Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2950-3752
  • E-ISSN: 2950-3760

Abstract

Adverse drug reactions and drug-induced toxicity provide significant issues in drug research, jeopardizing patient safety and driving up healthcare costs. Toxicity has a greater potential impact than infectious diseases since it is less visible. Early diagnosis of these difficulties is critical to determining a drug's safety and viability profile. The combination of machine learning and artificial intelligence has marked a watershed moment in the identification of early adverse drug reactions and toxicity. These computational approaches enable rapid, extensive, and precise prediction of likely adverse drug reactions and toxicity even before practical drug manufacture, preclinical testing, and clinical trials. This paradigm change strives to create more efficient and safe drugs, lowering the likelihood of drug withdrawal. This comprehensive review investigates the critical role of machine learning and artificial intelligence in quickly detecting adverse drug reactions and toxicity, including approaches from data mining to deep learning. It lists essential databases, modelling techniques, and software that may be used to model and predict a wide range of toxicities and adverse drug reactions. This review provides a comprehensive overview, outlining recent developments and projecting future opportunities in machine learning and artificial intelligence-driven rapid identification of adverse drug reactions and drug-induced toxicity. It highlights the capabilities of these technologies and their enormous potential to improve patient safety and revolutionize medication discovery.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752308394241013165241
2024-10-21
2026-02-19
Loading full text...

Full text loading...

References

  1. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  2. HarrisonR.K. Phase II and phase III failures: 2013–2015.Nat. Rev. Drug Discov.2016151281781810.1038/nrd.2016.184 27811931
    [Google Scholar]
  3. KongkaewC. NoyceP.R. AshcroftD.M. Hospital admissions associated with adverse drug reactions: a systematic review of prospective observational studies.Ann. Pharmacother.2008427-81017102510.1345/aph.1L037 18594048
    [Google Scholar]
  4. BjörnssonE.S. Drug-induced liver injury: an overview over the most critical compounds.Arch. Toxicol.201589332733410.1007/s00204‑015‑1456‑2 25618544
    [Google Scholar]
  5. SultanaJ. CutroneoP. TrifiròG. Clinical and economic burden of adverse drug reactions.J. Pharmacol. Pharmacother.201341Suppl.S73S7710.4103/0976‑500X.120957 24347988
    [Google Scholar]
  6. HartungT. Toxicology for the twenty-first century.Nature2009460725220821210.1038/460208a 19587762
    [Google Scholar]
  7. KarS. RoyK. QSAR of phytochemicals for the design of better drugs.Expert Opin. Drug Discov.201271087790210.1517/17460441.2012.716420 22897485
    [Google Scholar]
  8. ZhangP. WangF. HuJ. SorrentinoR. Towards personalized medicine: leveraging patient similarity and drug similarity analytics.AMIA Jt. Summits Transl. Sci. Proc.20142014132136 25717413
    [Google Scholar]
  9. TopolE.J. High-performance medicine: the convergence of human and artificial intelligence.Nat. Med.2019251445610.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  10. JensenP.B. JensenL.J. BrunakS. Mining electronic health records: towards better research applications and clinical care.Nat. Rev. Genet.201213639540510.1038/nrg3208 22549152
    [Google Scholar]
  11. LiuM. WuY. ChenY. SunJ. ZhaoZ. ChenX. MathenyM.E. XuH. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.J. Am. Med. Inform. Assoc.201219e1e28e3510.1136/amiajnl‑2011‑000699 22718037
    [Google Scholar]
  12. BatesD.W. EvansR.S. MurffH. StetsonP.D. PizziferriL. HripcsakG. Detecting adverse events using information technology.J. Am. Med. Inform. Assoc.200310211512810.1197/jamia.M1074 12595401
    [Google Scholar]
  13. CherkasovA. MuratovE.N. FourchesD. VarnekA. BaskinI.I. CroninM. DeardenJ. GramaticaP. MartinY.C. TodeschiniR. ConsonniV. Kuz’minV.E. CramerR. BenigniR. YangC. RathmanJ. TerflothL. GasteigerJ. RichardA. TropshaA. QSAR modeling: where have you been? Where are you going to?J. Med. Chem.201457124977501010.1021/jm4004285 24351051
    [Google Scholar]
  14. KimJ.H. ScialliA.R. Thalidomide: the tragedy of birth defects and the effective treatment of disease.Toxicol. Sci.201112211610.1093/toxsci/kfr088 21507989
    [Google Scholar]
  15. LenzW. A short history of thalidomide embryopathy.Teratology198838320321510.1002/tera.1420380303 3067415
    [Google Scholar]
  16. KelseyF.O. Thalidomide update: Regulatory aspects.Teratology198838322122610.1002/tera.1420380305 3227491
    [Google Scholar]
  17. KrumholzH.M. RossJ.S. PreslerA.H. EgilmanD.S. What have we learnt from Vioxx?BMJ2007334758512012310.1136/bmj.39024.487720.68 17235089
    [Google Scholar]
  18. SibbaldB. Rofecoxib (Vioxx) voluntarily withdrawn from market.CMAJ200417191027102810.1503/cmaj.1041606 15505253
    [Google Scholar]
  19. RockwellM.S. OyeseE.G. SinghE. VinsonM. YimI. TurnerJ.K. EplingJ.W. A Scoping Review of Interventions to De-implement Potentially Harmful Nonsteroidal Anti-inflammatory Drugs (NSAIDs) in Healthcare Settings.medRxiv202310.1101/2023.07.29.23293362
    [Google Scholar]
  20. HébertP.C. FergussonD.A. HuttonB. MazerC.D. FremesS. BlajchmanM. MacAdamsC. WellsG. RobbleeJ. BussièresJ. TeohK. Regulatory decisions pertaining to aprotinin may be putting patients at risk.CMAJ2014186181379138610.1503/cmaj.131582 25267766
    [Google Scholar]
  21. SayukG.S. TackJ. Tegaserod: what’s old is new again.Clin. Gastroenterol. Hepatol.2022201021752184.e1910.1016/j.cgh.2022.01.024 35123085
    [Google Scholar]
  22. CzernichowS. BattyD. Withdrawal of sibutramine for weight loss: where does this leave clinicians?Obes. Facts201033110.1159/000316508 20616603
    [Google Scholar]
  23. ChakhtouraM. HaberR. GhezzawiM. RhayemC. TcheroyanR. MantzorosC.S. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation.EClinicalMedicine20235810188210.1016/j.eclinm.2023.101882 36992862
    [Google Scholar]
  24. ReddyS.M. CarrollE. NandaR. Atezolizumab for the treatment of breast cancer.Expert Rev. Anticancer Ther.202020315115810.1080/14737140.2020.1732211 32067545
    [Google Scholar]
  25. ZhangY. MaZ. WangY. FengX. AnZ. Phosphatidylinositol 3 kinase inhibitor-related pneumonitis: a systematic review and meta-analysis.Expert Rev. Clin. Pharmacol.202316985586310.1080/17512433.2023.2238602 37489925
    [Google Scholar]
  26. FDA granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma. 2020. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-granted-accelerated-approval-belantamab-mafodotin-blmf-multiple-myeloma
  27. ReynoldsR.F. LeskoS.M. GattoN.M. van StaaT.P. MitchellA.A. The Use of Randomized Controlled Trials in Pharmacoepidemiology.Pharmacoepidemiology201979281210.1002/9781119413431.ch32
    [Google Scholar]
  28. ObachR.S. BaxterJ.G. ListonT.E. SilberB.M. JonesB.C. MacIntyreF. RanceD.J. WastallP. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data.J. Pharmacol. Exp. Ther.199728314658 9336307
    [Google Scholar]
  29. ZhangZ. TangW. Drug metabolism in drug discovery and development.Acta Pharm. Sin. B20188572173210.1016/j.apsb.2018.04.003 30245961
    [Google Scholar]
  30. Brian HoustonJ. CarlileD.J. Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices.Drug Metab. Rev.199729489192210.3109/03602539709002237 9421679
    [Google Scholar]
  31. KalvassJ.C. MaurerT.S. PollackG.M. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios.Drug Metab. Dispos.200735466066610.1124/dmd.106.012294 17237155
    [Google Scholar]
  32. DerendorfH. SchmidtS. Rowland and Tozer's Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications;2011
    [Google Scholar]
  33. QiuY. ChenY. ZhangG.G. YuL. MantriR.V. Developing solid oral dosage forms: Pharmaceutical theory and practice.Academic press2016
    [Google Scholar]
  34. CollierR. Rapidly rising clinical trial costs worry researchers.CMAJ2009180727727810.1503/cmaj.082041
    [Google Scholar]
  35. Step 3: Clinical Research. Available from: https://www.fda.gov/patients/drug-development-process/step-3-clinical-research
  36. HuangS.M. LertoraJ.J. ViciniP. AtkinsonA.J.Jr Atkinson’s principles of clinical pharmacology.Academic Press2021
    [Google Scholar]
  37. KaitinK.I. DiMasiJ.A. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000-2009.Clin. Pharmacol. Ther.201189218318810.1038/clpt.2010.286 21191382
    [Google Scholar]
  38. EisensteinE.L. CollinsR. CracknellB.S. PodestaO. ReidE.D. SandercockP. ShakhovY. TerrinM.L. SellersM.A. CaliffR.M. GrangerC.B. DiazR. Sensible approaches for reducing clinical trial costs.Clin. Trials200851758410.1177/1740774507087551 18283084
    [Google Scholar]
  39. O’ConnellM.B. KornerE.J. RicklesN.M. SiasJ.J. Cultural competence in health care and its implications for pharmacy. Part 1. Overview of key concepts in multicultural health care.Pharmacotherapy20072771062107910.1592/phco.27.7.1062 17594213
    [Google Scholar]
  40. EmanuelE.J. BedaridaG. MacciK. GablerN.B. RidA. WendlerD. Quantifying the risks of non-oncology phase I research in healthy volunteers: Meta-analysis of phase I studies. BMJ2015350h327110.1136/bmj.h3271
  41. DiMasiJ.A. FeldmanL. SecklerA. WilsonA. Trends in risks associated with new drug development: success rates for investigational drugs.Clin. Pharmacol. Ther.201087327227710.1038/clpt.2009.295 20130567
    [Google Scholar]
  42. ArrowsmithJ. Phase III and submission failures: 2007–2010.Nat. Rev. Drug Discov.20111028710.1038/nrd3375 21283095
    [Google Scholar]
  43. GiffenC.A. WagnerE.L. AdamsJ.T. HitchcockD.M. WelniakL.A. BrennanS.P. CarrollL.E. Providing researchers with online access to NHLBI biospecimen collections: The results of the first six years of the NHLBI BioLINCC program.PLoS One2017126e017814110.1371/journal.pone.0178141 28614402
    [Google Scholar]
  44. GlickmanS.W. McHutchisonJ.G. PetersonE.D. CairnsC.B. HarringtonR.A. CaliffR.M. SchulmanK.A. Ethical and scientific implications of the globalization of clinical research.N. Engl. J. Med.2009360881682310.1056/NEJMsb0803929 19228627
    [Google Scholar]
  45. ChanA.W. TetzlaffJ.M. AltmanD.G. LaupacisA. GøtzscheP.C. Krleža-JerićK. HróbjartssonA. MannH. DickersinK. BerlinJ.A. DoréC.J. ParulekarW.R. SummerskillW.S.M. GrovesT. SchulzK.F. SoxH.C. RockholdF.W. RennieD. MoherD. SPIRIT 2013 statement: defining standard protocol items for clinical trials.Ann. Intern. Med.2013158320020710.7326/0003‑4819‑158‑3‑201302050‑00583 23295957
    [Google Scholar]
  46. WoodcockJ. WoosleyR. The FDA critical path initiative and its influence on new drug development.Annu. Rev. Med.200859111210.1146/annurev.med.59.090506.155819 18186700
    [Google Scholar]
  47. BhattD.L. MehtaC. Adaptive designs for clinical trials.N. Engl. J. Med.20163751657410.1056/NEJMra1510061 27406349
    [Google Scholar]
  48. SertkayaA. WongH.H. JessupA. BelecheT. Key cost drivers of pharmaceutical clinical trials in the United States.Clin. Trials201613211712610.1177/1740774515625964 26908540
    [Google Scholar]
  49. NallamothuB.K. HaywardR.A. BatesE.R. Beyond the randomized clinical trial: the role of effectiveness studies in evaluating cardiovascular therapies.Circulation2008118121294130310.1161/CIRCULATIONAHA.107.703579 18794402
    [Google Scholar]
  50. PsatyB.M. PrenticeR.L. Minimizing bias in randomized trials: the importance of blinding.JAMA2010304779379410.1001/jama.2010.1161 20716744
    [Google Scholar]
  51. ShivayogiP. Vulnerable population and methods for their safeguard.Perspect. Clin. Res.201341535710.4103/2229‑3485.106389 23533983
    [Google Scholar]
  52. SmithyJ.W. DowningN.S. RossJ.S. Publication of pivotal efficacy trials for novel therapeutic agents approved between 2005 and 2011: a cross-sectional study.JAMA Intern. Med.201417491518152010.1001/jamainternmed.2014.3438 25070357
    [Google Scholar]
  53. KatzM.H. Evaluating clinical and public health interventions: A practical guide to study design and statistics.201010.1017/CBO9780511712074
    [Google Scholar]
  54. WiseJ. GSK will resume paying doctors to promote its drugs after policy U turn.BMJ2018363k415710.1136/bmj.k4157
    [Google Scholar]
  55. HempeniusM. Drug exposure assessment in pharmacoepidemiological database studies: Reporting and impact of exposure misclassification.. Doctoral thesis, Utrecht University,
    [Google Scholar]
  56. DaviesD.M. Textbook of adverse drug reactions1991
    [Google Scholar]
  57. ColemanJ.J. PontefractS.K. Adverse drug reactions.Clin. Med. (Lond.)201616548148510.7861/clinmedicine.16‑5‑481 27697815
    [Google Scholar]
  58. MallalS. PhillipsE. CarosiG. MolinaJ.M. WorkmanC. TomažičJ. Jägel-GuedesE. RuginaS. KozyrevO. CidJ.F. HayP. NolanD. HughesS. HughesA. RyanS. FitchN. ThorbornD. BenbowA. HLA-B*5701 screening for hypersensitivity to abacavir.N. Engl. J. Med.2008358656857910.1056/NEJMoa0706135 18256392
    [Google Scholar]
  59. AronsonJ.K. FernerR.E. Joining the DoTS: new approach to classifying adverse drug reactions.BMJ200332774251222122510.1136/bmj.327.7425.1222 14630763
    [Google Scholar]
  60. RussellS.J. NorvigP. Artificial intelligence a modern approach.Prentice Hall2010
    [Google Scholar]
  61. PetrovicA. JovanovicL. VenkatachalamK. ZivkovicM. BacaninN. BudimirovicN. Anomaly detection in electrocardiogram signals using metaheuristic optimized time-series classification with attention incorporated models.Int. J. Hybrid Intell. Syst.20242015918310.3233/HIS‑240004
    [Google Scholar]
  62. SchneiderP. WaltersW.P. PlowrightA.T. SierokaN. ListgartenJ. GoodnowR.A.Jr FisherJ. JansenJ.M. DucaJ.S. RushT.S. ZentgrafM. HillJ.E. KrutoholowE. KohlerM. BlaneyJ. FunatsuK. LuebkemannC. SchneiderG. Rethinking drug design in the artificial intelligence era.Nat. Rev. Drug Discov.202019535336410.1038/s41573‑019‑0050‑3 31801986
    [Google Scholar]
  63. MohammedM.A. Al-KhateebB. YousifM. MostafaS.A. KadryS. AbdulkareemK.H. Garcia-ZapirainB. Novel crow swarm optimization algorithm and selection approach for optimal deep learning COVID‐19 diagnostic model.Comput. Intell. Neurosci.20222022112210.1155/2022/1307944 35996653
    [Google Scholar]
  64. IbrahimR. GhnematR. Abu Al-HaijaQ. Improving Alzheimer’s Disease and Brain Tumor Detection Using Deep Learning with Particle Swarm Optimization. AI20234355157310.3390/ai4030030
    [Google Scholar]
  65. LvH. ShiL. BerkenpasJ.W. DaoF.Y. ZulfiqarH. DingH. ZhangY. YangL. CaoR. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design.Brief. Bioinform.2021226bbab32010.1093/bib/bbab320 34410360
    [Google Scholar]
  66. CaiR. LiuM. HuY. MeltonB.L. MathenyM.E. XuH. DuanL. WaitmanL.R. Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports.Artif. Intell. Med.20177671510.1016/j.artmed.2017.01.004
    [Google Scholar]
  67. XiaoC. LiY. BaytasI.M. ZhouJ. WangF. An MCEM framework for drug safety signal detection and combination from heterogeneous real world evidence.Sci. Rep.201881180610.1038/s41598‑018‑19979‑7 29379048
    [Google Scholar]
  68. RenJ.J. SunT. HeY. ZhangY. A statistical analysis of vaccine-adverse event data.BMC Med. Inform. Decis. Mak.201919110110.1186/s12911‑019‑0818‑8 31138219
    [Google Scholar]
  69. LiR. DongY. KuangQ. WuY. LiY. ZhuM. LiM. Inductive matrix completion for predicting adverse drug reactions (ADRs) integrating drug–target interactions.Chemom. Intell. Lab. Syst.2015144717910.1016/j.chemolab.2015.03.013
    [Google Scholar]
  70. ZhaoJ. HenrikssonA. AskerL. BoströmH. Predictive modeling of structured electronic health records for adverse drug event detection.BMC Med. Inform. Decis. Mak.201515S4S110.1186/1472‑6947‑15‑S4‑S1 26606038
    [Google Scholar]
  71. ZhaoJ. HenrikssonA. Learning temporal weights of clinical events using variable importance.BMC Med. Inform. Decis. Mak.201616S27110.1186/s12911‑016‑0311‑6 27459993
    [Google Scholar]
  72. DesautelsT. DasR. CalvertJ. TrivediM. SummersC. WalesD.J. ErcoleA. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach.BMJ Open201779e01719910.1136/bmjopen‑2017‑017199 28918412
    [Google Scholar]
  73. WangY. CoieraE. RuncimanW. MagrabiF. Using multiclass classification to automate the identification of patient safety incident reports by type and severity.BMC Med. Inform. Decis. Mak.20171718410.1186/s12911‑017‑0483‑8 28606174
    [Google Scholar]
  74. WunnavaS. QinX. KakarT. SenC. RundensteinerE.A. KongX. Adverse drug event detection from electronic health records using hierarchical recurrent neural networks with dual-level embedding.Drug Saf.201942111312210.1007/s40264‑018‑0765‑9 30649736
    [Google Scholar]
  75. HarpazR. DuMouchelW. ShahN.H. MadiganD. RyanP. FriedmanC. Novel data-mining methodologies for adverse drug event discovery and analysis.Clin. Pharmacol. Ther.20129161010102110.1038/clpt.2012.50 22549283
    [Google Scholar]
  76. AiH. ChenW. ZhangL. HuangL. YinZ. HuH. ZhaoQ. ZhaoJ. LiuH. Predicting drug-induced liver injury using ensemble learning methods and molecular fingerprints.Toxicol. Sci.2018165110010710.1093/toxsci/kfy121 29788510
    [Google Scholar]
  77. WhitebreadS. HamonJ. BojanicD. UrbanL. Keynote review: In vitro safety pharmacology profiling: an essential tool for successful drug development.Drug Discov. Today200510211421143310.1016/S1359‑6446(05)03632‑9 16243262
    [Google Scholar]
  78. EkinsS. WilliamsA.J. KrasowskiM.D. FreundlichJ.S. In silico repositioning of approved drugs for rare and neglected diseases.Drug Discov. Today2011167-829831010.1016/j.drudis.2011.02.016 21376136
    [Google Scholar]
  79. JovanovicL. DamaševičiusR. MaticR. KabiljoM. SimicV. KunjadicG. AntonijevicM. ZivkovicM. BacaninN. Detecting Parkinson’s disease from shoe-mounted accelerometer sensors using convolutional neural networks optimized with modified metaheuristics.PeerJ Comput. Sci.202410e203110.7717/peerj‑cs.2031 38855236
    [Google Scholar]
  80. GaoM. IgataH. TakeuchiA. SatoK. IkegayaY. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds.J. Pharmacol. Sci.20171332707810.1016/j.jphs.2017.01.003 28215473
    [Google Scholar]
  81. HughesT.B. MillerG.P. SwamidassS.J. Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione.Chem. Res. Toxicol.201528479780910.1021/acs.chemrestox.5b00017 25742281
    [Google Scholar]
  82. RoyK. KarS. DasR.N. Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment.Academic Press2015
    [Google Scholar]
  83. KarS. LeszczynskiJ. Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures.Toxics2019711510.3390/toxics7010015 30893892
    [Google Scholar]
  84. RoyK. KarS. AmbureP. On a simple approach for determining applicability domain of QSAR models.Chemom. Intell. Lab. Syst.2015145222910.1016/j.chemolab.2015.04.013
    [Google Scholar]
  85. RoyK. KarS. A primer on QSAR/QSPR modeling: Fundamental concepts.Springer201510.1007/978‑3‑319‑17281‑1
    [Google Scholar]
  86. PuzynT. GajewiczA. LeszczynskaD. LeszczynskiJ. Nanomaterials–the next great challenge for QSAR modelers. In: Recent Advances in QSAR Studies201038340910.1007/978‑1‑4020‑9783‑6_14
    [Google Scholar]
  87. LiuJ. MansouriK. JudsonR.S. MartinM.T. HongH. ChenM. XuX. ThomasR.S. ShahI. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure.Chem. Res. Toxicol.201528473875110.1021/tx500501h 25697799
    [Google Scholar]
  88. WangT. WuM.B. LinJ.P. YangL.R. Quantitative structure–activity relationship: promising advances in drug discovery platforms.Expert Opin. Drug Discov.201510121283130010.1517/17460441.2015.1083006 26358617
    [Google Scholar]
  89. MamoshinaP. VieiraA. PutinE. ZhavoronkovA. Applications of deep learning in biomedicine.Mol. Pharm.20161351445145410.1021/acs.molpharmaceut.5b00982 27007977
    [Google Scholar]
  90. RajkomarA. DeanJ. KohaneI. Machine learning in medicine.N. Engl. J. Med.2019380141347135810.1056/NEJMra1814259 30943338
    [Google Scholar]
  91. ZengX. ZhuS. LiuX. ZhouY. NussinovR. ChengF. deepDR: a network-based deep learning approach to in silico drug repositioning.Bioinformatics201935245191519810.1093/bioinformatics/btz418 31116390
    [Google Scholar]
  92. YuK.H. KohaneI.S. Framing the challenges of artificial intelligence in medicine.BMJ Qual. Saf.2018 30291179
    [Google Scholar]
  93. EdwardsI.R. AronsonJ.K. Adverse drug reactions: definitions, diagnosis, and management.Lancet200035692371255125910.1016/S0140‑6736(00)02799‑9 11072960
    [Google Scholar]
  94. BandaJ.M. EvansL. VanguriR.S. TatonettiN.P. RyanP.B. ShahN.H. A curated and standardized adverse drug event resource to accelerate drug safety research.Sci. Data20163116002610.1038/sdata.2016.26 27193236
    [Google Scholar]
  95. KarimiS. WangC. Metke-JimenezA. GaireR. ParisC. Text and data mining techniques in adverse drug reaction detection.ACM Comput. Surv.201547413910.1145/2719920
    [Google Scholar]
  96. HarpazR. DuMouchelW. LePenduP. Bauer-MehrenA. RyanP. ShahN.H. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system.Clin. Pharmacol. Ther.201393653954610.1038/clpt.2013.24 23571771
    [Google Scholar]
  97. BajorathJ. Integration of virtual and high-throughput screening.Nat. Rev. Drug Discov.200211188289410.1038/nrd941 12415248
    [Google Scholar]
  98. MerkD. FriedrichL. GrisoniF. SchneiderG. De novo design of bioactive small molecules by artificial intelligence.Mol. Inform.2018371-2170015310.1002/minf.201700153 29319225
    [Google Scholar]
  99. ZhavoronkovA. IvanenkovY.A. AliperA. VeselovM.S. AladinskiyV.A. AladinskayaA.V. TerentievV.A. PolykovskiyD.A. KuznetsovM.D. AsadulaevA. VolkovY. ZholusA. ShayakhmetovR.R. ZhebrakA. MinaevaL.I. ZagribelnyyB.A. LeeL.H. SollR. MadgeD. XingL. GuoT. Aspuru-GuzikA. Deep learning enables rapid identification of potent DDR1 kinase inhibitors.Nat. Biotechnol.20193791038104010.1038/s41587‑019‑0224‑x 31477924
    [Google Scholar]
  100. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  101. Pérez SantínE. Rodríguez SolanaR. González GarcíaM. García SuárezM.D.M. Blanco DíazG.D. Cima CabalM.D. Moreno RojasJ.M. López SánchezJ.I. Toxicity prediction based on artificial intelligence: A multidisciplinary overview.Wiley Interdiscip. Rev. Comput. Mol. Sci.2021115e151610.1002/wcms.1516
    [Google Scholar]
  102. SinghA.V. RosenkranzD. AnsariM.H.D. SinghR. KanaseA. SinghS.P. JohnstonB. TentschertJ. LauxP. LuchA. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction.Adv. Intell. Syst.2020212200008410.1002/aisy.202000084
    [Google Scholar]
  103. BasileA.O. YahiA. TatonettiN.P. Artificial intelligence for drug toxicity and safety.Trends Pharmacol. Sci.201940962463510.1016/j.tips.2019.07.005 31383376
    [Google Scholar]
  104. JaganathanK. TayaraH. ChongK.T. Prediction of drug-induced liver toxicity using SVM and optimal descriptor sets.Int. J. Mol. Sci.20212215807310.3390/ijms22158073 34360838
    [Google Scholar]
  105. RaoM. NassiriV. AlhambraC. SnoeysJ. Van GoethemF. IrrechukwuO. AleoM.D. GeysH. MitraK. WillY. AI/ML Models to Predict the Severity of Drug-Induced Liver Injury for Small Molecules.Chem. Res. Toxicol.20233671129113910.1021/acs.chemrestox.3c00098 37294641
    [Google Scholar]
  106. KandasamyK. ChuahJ.K.C. SuR. HuangP. EngK.G. XiongS. LiY. ChiaC.S. LooL.H. ZinkD. Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods.Sci. Rep.2015511233710.1038/srep12337 26212763
    [Google Scholar]
  107. ChengP. WaitmanL.R. HuY. LiuM. Predicting Inpatient Acute Kidney Injury over Different Time Horizons: How Early and Accurate?AMIA Annu. Symp. Proc.20182017565574 29854121
    [Google Scholar]
  108. KarS. RoyK. Prediction of hERG potassium channel blocking actions using combination of classification and regression based models: a mixed descriptors approach.Mol. Inform.20123111-1287989410.1002/minf.201200039 27476741
    [Google Scholar]
  109. CaiC. GuoP. ZhouY. ZhouJ. WangQ. ZhangF. FangJ. ChengF. Deep learning-based prediction of drug-induced cardiotoxicity.J. Chem. Inf. Model.20195931073108410.1021/acs.jcim.8b00769 30715873
    [Google Scholar]
  110. ZhaoX. SunY. ZhangR. ChenZ. HuaY. ZhangP. GuoH. CuiX. HuangX. LiX. Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity.J. Chem. Inf. Model.202262236035604510.1021/acs.jcim.2c01131 36448818
    [Google Scholar]
  111. JiangC. ZhaoP. LiW. TangY. LiuG. In silico prediction of chemical neurotoxicity using machine learning.Toxicol. Res. (Camb.)20209316417210.1093/toxres/tfaa016 32670548
    [Google Scholar]
  112. KarS. RoyK. Development and validation of a robust QSAR model for prediction of carcinogenicity of drugs.Indian J. Biochem. Biophys.2011482111122 21682143
    [Google Scholar]
  113. LiT. TongW. RobertsR. LiuZ. ThakkarS. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model- Level Representation. Front Artif Intell,2021475778010.3389/frai.2021.757780
    [Google Scholar]
  114. NandyA. KarS. RoyK. Development and validation of regression-based QSAR models for quantification of contributions of molecular fragments to skin sensitization potency of diverse organic chemicals.SAR QSAR Environ. Res.201324121009102310.1080/1062936X.2013.821422 23988224
    [Google Scholar]
  115. NandyA. KarS. RoyK. Linear discriminant analysis for skin sensitisation potential of diverse organic chemicals.Mol. Simul.201339643244110.1080/08927022.2012.738421
    [Google Scholar]
/content/journals/cai/10.2174/0129503752308394241013165241
Loading
/content/journals/cai/10.2174/0129503752308394241013165241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test