Skip to content
2000
image of Local Mean Gradient Pattern (LMGP): A Novel Approach for the Classification of Brain CT Scan Images

Abstract

Objective

Visual descriptor methods like Local Binary Pattern (LBP) capture anatomical structures in captured images along with their disparities, which can be exploited by suitable methods for the diagnosis of medical anomalies. In our study, we have proposed a Local Mean Gradient Pattern (LMGP), based partly on LBP, a feature extraction algorithm for the classification of Computed Tomography (CT) images of the brain into normal, ischemic, or hemorrhage categories.

Methods

The AISD and Kaggle datasets containing patients’ brain CT scan images [acute ischemic stroke, hemorrhage, and normal cases] were taken. Initially, adaptive histogram equalization (AHE) techniques were applied as preprocessing operations to enhance the quality of the CT images. Furthermore, features were extracted from the preprocessed data using several feature extraction techniques, including our proposed LMGP feature descriptor. The features were then scaled using the standard scaling technique. Subsequently, preprocessed images were fed into different classifiers to build models for classifying brain CT scan images.

Results

The effectiveness of our methodology LMGP was determined using different metrics, such as recall, precision, F1 score, logarithmic loss, accuracy (ACC), and area under the curve (ROC). Conclusively, LMGP performed best when the RBF-SVM classifier was used for the classification and gave an accuracy of 94% and 96% in the case of five-fold and ten-fold cross-validation, respectively.

Conclusion

LMGP offers a distinctive and robust method of feature extraction from CT scan images by combining local information along with gradient change in pixels of the image. The efficacy of our proposed methodology (LMGP) was evaluated by using distinct classifiers, and the results were compared with eight different feature extraction methods. Overall, LMGP effectively outperformed all other feature descriptor methods in this study.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752322204241127104725
2025-02-26
2025-07-12
Loading full text...

Full text loading...

References

  1. Nanni L. Lumini A. Brahnam S. Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 2010 49 2 117 125 10.1016/j.artmed.2010.02.006 20338737
    [Google Scholar]
  2. Castellino R.A. Computer aided detection (CAD): An overview. Cancer Imaging 2005 5 1 17 19 10.1102/1470‑7330.2005.0018 16154813
    [Google Scholar]
  3. Murala S. Wu Q.M.J. Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE J. Biomed. Health Inform. 2014 18 3 929 938 10.1109/JBHI.2013.2288522 24235315
    [Google Scholar]
  4. Dubey S.R. Singh S.K. Singh R.K. Local wavelet pattern: A new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 2015 24 12 5892 5903 10.1109/TIP.2015.2493446 26513789
    [Google Scholar]
  5. Yahia S. Salem Y.B. Abdelkrim M.N. 3D Textures Analysis Based on Features Extraction. Advanced Methods for Human Biometrics. Derbel N. Kanoun O. Cham Springer International Publishing 2021 231 256 10.1007/978‑3‑030‑81982‑8_11
    [Google Scholar]
  6. Khellah F.M. Texture classification using dominant neighborhood structure. IEEE Trans. Image Process. 2011 20 11 3270 3279 10.1109/TIP.2011.2143422 21511565
    [Google Scholar]
  7. Murala S. Jonathan Wu Q.M. Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing 2013 119 399 412 10.1016/j.neucom.2013.03.018
    [Google Scholar]
  8. Dubey S.R. Singh S.K. Singh R.K. Local diagonal extrema pattern: A new and efficient feature descriptor for CT image retrieval. IEEE Signal Process. Lett. 2015 22 9 1215 1219 10.1109/LSP.2015.2392623
    [Google Scholar]
  9. Gautam A. Raman B. Raghuvanshi S. A hybrid approach for the delineation of brain lesion from CT images. Biocybern. Biomed. Eng. 2018 38 3 504 518 10.1016/j.bbe.2018.04.003
    [Google Scholar]
  10. Kaur N. Nazir N. A review of local binary pattern based texture feature extraction. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) 03-04 Sept, 2021, Noida, India, 2021, pp. 1-4.
    [Google Scholar]
  11. Heikkilä M. Pietikäinen M. Schmid C. Description of interest regions with center-symmetric local binary patterns. Computer Vision, Graphics and Image Processing. Berlin, Heidelberg Springer 2006 10.1007/11949619_6
    [Google Scholar]
  12. Gautam A. Raman B. Local gradient of gradient pattern: A robust image descriptor for the classification of brain strokes from computed tomography images. Pattern Anal. Appl. 2020 23 2 797 817 10.1007/s10044‑019‑00838‑8
    [Google Scholar]
  13. Wan S. Lee H.C. Huang X. Xu T. Xu T. Zeng X. Zhang Z. Sheikine Y. Connolly J.L. Fujimoto J.G. Zhou C. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy. Med. Image Anal. 2017 38 104 116 10.1016/j.media.2017.03.002 28327449
    [Google Scholar]
  14. Berbar M.A. Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy. Health Inf. Sci. Syst. 2022 10 1 14 10.1007/s13755‑022‑00181‑z 35782197
    [Google Scholar]
  15. Patel A. Schreuder F.H.B.M. Klijn C.J.M. Prokop M. Ginneken B. Marquering H.A. Roos Y.B.W.E.M. Baharoglu M.I. Meijer F.J.A. Manniesing R. Intracerebral haemorrhage segmentation in non-contrast CT. Sci. Rep. 2019 9 1 17858 10.1038/s41598‑019‑54491‑6 31780815
    [Google Scholar]
  16. Xiaoyang Tan Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 2010 19 6 1635 1650 10.1109/TIP.2010.2042645 20172829
    [Google Scholar]
  17. El merabet Y. Ruichek Y. El idrissi A. Attractive-and-repulsive center-symmetric local binary patterns for texture classification. Eng. Appl. Artif. Intell. 2019 78 158 172 10.1016/j.engappai.2018.11.011
    [Google Scholar]
  18. Liao S. Law M.W.K. Chung A.C.S. Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 2009 18 5 1107 1118 10.1109/TIP.2009.2015682 19342342
    [Google Scholar]
  19. Bianconi F. González E. Fernández A. Dominant local binary patterns for texture classification: Labelled or unlabelled? Pattern Recognit. Lett. 2015 65 8 14 10.1016/j.patrec.2015.06.025
    [Google Scholar]
  20. Guo Z. Zhang L. Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010 19 6 1657 1663 10.1109/TIP.2010.2044957 20215079
    [Google Scholar]
  21. Zhao Y. Huang D.S. Jia W. Completed local binary count for rotation invariant texture classification. IEEE Trans. Image Process. 2012 21 10 4492 4497 10.1109/TIP.2012.2204271 22711773
    [Google Scholar]
  22. Nithya S. Ramakrishnan S. Wavelet domain directional binary pattern using majority principle for texture classification. Physica A 2020 545 123575 10.1016/j.physa.2019.123575
    [Google Scholar]
  23. Agarwal M. Singhal A. Lall B. 3D local ternary co-occurrence patterns for natural, texture, face and bio medical image retrieval. Neurocomputing 2018 313 333 345 10.1016/j.neucom.2018.06.027
    [Google Scholar]
  24. Hatibaruah R. Nath V.K. Hazarika D. 3D-local oriented zigzag ternary co-occurrence fused pattern for biomedical CT image retrieval. Biomed. Eng. Lett. 2020 10 3 345 357 10.1007/s13534‑020‑00163‑8 32850176
    [Google Scholar]
  25. Shinde A. Rahulkar A. Patil C. Content based medical image retrieval based on new efficient local neighborhood wavelet feature descriptor. Biomed. Eng. Lett. 2019 9 3 387 394 10.1007/s13534‑019‑00112‑0 31456898
    [Google Scholar]
  26. Baochang Zhang Yongsheng Gao Sanqiang Zhao Jianzhuang Liu Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 2010 19 2 533 544 10.1109/TIP.2009.2035882 19887313
    [Google Scholar]
  27. Fadaei S. Amirfattahi R. Ahmadzadeh M.R. Local derivative radial patterns: A new texture descriptor for content-based image retrieval. Signal Processing 2017 137 274 286 10.1016/j.sigpro.2017.02.013
    [Google Scholar]
  28. Darapureddy N. Karatapu N. Battula T.K. Local derivative vector pattern: Hybrid pattern for content-based medical image retrieval. Rev. Comp. Engin. Stud. 2020 7 4 79 86 10.18280/rces.070401
    [Google Scholar]
  29. Venu D. Classification analysis for local mesh patterns using medical image segmentation. Int. J. Food Nutrit. Sci. 2022 11 12 5232 5241
    [Google Scholar]
  30. Hsu S.B. Lee C-H. Chang P-C. Han C-C. Fan K-C. Local wavelet acoustic pattern: A novel time–frequency descriptor for birdsong recognition. IEEE Trans. Multimed. 2018 20 12 3187 3199 10.1109/TMM.2018.2834866
    [Google Scholar]
  31. Pillai A. Soundrapandiyan R. Satapathy S. Satapathy S.C. Jung K-H. Krishnan R. Local diagonal extrema number pattern: A new feature descriptor for face recognition. Future Gener. Comput. Syst. 2018 81 297 306 10.1016/j.future.2017.09.055
    [Google Scholar]
  32. Er M.B. Heart sounds classification using convolutional neural network with 1D-local binary pattern and 1D-local ternary pattern features. Appl. Acoust. 2021 180 108152 10.1016/j.apacoust.2021.108152
    [Google Scholar]
  33. Sree Vidya B. Chandra E. Entropy based Local Binary Pattern (ELBP) feature extraction technique of multimodal biometrics as defence mechanism for cloud storage. Alex. Eng. J. 2019 58 1 103 114 10.1016/j.aej.2018.12.008
    [Google Scholar]
  34. De Bruijne M. Symmetry-enhanced attention network for acute ischemic infarct segmentation with non-contrast CT images. 24th International Conference Sept 27–Oct 1, 2021, Strasbourg, France, pp. 431-441.
    [Google Scholar]
  35. van der Walt S. Schönberger J.L. Nunez-Iglesias J. Boulogne F. Warner J.D. Yager N. Gouillart E. Yu T. scikit-image: Image processing in Python. PeerJ 2014 2 e453 10.7717/peerj.453 25024921
    [Google Scholar]
  36. Pedregosa F. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011 12 2825 2830
    [Google Scholar]
  37. Hunter J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007 9 3 90 95 10.1109/MCSE.2007.55
    [Google Scholar]
  38. Mohammadzadeh A. Multilayer Perceptron (MLP) Neural Networks. Neural Networks and Learning Algorithms in MATLAB. Mohammadazadeh A. Cham Springer International Publishing 2022 5 21 10.1007/978‑3‑031‑14571‑1_2
    [Google Scholar]
/content/journals/cai/10.2174/0129503752322204241127104725
Loading
/content/journals/cai/10.2174/0129503752322204241127104725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test