol. Psychiatry202025360361310.1038/s41380‑018‑0101‑x
    [Google Scholar]
  52. D’OnofrioG. PanzaF. FrisardiV. SolfrizziV. ImbimboB.P. ParoniG. CascavillaL. SeripaD. PilottoA. Advances in the identification of γ-secretase inhibitors for the treatment of alzheimer’s disease.Expert Opin. Drug Discov.201271193710.1517/17460441.2012.645534
    [Google Scholar]
  53. KrämerO.H. HDAC2: A critical factor in health and disease.Trends Pharmacol. Sci.2009301264765510.1016/j.tips.2009.09.007
    [Google Scholar]
  54. LiuD. TangH. LiX.Y. DengM.F. WeiN. WangX. ZhouY.F. WangD.Q. FuP. WangJ.Z. HébertS.S. ChenJ.G. LuY. ZhuL.Q. Targeting the HDAC2/HNF-4A/miR-101b/AMPK pathway rescues Tauopathy and Dendritic Abnormalities in alzheimer’s disease.Mol. Ther.201725375276410.1016/j.ymthe.2017.01.018
    [Google Scholar]
  55. PengS. ZhaoS. YanF. ChengJ. HuangL. ChenH. LiuQ. JiX. YuanZ. HDAC2 selectively regulates foxo3a-mediated gene transcription during oxidative stress-induced neuronal cell death.J. Neurosci.20153531250125910.1523/JNEUROSCI.2444‑14.2015
    [Google Scholar]
  56. MahadyL. NadeemM. Malek-AhmadiM. ChenK. PerezS.E. MufsonE.J. HDAC 2 dysregulation in the nucleus basalis of Meynert during the progression of alzheimer’s disease.Neuropathol. Appl. Neurobiol.201945438039710.1111/nan.12518
    [Google Scholar]
  57. LuX. DengY. YuD. CaoH. WangL. LiuL. YuC. ZhangY. GuoX. YuG. Histone Acetyltransferase p300 mediates Histone Acetylation of PS1 and BACE1 in a cellular model of alzheimer’s disease.PLoS One201497e10306710.1371/journal.pone.0103067
    [Google Scholar]
  58. MinS.W. ChenX. TracyT.E. LiY. ZhouY. WangC. ShirakawaK. MinamiS.S. DefensorE. MokS.A. SohnP.D. SchillingB. CongX. EllerbyL. GibsonB.W. JohnsonJ. KroganN. ShamlooM. GestwickiJ. MasliahE. VerdinE. GanL. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits.Nat. Med.201521101154116210.1038/nm.3951
    [Google Scholar]
  59. PanikkerP. XuS.J. ZhangH. SarthiJ. BeaverM. ShethA. AkhterS. ElefantF. Restoring Tip60 HAT/HDAC2 balance in the neurodegenerative brain relieves Epigenetic Transcriptional repression and reinstates cognition.J. Neurosci.201838194569458310.1523/JNEUROSCI.2840‑17.2018
    [Google Scholar]
  60. WangD.B. KinoshitaC. KinoshitaY. SopherB.L. UoT. LeeR.J. KimJ.K. MurphyS.P. Dirk KeeneC. GardenG.A. MorrisonR.S. Neuronal susceptibility to beta-amyloid toxicity and ischemic injury involves histone deacetylase-2 regulation of endophilin-B1.Brain Pathol.201929216417510.1111/bpa.12647
    [Google Scholar]
  61. YamakawaH. ChengJ. PenneyJ. GaoF. RuedaR. WangJ. YamakawaS. KritskiyO. GjoneskaE. TsaiL.H. The transcription factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons.Cell Rep.20172061319133410.1016/j.celrep.2017.07.044
    [Google Scholar]
  62. WoodH. Blocking HDAC2–Sp3 interaction — a new approach to AD therapy?Nat. Rev. Neurol.2017131057710.1038/nrneurol.2017.125
    [Google Scholar]
  63. ChangW.H. ChenM.C. ChengI.H. antroquinonol lowers brain Amyloid-β levels and improves spatial learning and memory in a Transgenic mouse model of alzheimer’s disease.Sci. Rep.2015511506710.1038/srep15067
    [Google Scholar]
  64. CottrellC.E. BenderN.R. ZimmermannM.T. HeuselJ.W. CorlissM. EvensonM.J. MagriniV. CorsmeierD.J. AvenariusM. DudleyJ.N. JohnstonJ.J. LindhurstM.J. Vigh-ConradK. DaviesO.M.T. CoughlinC.C. FriedenI.J. TollefsonM. ZaengleinA.L. CilibertoH. TosiL.L. SempleR.K. BieseckerL.G. DroletB.A. Somatic PIK3R1 variation as a cause of vascular malformations and overgrowth.Genet. Med.202123101882188810.1038/s41436‑021‑01211‑z
    [Google Scholar]
  65. KhezriM.R. EsmaeiliA. Ghasemnejad-BerenjiM. Platelet activation and alzheimer’s disease: The probable role of PI3K/AKT pathway.J. Alzheimers Dis.202290252953410.3233/JAD‑220663
    [Google Scholar]
  66. LiuS. XuL. ShenY. WangL. LaiX. HuH. Qingxin Kaiqiao Fang decreases Tau hyperphosphorylation in alzheimer's disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo.J Ethnopharmacol.2024318Pt B11703110.1016/j.jep.2023.117031
    [Google Scholar]
  67. MaoY. FisherD.W. YangS. KeszyckiR.M. DongH. Protein-protein interactions underlying the behavioral and psychological symptoms of dementia (BPSD) and alzheimer’s disease.PLoS One2020151e022602110.1371/journal.pone.0226021
    [Google Scholar]
  68. QianX. LiuX. ChenS. TangH. Identification of immune hub genes associated with braak stages in alzheimer’s disease and their correlation of immune infiltration.Front. Aging Neurosci.20221488716810.3389/fnagi.2022.887168
    [Google Scholar]
  69. RamananV.K. RisacherS.L. NhoK. KimS. SwaminathanS. ShenL. ForoudT.M. HakonarsonH. HuentelmanM.J. AisenP.S. PetersenR.C. GreenR.C. JackC.R. KoeppeR.A. JagustW.J. WeinerM.W. SaykinA.J. APOE and BCHE as modulators of cerebral amyloid deposition: A florbetapir PET genome-wide association study.Mol. Psychiatry201419335135710.1038/mp.2013.19
    [Google Scholar]
  70. Martínez-MármolR. MohannakN. QianL. WangT. GormalR.S. RuitenbergM.J. VanhaesebroeckB. CoulsonE.J. MeunierF.A. p110δ PI3-kinase inhibition Perturbs APP and TNFα trafficking, reduces plaque burden, dampens neuroinflammation, and prevents cognitive decline in an alzheimer’s disease mouse model.J. Neurosci.201939407976799110.1523/JNEUROSCI.0674‑19.2019
    [Google Scholar]
  71. LowP.C. ManzaneroS. MohannakN. NarayanaV.K. NguyenT.H. KvaskoffD. BrennanF.H. RuitenbergM.J. GelderblomM. MagnusT. KimH.A. BroughtonB.R.S. SobeyC.G. VanhaesebroeckB. StowJ.L. ArumugamT.V. MeunierF.A. PI3Kδ inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model.Nat. Commun.201451345010.1038/ncomms4450
    [Google Scholar]
  72. SchmidJ.A. BirbachA. IkappaB. IκB kinase β (IKKβ/IKK2/IKBKB)—A key molecule in signaling to the transcription factor NF-κB.Cytokine Growth Factor Rev.200819215716510.1016/j.cytogfr.2008.01.006
    [Google Scholar]
  73. MuleroM.C. HuxfordT. GhoshG. NF-κB, IκB, and IKK: Integral components of immune system signaling.Adv. Exp. Med. Biol.2019117220722610.1007/978‑981‑13‑9367‑9_10
    [Google Scholar]
  74. SivamaruthiB.S. RaghaniN. ChorawalaM. BhattacharyaS. PrajapatiB.G. ElossailyG.M. ChaiyasutC. NF-κB pathway and its inhibitors: A promising frontier in the management of alzheimer’s disease.Biomedicines2023119258710.3390/biomedicines11092587
    [Google Scholar]
  75. SchnöderL. QuanW. YuY. TomicI. LuoQ. HaoW. PengG. LiD. FassbenderK. LiuY. Deficiency of IKKβ in neurons ameliorates alzheimer’s disease pathology in APP - and tau-transgenic mice.FASEB J.2023372e2277810.1096/fj.202201512R
    [Google Scholar]
  76. WangY. ChanS.L. MieleL. YaoP.J. MackesJ. IngramD.K. MattsonM.P. FurukawaK. Involvement of Notch signaling in hippocampal synaptic plasticity.Proc. Natl. Acad. Sci. USA2004101259458946210.1073/pnas.0308126101
    [Google Scholar]
  77. TagaM. MinettT. ClasseyJ. MatthewsF.E. BrayneC. InceP.G. NicollJ.A.R. HugonJ. BocheD. Metaflammasome components in the human brain: A role in dementia with alzheimer’s pathology?Brain Pathol.201727326627510.1111/bpa.12388
    [Google Scholar]
  78. WangW. GuX.H. LiM. ChengZ.J. TianS. LiaoY. LiuX. MicroRNA-155-5p targets SKP2, activates IKKβ, increases Aβ aggregation, and aggravates a mouse alzheimer disease model.J. Neuropathol. Exp. Neurol.2022811162610.1093/jnen/nlab116
    [Google Scholar]
  79. HundalR.S. PetersenK.F. MayersonA.B. RandhawaP.S. InzucchiS. ShoelsonS.E. ShulmanG.I. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes.J. Clin. Invest.2002109101321132610.1172/JCI0214955
    [Google Scholar]
  80. LiJ. LiuW. SunW. RaoX. ChenX. YuL. A study on autophagy related biomarkers in alzheimer’s disease based on bioinformatics.Cell. Mol. Neurobiol.20234373693370310.1007/s10571‑023‑01379‑9
    [Google Scholar]
/content/journals/car/10.2174/0115672050339307241108101528
Loading
/content/journals/car/10.2174/0115672050339307241108101528
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test