Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

Integration of viral DNA into the host cell genome, carried out by the HTLV-1 integrase enzyme, is a crucial step in the Human T-lymphotropic Virus type I (HTLV-1) life cycle. Thus, HTLV-1 integrase is considered an attractive therapeutic target; however, no clinically effective inhibitors are available to treat HTLV-1 infection.

Objective

The main objective was to identify potential drug-like compounds capable of effectively inhibiting HTLV-1 integrase activity.

Methods

In this study, a model of HTLV-1 integrase structure and three integrase inhibitors (dolutegravir, raltegravir, and elvitegravir as scaffolds) were used for designing new inhibitors. Designed molecules were used as templates for virtual screening to retrieve new inhibitors from PubChem, ZINC15, and ChEMBL databases. Drug-likeness and docked energy of the molecules were investigated using the SWISS-ADME portal and GOLD software. Stability and binding energy of the complexes were further investigated using molecular dynamic (MD) simulation.

Results

Four novel potential inhibitors were developed using a structure-based design protocol and three compounds from virtual screening. They formed hydrogen bonding interactions with critical residues Asp69, Asp12, Tyr96, Tyr143, Gln146, Ile13, and Glu105. In addition, π stacking, halogen, and hydrogen bond interactions were seen between compounds (especially halogenated benzyl moieties) and viral DNA similar to those seen in parent molecules. MD simulation confirmed higher stability of the receptor-ligand complex than the ligand-free enzyme.

Conclusion

Combing structure-based design and virtual screening resulted in identifying three drug-like molecules (PubChem CID_138739497, _70381610, and _140084032) that are suggested as lead compounds for developing effective drugs targeting HTLV-1 integrase enzyme.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409919666230419082839
2024-01-01
2025-05-23
Loading full text...

Full text loading...

References

  1. BhattV. ShiK. SalamangoD.J. MoellerN.H. PandeyK.K. BeraS. BohlH.O. KurniawanF. OrellanaK. ZhangW. GrandgenettD.P. HarrisR.S. Sundborger-LunnaA.C. AiharaH. Structural basis of host protein hijacking in human T-cell leukemia virus integration.Nat. Commun.2020111312110.1038/s41467‑020‑16963‑632561747
    [Google Scholar]
  2. KankiP.J. HopperJ.R. EssexM. The Origins of HIV-1 and HTLV-4/HIV-2.Ann. N. Y. Acad. Sci.1987511137037510.1111/j.1749‑6632.1987.tb36265.x2894192
    [Google Scholar]
  3. GalloR.C. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2.Oncogene200524395926593010.1038/sj.onc.120898016155599
    [Google Scholar]
  4. Eusebio-PonceE. AnguitaE. Paulino-RamirezR. CandelF.J. HTLV-1 infection: An emerging risk. Pathogenesis, epidemiology, diagnosis and associated diseases.Rev. Esp. Quimioter.201932648549631648512
    [Google Scholar]
  5. RosadasC. AssoneT. YamashitaM. AdonisA. Puccioni-SohlerM. SantosM. PaivaA. CassebJ. OliveiraA.C.P. TaylorG.P. Health state utility values in people living with HTLV-1 and in patients with HAM/TSP: The impact of a neglected disease on the quality of life.PLoS Negl. Trop. Dis.20201410e000876110.1371/journal.pntd.000876133064742
    [Google Scholar]
  6. Marino-MerloF. MastinoA. GrelliS. HermineO. BazarbachiA. MacchiB. Future perspectives on drug targeting in adult T cell leukemia-lymphoma.Front. Microbiol.2018992510.3389/fmicb.2018.0092529867836
    [Google Scholar]
  7. WatanabeT. TobinaiK. ShibataT. TsukasakiK. MorishimaY. MasekiN. KinoshitaT. SuzukiT. YamaguchiM. AndoK. OguraM. TaniwakiM. UikeN. TakeuchiK. NawanoS. TerauchiT. HottaT. Phase II/III study of R-CHOP-21 versus R-CHOP-14 for untreated indolent B-cell non-Hodgkin’s lymphoma: JCOG 0203 trial.J. Clin. Oncol.201129303990399810.1200/JCO.2011.34.850821931035
    [Google Scholar]
  8. Jalili-NikM. SoltaniA. MashkaniB. RafatpanahH. HashemyS.I. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell Leukemia/Lymphoma.Int. Immunopharmacol.20219810787010.1016/j.intimp.2021.10787034153661
    [Google Scholar]
  9. LaydonD.J. SunkaraV. BoelenL. BanghamC.R.M. AsquithB. The relative contributions of infectious and mitotic spread to HTLV-1 persistence.PLOS Comput. Biol.2020169e100747010.1371/journal.pcbi.100747032941445
    [Google Scholar]
  10. Carneiro-ProiettiA.B. Amaranto-DamasioM.S. Leal-HoriguchiC.F. BastosR.H. Seabra-FreitasG. BorowiakD.R. RibeiroM.A. ProiettiF.A. FerreiraA.S. MartinsM.L. Mother-to-child transmission of human T-cell lymphotropic viruses-1/2: What we know, and what are the gaps in understanding and preventing this route of infection.J. Pediatric Infect. Dis. Soc.20143S12429
    [Google Scholar]
  11. Marino-MerloF. BalestrieriE. MatteucciC. MastinoA. GrelliS. MacchiB. Antiretroviral therapy in HTLV-1 infection: An updated overview.Pathogens20209534210.3390/pathogens905034232369988
    [Google Scholar]
  12. KomalD. KhushbooJ. AaftaabS. LakshmiS. MallikaA. Targeting Integrase Enzyme: A therapeutic approach to combat HIV resistance.Mini Rev. Med. Chem.202020321923810.2174/138955751966619101512493231613727
    [Google Scholar]
  13. BrooksK.M. ShermanE.M. EgelundE.F. BrothertonA. DurhamS. BadowskiM.E. CluckD.B. Integrase inhibitors: after 10 years of experience, is the best yet to come?Pharmacotherapy201939557659810.1002/phar.224630860610
    [Google Scholar]
  14. BarskiM.S. MinnellJ.J. MaertensG.N. Inhibition of HTLV-1 infection by HIV-1 first and second-generation integrase strand transfer inhibitors.Front. Microbiol.201910187710.3389/fmicb.2019.0187731474960
    [Google Scholar]
  15. LockbaumG.J. HenesM. TalledgeN. RusereL.N. KosovrastiK. NalivaikaE.A. SomasundaranM. AliA. ManskyL.M. Kurt YilmazN. SchifferC.A. Inhibiting HTLV-1 Protease: A viable antiviral target.ACS Chem. Biol.202116352953810.1021/acschembio.0c0097533619959
    [Google Scholar]
  16. JorgensenW.L. Computer-aided discovery of anti-HIV agents.Bioorg. Med. Chem.201624204768477810.1016/j.bmc.2016.07.03927485603
    [Google Scholar]
  17. VyasV.K. UkawalaR.D. ChinthaC. GhateM. Homology modeling a fast tool for drug discovery: Current perspectives.Indian J. Pharm. Sci.201274111710.4103/0250‑474X.10253723204616
    [Google Scholar]
  18. MuhammedM.T. Aki-YalcinE. Homology modeling in drug discovery: Overview, current applications, and future perspectives.Chem. Biol. Drug Des.2019931122010.1111/cbdd.1338830187647
    [Google Scholar]
  19. BarskiM.S. VanzoT. ZhaoX.Z. SmithS.J. Ballandras-ColasA. CroninN.B. PyeV.E. HughesS.H. BurkeT.R.Jr CherepanovP. MaertensG.N. Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures.Nat. Commun.2021121499610.1038/s41467‑021‑25284‑134404793
    [Google Scholar]
  20. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein data bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.2017160762764110.1007/978‑1‑4939‑7000‑1_2628573592
    [Google Scholar]
  21. ŠaliA. BlundellT.L. Comparative protein modelling by satisfaction of spatial restraints.J. Mol. Biol.1993234377981510.1006/jmbi.1993.16268254673
    [Google Scholar]
  22. BhattacharyaD. NowotnyJ. CaoR. ChengJ. 3Drefine: an interactive web server for efficient protein structure refinement.Nucleic Acids Res.201644W1W406W40910.1093/nar/gkw33627131371
    [Google Scholar]
  23. EmsleyP. CowtanK. Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr.200460122126213210.1107/S0907444904019158
    [Google Scholar]
  24. MorrisA.L. MacArthurM.W. HutchinsonE.G. ThorntonJ.M. Stereochemical quality of protein structure coordinates.Proteins199212434536410.1002/prot.3401204071579569
    [Google Scholar]
  25. JoyS. NairP.S. HariharanR. PillaiM.R. Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware.In Silico Biol.20066660160517518767
    [Google Scholar]
  26. NurissoA. BravoJ. CarruptP.A. DainaA. Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: Impact on GOLD docking performance.J. Chem. Inf. Model.20125251319132710.1021/ci200515g22462609
    [Google Scholar]
  27. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  28. BöhmH.J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors.J. Comput. Aided Mol. Des.199261617810.1007/BF001243871583540
    [Google Scholar]
  29. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  30. MendezD. GaultonA. BentoA.P. ChambersJ. De VeijM. FélixE. MagariñosM.P. MosqueraJ.F. MutowoP. NowotkaM. Gordillo-MarañónM. HunterF. JuncoL. MugumbateG. Rodriguez-LopezM. AtkinsonF. BoscN. RadouxC.J. Segura-CabreraA. HerseyA. LeachA.R. ChEMBL: towards direct deposition of bioassay data.Nucleic Acids Res.201947D1D930D94010.1093/nar/gky107530398643
    [Google Scholar]
  31. SterlingT. IrwinJ.J. ZINC 15 - Ligand discovery for everyone.J. Chem. Inf. Model.201555112324233710.1021/acs.jcim.5b0055926479676
    [Google Scholar]
  32. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  33. AbdelrheemD.A. AhmedS.A. Abd El-MageedH.R. MohamedH.S. RahmanA.A. ElsayedK.N.M. AhmedS.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.202055111373138610.1080/10934529.2020.182619232998618
    [Google Scholar]
  34. ZhuB.T. WangP. NagaiM. WenY. BaiH.W. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee.J. Steroid Biochem. Mol. Biol.20091131-2657410.1016/j.jsbmb.2008.11.01119095062
    [Google Scholar]
  35. CavaC. BertoliG. CastiglioniI. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation.Future Virol.202116852754210.2217/fvl‑2020‑039234306168
    [Google Scholar]
  36. KrishnanL. LiX. NaraharisettyH.L. HareS. CherepanovP. EngelmanA. Structure-based modeling of the functional HIV-1 intasome and its inhibition.Proc. Natl. Acad. Sci. USA201010736159101591510.1073/pnas.100234610720733078
    [Google Scholar]
  37. PassosD.O. LiM. JóźwikI.K. ZhaoX.Z. Santos-MartinsD. YangR. SmithS.J. JeonY. ForliS. HughesS.H. BurkeT.R. Jr CraigieR. LyumkisD. Structural basis for strand-transfer inhibitor binding to HIV intasomes.Science2020367647981081410.1126/science.aay801532001521
    [Google Scholar]
  38. CookN.J. LiW. BertaD. BadaouiM. Ballandras-ColasA. NansA. KotechaA. RostaE. EngelmanA.N. CherepanovP. Structural basis of second-generation HIV integrase inhibitor action and viral resistance.Science2020367647980681010.1126/science.aay491932001525
    [Google Scholar]
  39. MiriL. BouvierG. KettaniA. MikouA. WakrimL. NilgesM. MalliavinT.E. Stabilization of the integrase-DNA complex by Mg 2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors.Proteins201482346647810.1002/prot.2441224038133
    [Google Scholar]
  40. Van DrieJ.H. TongL. Cryo-EM as a powerful tool for drug discovery.Bioorg. Med. Chem. Lett.2020302212752410.1016/j.bmcl.2020.12752432890683
    [Google Scholar]
  41. SubramaniamS. EarlL.A. FalconieriV. MilneJ.L.S. EgelmanE.H. Resolution advances in cryo-EM enable application to drug discovery.Curr. Opin. Struct. Biol.20164119420210.1016/j.sbi.2016.07.00927552081
    [Google Scholar]
  42. EldridgeM.D. MurrayC.W. AutonT.R. PaoliniG.V. MeeR.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes.J. Comput. Aided Mol. Des.199711542544510.1023/A:10079961245459385547
    [Google Scholar]
  43. MurrayC.W. AutonT.R. EldridgeM.D. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model.J. Comput. Aided Mol. Des.199812550351910.1023/A:10080403236699834910
    [Google Scholar]
  44. Schulz-GaschT. StahlM. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools.J. Mol. Model.200391475710.1007/s00894‑002‑0112‑y12638011
    [Google Scholar]
  45. FongP. WongH.K. Evaluation of scoring function performance on DNA-ligand complexes.Open Med. Chem. J.2019131404910.2174/1874104501913010040
    [Google Scholar]
  46. Bar-MagenT. SloanR.D. DonahueD.A. KuhlB.D. ZabeidaA. XuH. OliveiraM. HazudaD.J. WainbergM.A. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor.J. Virol.201084189210921610.1128/JVI.01164‑1020610719
    [Google Scholar]
  47. TemesgenZ. SirajD.S. Raltegravir: First in class HIV integrase inhibitor.Ther. Clin. Risk Manag.20084249350010.2147/TCRM.S226818728839
    [Google Scholar]
  48. UnderwoodM.R. JohnsB.A. SatoA. MartinJ.N. DeeksS.G. FujiwaraT. The activity of the integrase inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults.J. Acquir. Immune Defic. Syndr.201261329730110.1097/QAI.0b013e31826bfd0222878423
    [Google Scholar]
  49. SmithS.J. ZhaoX.Z. BurkeT.R.Jr HughesS.H. HIV-1 Integrase inhibitors that are broadly effective against drug-resistant mutants.Antimicrob. Agents Chemother.2018629e01035e1810.1128/AAC.01035‑1829987149
    [Google Scholar]
  50. ChenD. OezguenN. UrvilP. FergusonC. DannS.M. SavidgeT.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing.Sci. Adv.201623e150124010.1126/sciadv.150124027051863
    [Google Scholar]
  51. KuckD. SinghN. LykoF. Medina-FrancoJ.L. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation.Bioorg. Med. Chem.201018282282910.1016/j.bmc.2009.11.05020006515
    [Google Scholar]
  52. PierriC.L. ParisiG. PorcelliV. Computational approaches for protein function prediction: A combined strategy from multiple sequence alignment to molecular docking-based virtual screening.Biochim. Biophys. Acta. Proteins Proteomics2010180491695171210.1016/j.bbapap.2010.04.00820433957
    [Google Scholar]
  53. JenwitheesukE. SamudralaR. Virtual screening of HIV-1 protease inhibitors against human cytomegalovirus protease using docking and molecular dynamics.AIDS200519552953110.1097/01.aids.0000162343.96674.4c15764860
    [Google Scholar]
  54. RipphausenP. NisiusB. BajorathJ. State-of-the-art in ligand-based virtual screening.Drug Discov. Today2011169-1037237610.1016/j.drudis.2011.02.01121349346
    [Google Scholar]
  55. ZhangM.Q. WilkinsonB. Drug discovery beyond the ‘rule-of-five’.Curr. Opin. Biotechnol.200718647848810.1016/j.copbio.2007.10.00518035532
    [Google Scholar]
  56. CollierT.A. PiggotT.J. AllisonJ.R. Molecular dynamics simulation of proteins.Protein Nanotechnology: Protocols, Instrumentation, and Applications. GerrardJ.A. DomiganL.J. New York, NYSpringer US202031132710.1007/978‑1‑4939‑9869‑2_17
    [Google Scholar]
  57. SargsyanK. GrauffelC. LimC. How molecular size impacts RMSD applications in molecular dynamics simulations.J. Chem. Theory Comput.20171341518152410.1021/acs.jctc.7b0002828267328
    [Google Scholar]
/content/journals/cad/10.2174/1573409919666230419082839
Loading
/content/journals/cad/10.2174/1573409919666230419082839
Loading

Data & Media loading...

Supplements

Supplementary Material

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test