Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

Ding-Zhi-Xiao-Wan (DZXW) produces potential antidepressant-like effects. However, its antidepressant mechanisms are still unclear.

Objective

To analyze the antidepressant effects and the pharmacological mechanisms of DZXW, meta-analysis, network pharmacology, and molecular docking were selected in this study.

Methods

The compounds of DZXW and genes associated with compounds or depression were obtained from databases. The genes overlapping between DZXW compounds and depression were compared by Venn diagram. A network of medicine-ingredients-targets-disease was constructed, visualized, and analyzed. Protein-protein interaction, gene ontology, pathway enrichment, and molecular docking were performed to evaluate the potential mechanisms of DZXW for the treatment of depression.

Results

Meta-analysis showed that the antidepressant-like effects were produced by DZXW. The network pharmacology analysis showed that a total of 74 compound-related genes and 12607 PTSD-related genes were identified in the databases with 65 overlapping genes. The active ingredients derived from DZXW ( Beta-sitosterol, Stigmasterol, Fumarine, Hederagenin) elicited the antidepressant-like effects by targets, such as ACHE, HTR2A, and CHRM1. Moreover, the signaling pathways, like neuroactive ligand-receptor interaction, pathways in cancer, and cholinergic synapse, might play important roles in the treatment of depression by DZXW.

Conclusion

This study provides studies analysis and molecular evidence with the beneficial effects of DZXW for the treatment of depression.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409919666230417103355
2024-01-01
2025-05-23
Loading full text...

Full text loading...

References

  1. WHODepressionAvailable From: https://www.who.int/news-room/fact-sheets/detail/ (accessed on 30 January 2020).
  2. JiangC.Y. QinX.Y. YuanM.M. LuG.J. ChengY. 2,3,5,4′-Tetrahydroxystilbene-2-O-beta-D-glucoside reverses stress-induced depression via inflammatory and oxidative stress pathways.Oxid. Med. Cell. Longev.20182018950142710.1155/2018/950142730327715
    [Google Scholar]
  3. ZhangY.W. ChengY.C. Challenge and prospect of traditional chinese medicine in depression treatment.Front. Neurosci.20191319010.3389/fnins.2019.0019030890916
    [Google Scholar]
  4. PothulaS. KatoT. LiuR.J. WuM. GerhardD. ShinoharaR. SlibyA.N. ChowdhuryG.M. BeharK.L. SanacoraG. Cell-Type specific modulation of NMDA receptors triggers antidepressant actions.Mol. Psychiatry2020265097511132488125
    [Google Scholar]
  5. MalhiG.S. CoulstonC.M. FritzK. LampeL. BarghD.M. AblettM. LyndonB. SapsfordR. TheodorosM. WoolfallD. van der ZyppA. HopwoodM. MitchellA.J. Unlocking the diagnosis of depression in primary care: Which key symptoms are GPs using to determine diagnosis and severity?Aust. N. Z. J. Psychiatry201448654254710.1177/000486741351334224270311
    [Google Scholar]
  6. QuW. LiuS. ZhangW. ZhuH. TaoQ. WangH. YanH. Impact of traditional Chinese medicine treatment on chronic unpredictable mild stress-induced depression-like behaviors: Intestinal microbiota and gut microbiome function.Food Funct.20191095886589710.1039/C9FO00399A31464319
    [Google Scholar]
  7. LiC. HuangJ. ChengY.C. ZhangY.W. Traditional chinese medicine in depression treatment: From molecules to systems.Front. Pharmacol.20201158610.3389/fphar.2020.0058632457610
    [Google Scholar]
  8. Qing-JiaH.U.A.N.G. LinW.U. WeiC.H.E.N. Overview on etiology and pathogenesis of traditional chinese medicine of depression.Journal of Sichuan of Tradition-al Chinese Medicine20173511212214
    [Google Scholar]
  9. Xin-QingQ.I. Xue-MeiQ.I. Tian-mengL.I.U. Prescriptions for treating depression by tonifying deficiency: A Review.Zhongguo Shiyan Fangjixue Zazhi20212717217226
    [Google Scholar]
  10. JinZ. GaoN. ZhangJ. LiX. ChenH. XiongJ. LiY. TangY. The discovery of Yuanzhi-1, a triterpenoid saponin derived from the traditional Chinese medicine, has antidepressant-like activity.Prog. Neuropsychopharmacol. Biol. Psychiatry20145391410.1016/j.pnpbp.2014.02.01324614095
    [Google Scholar]
  11. XuJ. ChenL. SuJ. LiuZ. ChenJ. LinQ. MaoW. ShenD. The anxiolytic-like effects of ginsenoside Rg3 on chronic unpredictable stress in rats.Sci. Rep.201881774110.1038/s41598‑018‑26146‑529773855
    [Google Scholar]
  12. ZhuX. GaoR. LiuZ. ChengZ. QiY. FanC. YuS.Y. Ginsenoside Rg1 reverses stress-induced depression-like behaviours and brain-derived neurotrophic factor expression within the prefrontal cortex.Eur. J. Neurosci.201644218781885a10.1111/ejn.1325527062560
    [Google Scholar]
  13. YuH. FanC. YangL. YuS. SongQ. WangP. MaoX. Ginsenoside Rg1 Prevents Chronic Stress-Induced Depression-Like Behaviors and Neuronal Structural Plasticity in Rats.Cell. Physiol. Biochem.20184862470248210.1159/00049268430121663
    [Google Scholar]
  14. XuD. WangC. ZhaoW. GaoS. CuiZ. Antidepressant-like effects of ginsenoside Rg5 in mice: Involving of hippocampus BDNF signaling pathway.Neurosci. Lett.201764597105a10.1016/j.neulet.2017.02.07128257788
    [Google Scholar]
  15. DrevetsW.C. ZarateC.A.Jr FureyM.L. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: A review.Biol. Psychiatry201373121156116310.1016/j.biopsych.2012.09.03123200525
    [Google Scholar]
  16. FogaçaM.V. FukumotoK. FranklinT. LiuR.J. DumanC.H. VitoloO.V. DumanR.S. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects.Neuropsychopharmacology201944132230223810.1038/s41386‑019‑0501‑x31454827
    [Google Scholar]
  17. ZhangY. LongY. YuS. LiD. YangM. GuanY. ZhangD. WanJ. LiuS. ShiA. LiN. PengW. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder.Pharmacol. Res.202116410537610.1016/j.phrs.2020.10537633316383
    [Google Scholar]
  18. He-HuaC.H.E.N. YueW.A.N.G. Xiao-mingS.H.E.N. clinical observation of ding-zhi xiaowan combined with fluoxetine hydrochloride capsules in treating senile depression.Guide of China Medicine2014128274275
    [Google Scholar]
  19. Ji-yanC.H.A.I. De-hongS.H.A.N. De-shanW.A.N.G. Effect of dingzhixiaowan on nest in expression in depression model rats.Chinese Journal of Information on TCM [J]20051242930
    [Google Scholar]
  20. MingC. YingJ. ShanD. Effect of Dingzhi Xiaowan on the structure and function of hippocampus and the secretion of estradiol in rat models of depression.Chinese Journal of Clinical Rechabilitation [J]2005916120121
    [Google Scholar]
  21. ShanD. ChaiJ-Y. WangC. Effect of dingzhixiaowan on neural stem cells of dentate gyrus and learning memory in depression model rats.Chinese archives of traditional chinese medicine200523814261427
    [Google Scholar]
  22. Xing-yuYAN. De-shanWANG. De-hong, SHAN Effect of dingzhixiaowan on E2 and dentate gyrus neural stem cell of female depressed rats.Chinese Journal of Experimental Traditional Medical Formulae20071364345
    [Google Scholar]
  23. DongX.Z. LiZ.L. ZhengX.L. MuL.H. ZhangG. LiuP. A representative prescription for emotional disease, Ding-Zhi-Xiao-Wan restores 5-HT system deficit through interfering the synthesis and transshipment in chronic mild stress-induced depressive rats.J. Ethnopharmacol.201315031053106110.1016/j.jep.2013.10.01824184266
    [Google Scholar]
  24. LiuW.W. XuL. DongX.Z. TanX. WangS. ZhuW.Y. LiuP. [Effects of Kaixin San formulas on behavioristics and central monoamine neurotransmitters of chronic stress rats]Zhongguo Zhongyao Zazhi201540112180218526552177
    [Google Scholar]
  25. Tian-yiZ.H.A.N.G. Xian-zheD.O.N.G. XiaF.E.N.G. Study on the intervention of 5-HT level by Dingzhi Xiaowan regulation oxidation-reduction system.Chinese Journal of Drug Application and Monitoring [J]2018153140144
    [Google Scholar]
  26. ZhuW.Y. FengX. WangJ. LuY.P. DongX.Z. LiuP. Effect of dingzhi xiaowan on miR-16 expression and 5-HT reuptake.Zhongguo Zhongyao Zazhi201843173513351830347920
    [Google Scholar]
  27. LiY.A.N.G. WanwanL.I.U. XiaojiangZ.H.O.U. Antidepressant effects and mechanism of dingzhixiaowan and kaixinwan on CUMS model rats.Chinese Journal of Pharmacovigilance2021Available From: https://kns.cnki.net/kcms/detail/11.5219.R.20210520.1647.012.html
    [Google Scholar]
  28. WangX.X. TaoZ.P. LiY. LiC.W. FanM.R. LiuW.H. WeiG.N. GaoP.F. Study advance of depressive animal models and its application in traditional Chinese medicines.Zhongguo Zhongyao Zazhi202045112473248032627477
    [Google Scholar]
  29. KatzR.J. RothK.A. CarrollB.J. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression.Neurosci. Biobehav. Rev.19815224725110.1016/0149‑7634(81)90005‑17196554
    [Google Scholar]
  30. PothionS. BizotJ.C. TroveroF. BelzungC. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress.Behav. Brain Res.2004155113514610.1016/j.bbr.2004.04.00815325787
    [Google Scholar]
  31. KatzR.J. Animal model of depression: Pharmacological sensitivity of a hedonic deficit.Pharmacol. Biochem. Behav.198216696596810.1016/0091‑3057(82)90053‑37202217
    [Google Scholar]
  32. MitchellP. RedfernP. Animal models of depressive illness: The importance of chronic drug treatment.Curr. Pharm. Des.200511217120310.2174/138161205338225015638757
    [Google Scholar]
  33. HaslerG. DrevetsW.C. ManjiH.K. CharneyD.S. Discovering endophenotypes for major depression.Neuropsychopharmacology200429101765178110.1038/sj.npp.130050615213704
    [Google Scholar]
  34. PlanchezB. SurgetA. BelzungC. Animal models of major depression: Drawbacks and challenges.J. Neural Transm.2019126111383140810.1007/s00702‑019‑02084‑y31584111
    [Google Scholar]
  35. HoriuchiY. NakayamaJ. IshiguroH. OhtsukiT. Detera-WadleighS.D. ToyotaT. YamadaK. NankaiM. ShibuyaH. YoshikawaT. ArinamiT. Possible association between a haplotype of the GABA-A receptor alpha 1 subunit gene (GABRA1) and mood disorders.Biol. Psychiatry2004551404510.1016/S0006‑3223(03)00689‑914706423
    [Google Scholar]
  36. ShiahI.S. YathamL.N. GABA function in mood disorders: An update and critical review.Life Sci.199863151289130310.1016/S0024‑3205(98)00241‑09768867
    [Google Scholar]
  37. SunY. HeY. LiuS. Comparative pharmacokinetics of Ding-Zhi-Xiao-Wan preparation and its single herbs in rats by using a putative multiple-reaction monitoring UPLC-MS/MS method.Phytochem. Anal.202132336237432896044
    [Google Scholar]
  38. Xiang-pengK.O.N.G. Zhi-congC.H.E.N. Ying-jieX.I.A. Optimization of AChE extraction and determination in mouse brain and inhibitory activity of isoquinoline alkaloids on AChE.Journal of liaoning university of TCM20212373539
    [Google Scholar]
  39. KaoC.F. KuoP.H. YuY.W. YangA.C. LinE. LiuY.L. TsaiS.J. Gene-based association analysis suggests association of HTR2A with antidepressant treatment response in depressed patients.Front. Pharmacol.202011559601
    [Google Scholar]
  40. W. Yuan-shengZ. Xue-JiaTan. Hong-AiA. You-ShengZ. Li-Bo, Associations between the 1438A/G, 102T/C, and rs7997012G/A polymorphisms of HTR2A and the safety and effi-cacy of antidepressants in depression: A meta-analysis.The Pharmacogenomics Journal20212200215
    [Google Scholar]
  41. MartinV. RiffaudA. MardayT. BrouillardC. FrancB. TassinJ.P. Sevoz-CoucheC. MongeauR. LanfumeyL. Response of Htr3a knockout mice to antidepressant treatment and chronic stress.Br. J. Pharmacol.2017174152471248310.1111/bph.1385728493335
    [Google Scholar]
/content/journals/cad/10.2174/1573409919666230417103355
Loading
/content/journals/cad/10.2174/1573409919666230417103355
Loading

Data & Media loading...

Supplements

Supplementary Material

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test