Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Objective

IBD is a chronic idiopathic gut condition characterised by recurring and remitting inflammation of the colonic mucosal epithelium. Benzimidazole is a prominent and attractive heterocyclic compound with diverse actions. Although seven locations in the benzimidazole nucleus can be changed with a number of chemical entities for biological activity, benzimidazole fused with a phenyl ring has caught our interest.

Methods

To find and optimize novel 1-H phenyl benzimidazole compounds with favorable physicochemical features and drug-like characteristics for the treatment of IBD, - studies and in-vitro approach were being used to identify and optimize these derivatives as potent inhibitors of IL-23 mediated inflammatory signaling pathway.

Results

All six compounds exhibit favorable drug-like properties with good intestinal absorption properties. Its high affinity for the target JAK and TYK, which is thought to be a key immunological signaling cascade in the pathophysiology of IBD, is revealed by docking studies.

Conclusion

Because of their effects on decreasing iNOS-derived NO release and IL-23-mediated immune signaling by decreasing COX-2 and LOX activity, it's conceivable that the compounds CS3 and CS6 are better options for the treatment of IBD based on in-vitro cell line investigations.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409919666230417103413
2024-01-01
2025-05-19
Loading full text...

Full text loading...

References

  1. GionchettiP. RizzelloF. HabalF. MorselliC. AmadiniC. RomagnoliR. CampieriM. Standard treatment of ulcerative colitis.Dig. Dis.200321215716710.1159/00007324714571113
    [Google Scholar]
  2. LuoC.X. WenZ.H. ZhenY. WangZ.J. MuJ.X. ZhuM. OuyangQ. ZhangH. Chinese research into severe ulcerative colitis has increased in quantity and complexity.World J. Clin. Cases201863354310.12998/wjcc.v6.i3.3529564356
    [Google Scholar]
  3. NeurathM.F. IL-23 in inflammatory bowel diseases and colon cancer.Cytokine Growth Factor Rev.2019451810.1016/j.cytogfr.2018.12.00230563755
    [Google Scholar]
  4. AtreyaR. NeurathM.F. Current and future targets for mucosal healing in inflammatory bowel disease.Visc. Med.2017331828810.1159/00045800628612022
    [Google Scholar]
  5. StroberW. FussI. Pro-inflammatory cytokines in the pathogenesis of IBD.Gastroenterology201314061756176710.1053/j.gastro.2011.02.01621530742
    [Google Scholar]
  6. CaiY. ZhangL. ZhangY. LuR. Plant-derived exosomes as a drug-delivery approach for the treatment of inflammatory bowel disease and colitis-associated cancer.Pharmaceutics202214482210.3390/pharmaceutics1404082235456656
    [Google Scholar]
  7. ElhagD.A. KumarM. SaadaouiM. AkobengA.K. Al-MudahkaF. ElawadM. Al KhodorS. Inflammatory bowel disease treatments and predictive biomarkers of therapeutic response.Int. J. Mol. Sci.20222313696610.3390/ijms2313696635805965
    [Google Scholar]
  8. SubinM.Z. VishnuV. Chemistry and pharmacological activities benzimidazole derivatives - An overview of.Int. J. Pharm. Res.20201213348335610.31838/ijpr/2020.SP1.364
    [Google Scholar]
  9. WoolleyD.W. Some biological effects produced by benzimidazole and their reversal by purines.J. Biol. Chem.1944152222523210.1016/S0021‑9258(18)72045‑0
    [Google Scholar]
  10. BansalY. SilakariO. The therapeutic journey of benzimidazoles: A review.Bioorg. Med. Chem.201220216208623610.1016/j.bmc.2012.09.01323031649
    [Google Scholar]
  11. BrinkN.G. FolkersK. Vitamin B12. X. 5,6-Dimethylbenzimidazole, a degradation product of vitamin B12.J. Am. Chem. Soc.195072104442444310.1021/ja01166a027
    [Google Scholar]
  12. ShuklaN.M. ChanM. LaoF.S. ChuP.J. BelsuzarriM. YaoS. NanJ. Sato-KanekoF. SaitoT. HayashiT. CorrM. CarsonD.A. CottamH.B. Structure-activity relationship studies in substituted sulfamoyl benzamidothiazoles that prolong NF-κB activation.Bioorg. Med. Chem.20214311624210.1016/j.bmc.2021.11624234274759
    [Google Scholar]
  13. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b25255204
    [Google Scholar]
  14. AjaniO.O. AderohunmuD.V. IkpoC.O. AdedapoA.E. OlanrewajuI.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine.Arch. Pharm.2016349747550610.1002/ardp.20150046427213292
    [Google Scholar]
  15. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules2421383931731387
    [Google Scholar]
  16. PragiA. VarunA. LambaH.S. DeepakW. Importance of heterocyclic chemistry.RE:view20123092947295410.13040/IJPSR.0975‑8232.3(9).2947‑54
    [Google Scholar]
  17. KharitonovaM.I. KonstantinovaI.D. MiroshnikovA.I. Benzimidazole nucleosides: Antiviral and antitumour activities and methods of synthesis.Russ. Chem. Rev.201887111111113810.1070/RCR4832
    [Google Scholar]
  18. NoorA. QaziN.G. NadeemH. KhanA. ParachaR.Z. AliF. SaeedA. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids.Chem. Cent. J.20171118510.1186/s13065‑017‑0314‑029086868
    [Google Scholar]
  19. KazimierczukZ. AndrzejewskaM. KaustovaJ. KlimešovaV. Synthesis and antimycobacterial activity of 2-substituted halogenobenzimidazoles.Eur. J. Med. Chem.200540220320810.1016/j.ejmech.2004.10.00415694655
    [Google Scholar]
  20. RaoA. ChimirriA. De ClercqE. MonforteA.M. MonforteP. PannecouqueC. ZappalàM. Synthesis and anti-HIV activity of 1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole structurally-related 1,2-substituted benzimidazoles.Farmaco2002571081982310.1016/S0014‑827X(02)01300‑912420877
    [Google Scholar]
  21. WangX.J. XiM.Y. FuJ.H. ZhangF.R. ChengG.F. YinD.L. YouQ.D. Synthesis, biological evaluation and SAR studies of benzimidazole derivatives as H1-antihistamine agents.Chin. Chem. Lett.201223670771010.1016/j.cclet.2012.04.020
    [Google Scholar]
  22. KaraburunAÇ grı Çavuşo gluBK ÇevikUA OsmaniyeD. Sa glıkBN LeventS. Synthesis and antifungal potential of some novel benzimidazole-1,3,4-oxadiazole compounds.Molecules201924111410.3390/molecules24010191
    [Google Scholar]
  23. AnastassovaN. YanchevaD. Hristova-AvakumovaN. HadjimitovaV. TraykovT. AluaniD. TzankovaV. Kondeva-BurdinaM. New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity.Pharmacol. Rep.202072484685610.1007/s43440‑020‑00077‑332125683
    [Google Scholar]
  24. FlorioR VeschiS GiacomoV PagottoS CarradoriS. VerginelliF. The benzimidazole-based anthelmintic parbendazole: A repurposed drug candidate that synergizes with gemcitabine in pancreatic cancer.Cancers20191112204210.3390/cancers11122042
    [Google Scholar]
  25. MaghrabyM.T.E. Abou-GhadirO.M.F. Abdel-MotyS.G. AliA.Y. SalemO.I.A. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes.Bioorg. Med. Chem.202028711540310.1016/j.bmc.2020.11540332127262
    [Google Scholar]
  26. LeilaD. ZenginG.B.M.B. Cholinesterases Inhibitory Activity of 1 H -benzimidazole Derivatives.Biointerface Res. Appl. Chem.20211131073910745
    [Google Scholar]
  27. KumarJ.R. Jawahar LJ. PathakD.P. Synthesis of benzimidazole derivatives: As anti-hypertensive agents.E-J. Chem.20063427828510.1155/2006/765712
    [Google Scholar]
  28. ImranM. Al KuryL.T. NadeemH. ShahF.A. AbbasM. NazS. KhanA. LiS. Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration.Biomolecules202010110810.3390/biom1001010831936383
    [Google Scholar]
  29. CanÖ.D. OsmaniyeD. Demir ÖzkayÜ. SağlıkB.N. LeventS. IlgınS. BaysalM. ÖzkayY. KaplancıklıZ.A. MAO enzymes inhibitory activity of new benzimidazole derivatives including hydrazone and propargyl side chains.Eur. J. Med. Chem.20171319210610.1016/j.ejmech.2017.03.00928301816
    [Google Scholar]
  30. TahlanS. KumarS. NarasimhanB. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review.BMC Chem.201913110110.1186/s13065‑019‑0625‑431410412
    [Google Scholar]
  31. ZachariahV.V. In silico drug design of some novel compounds as an alternative for the anti IBD drugTofacitinib.Res. J. Chem. Environ.20202481117
    [Google Scholar]
  32. GeorgeN AshaA.M. Design, synthesis, characterization and in vitro evaluation of some novel 3, 4-dihydropyrimidine2(1h)- one derivatives for the treatment of breast carcinoma.Int. J. Pharm. Res.202012 INCOMPLETE
    [Google Scholar]
  33. JagetiaG.C. BaligaM.S. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: A preliminary study.J. Med. Food20047334334810.1089/jmf.2004.7.34315383230
    [Google Scholar]
  34. MazzarinoL. Loch-NeckelG. dos SantosB.L. OuriqueF. OtsukaI. HalilaS. Curi PedrosaR. Santos-SilvaM.C. Lemos-SennaE. CurtiM.E. BorsaliR. Nanoparticles made from xyloglucan-block-polycaprolactone copolymers: Safety assessment for drug delivery.Toxicol. Sci.2015147110411510.1093/toxsci/kfv11426048652
    [Google Scholar]
  35. AdebayoS.A. OnduaM. ShaiL.J. LebeloS.L. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants.J. Inflamm. Res.20191219520310.2147/JIR.S19937731496781
    [Google Scholar]
  36. WalkerM.C. GierseJ.K. in vitro assays for cyclooxygenase activity and inhibitor characterization.Methods Mol. Biol.2010644613114410.1007/978‑1‑59745‑364‑6_1120645170
    [Google Scholar]
  37. NairD.G. FunkC.D. A cell-based assay for screening lipoxygenase inhibitors.Prostaglandins Other Lipid Mediat.2009903-49810410.1016/j.prostaglandins.2009.09.00619804839
    [Google Scholar]
  38. PulliB. AliM. ForghaniR. SchobS. HsiehK.L.C. WojtkiewiczG. LinnoilaJ.J. ChenJ.W. Measuring myeloperoxidase activity in biological samples.PLoS One201387e6797610.1371/journal.pone.006797623861842
    [Google Scholar]
  39. FarrokhfallK. HashtroudiM.S. GhasemiA. MehraniH. Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats.Iran. J. Basic Med. Sci.201518211512125810884
    [Google Scholar]
  40. v S, A.; S K, K. Phloretin ameliorates acetic acid induced colitis through modulation of immune and inflammatory reactions in rats.Endocr. Metab. Immune Disord. Drug Targets202121116317210.2174/187153032066620062412025732579511
    [Google Scholar]
  41. AvdagićN. ZaćiragićA. BabićN. HukićM. ŠeremetM. LeparaO. Nakaš-IćindićE. Nitric oxide as a potential biomarker in inflammatory bowel disease.Bosn. J. Basic Med. Sci.20131315910.17305/bjbms.2013.240223448603
    [Google Scholar]
  42. KoliosG. ValatasV. WardS.G. Nitric oxide in inflammatory bowel disease: A universal messenger in an unsolved puzzle.Immunology2004113442743710.1111/j.1365‑2567.2004.01984.x15554920
    [Google Scholar]
  43. DeebR.S. ShenH. GamssC. GavrilovaT. SummersB.D. KraemerR. HaoG. GrossS.S. LainéM. MaedaN. HajjarD.P. UpmacisR.K. Inducible nitric oxide synthase mediates prostaglandin h2 synthase nitration and suppresses eicosanoid production.Am. J. Pathol.2006168134936210.2353/ajpath.2006.05009016400036
    [Google Scholar]
  44. FunkC.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology.Science200129455481871187510.1126/science.294.5548.187111729303
    [Google Scholar]
  45. CharlierC. MichauxC. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs.Eur. J. Med. Chem.2003387-864565910.1016/S0223‑5234(03)00115‑612932896
    [Google Scholar]
  46. LemosH.P. GrespanR. VieiraS.M. CunhaT.M. VerriW.A.Jr FernandesK.S.S. SoutoF.O. McInnesI.B. FerreiraS.H. LiewF.Y. CunhaF.Q. Prostaglandin mediates IL-23/IL-17-induced neutrophil migration in inflammation by inhibiting IL-12 and IFNγ production.Proc. Natl. Acad. Sci. USA2009106145954595910.1073/pnas.081278210619289819
    [Google Scholar]
  47. MantovaniA. CassatellaM.A. CostantiniC. JaillonS. Neutrophils in the activation and regulation of innate and adaptive immunity.Nat. Rev. Immunol.201111851953110.1038/nri302421785456
    [Google Scholar]
  48. AryaV.S. KanthlalS.K. LindaG. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions.J. Food Biochem.20204411e1336910.1111/jfbc.1336932885438
    [Google Scholar]
  49. DudhgaonkarS.P. TandanS.K. KumarD. RaviprakashV. KatariaM. Influence of simultaneous inhibition of cyclooxygenase-2 and inducible nitric oxide synthase in experimental colitis in rats.Inflammopharmacology200715518819510.1007/s10787‑007‑1603‑317943250
    [Google Scholar]
/content/journals/cad/10.2174/1573409919666230417103413
Loading
/content/journals/cad/10.2174/1573409919666230417103413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test