Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

To our knowledge, there is still a lack of scientific reports on the pharmacological mechanism of the Zuogui Pill (ZGP) for treating osteoporosis (OP).

Aims

This study aimed to explore it network pharmacology and molecular docking.

Methods

We identified active compounds and associated targets in ZGP two drug databases. Disease targets of OP were obtained utilizing five disease databases. Networks were established and analyzed through the Cytoscape software and STRING databases. Enrichment analyses were performed using the DAVID online tools. Molecular docking was performed using Maestro, PyMOL, and Discovery Studio software.

Results

89 drug active compounds, 365 drug targets, 2514 disease targets, and 163 drug-disease common targets were obtained. Quercetin, kaempferol, phenylalanine, isorhamnetin, betavulgarin, and glycitein may be the crucial compounds of ZGP in treating OP. AKT1, MAPK14, RELA, TNF, and JUN may be the most important therapeutic targets. Osteoclast differentiation, TNF, MAPK, and thyroid hormone signaling pathways may be the critical therapeutic signaling pathways. The potential therapeutic mechanism mainly relates to osteoblastic or osteoclastic differentiation, oxidative stress, and osteoclastic apoptosis.

Conclusion

This study has revealed the anti-OP mechanism of ZGP, which offers objective evidence for relevant clinical application and further basic research.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409919666230302111951
2024-01-01
2025-05-28
Loading full text...

Full text loading...

References

  1. PagnottiG.M. StynerM. UzerG. PatelV.S. WrightL.E. NessK.K. GuiseT.A. RubinJ. RubinC.T. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity.Nat. Rev. Endocrinol.201915633935510.1038/s41574‑019‑0170‑130814687
    [Google Scholar]
  2. BellaviaD. DimarcoE. CostaV. CarinaV. De LucaA. RaimondiL. FiniM. GentileC. CaradonnaF. GiavaresiG. Flavonoids in bone erosive diseases: Perspectives in osteoporosis treatment.Trends Endocrinol. Metab.2021322769410.1016/j.tem.2020.11.00733288387
    [Google Scholar]
  3. CummingsS.R. MeltonL.J. Epidemiology and outcomes of osteoporotic fractures.Lancet200235993191761176710.1016/S0140‑6736(02)08657‑912049882
    [Google Scholar]
  4. LancetD. Endocrinology, osteoporosis: Overlooked in men for too long.Lancet Diabetes Endocrinol.202191110.1016/S2213‑8587(20)30408‑3
    [Google Scholar]
  5. CompstonJ.E. McClungM.R. LeslieW.D. Osteoporosis.Lancet20193931016936437610.1016/S0140‑6736(18)32112‑330696576
    [Google Scholar]
  6. LangdahlB.L. Overview of treatment approaches to osteoporosis.Br. J. Pharmacol.202117891891190610.1111/bph.1502432060897
    [Google Scholar]
  7. EnsrudK.E. Bisphosphonates for postmenopausal osteoporosis.JAMA202132519610.1001/jama.2020.292333399841
    [Google Scholar]
  8. MullardA. FDA approves first-in-class osteoporosis drug.Nat. Rev. Drug Discov.201918641131160772
    [Google Scholar]
  9. EstellE.G. RosenC.J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis.Nat. Rev. Endocrinol.2021171314610.1038/s41574‑020‑00426‑533149262
    [Google Scholar]
  10. ZhangM. MoalinM. HaenenG.R.M.M. Connecting West and East.Int. J. Mol. Sci.2019209233310.3390/ijms2009233331083489
    [Google Scholar]
  11. LiJ. SunK. QiB. FengG. WangW. SunQ. ZhengC. WeiX. JiaY. An evaluation of the effects and safety of Zuogui pill for treating osteoporosis: Current evidence for an ancient Chinese herbal formula.Phytother. Res.20213541754176710.1002/ptr.690833089589
    [Google Scholar]
  12. YinH. WangS. ZhangY. WuM. WangJ. MaY. Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae.Biomed. Pharmacother.20189799599910.1016/j.biopha.2017.11.02929136778
    [Google Scholar]
  13. LiY.H. YuC.Y. LiX.X. ZhangP. TangJ. YangQ. FuT. ZhangX. CuiX. TuG. ZhangY. LiS. YangF. SunQ. QinC. ZengX. ChenZ. ChenY.Z. ZhuF. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics.Nucleic Acids Res.201846D1D1121D112710.1093/nar/gkx107629140520
    [Google Scholar]
  14. WenxiongL. KuaiqiangZ. ZhuL. LiL. YanC. JichaoY. YindiS. FengY. YinJ. SunY. Effect of zuogui pill and yougui pill on osteoporosis: A randomized controlled trial.J. Tradit. Chin. Med.2018381334210.1016/j.jtcm.2018.01.00532185949
    [Google Scholar]
  15. LiuS.H. ChuangW.C. LamW. JiangZ. ChengY.C. Safety surveillance of traditional Chinese medicine: Current and future.Drug Saf.201538211712810.1007/s40264‑014‑0250‑z25647717
    [Google Scholar]
  16. ZhangL. HanL. WangX. WeiY. ZhengJ. ZhaoL. TongX. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking.Biosci. Rep.2021416BSR2020352010.1042/BSR2020352033634308
    [Google Scholar]
  17. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑111017921993
    [Google Scholar]
  18. NingK. ZhaoX. PoetschA. ChenW.H. YangJ. Computational molecular networks and network pharmacology.BioMed Res. Int.20172017110.1155/2017/757390429250548
    [Google Scholar]
  19. BoezioB. AudouzeK. DucrotP. TaboureauO. Network-based approaches in pharmacology.Mol. Inform.20173610170004810.1002/minf.20170004828692140
    [Google Scholar]
  20. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  21. LiuZ. GuoF. WangY. LiC. ZhangX. LiH. DiaoL. GuJ. WangW. LiD. HeF. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine.Sci. Rep.2016612114610.1038/srep2114626879404
    [Google Scholar]
  22. HuangJ. CheungF. TanH.Y. HongM. WangN. YangJ. FengY. ZhengQ. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology.Mol. Med. Rep.20171644583459210.3892/mmr.2017.714928791364
    [Google Scholar]
  23. QinX. NiuZ. HanX. YangY. WeiQ. GaoX. AnR. HanL. YangW. ChaiL. LiuE. GaoX. MaoH. Anti-perimenopausal osteoporosis effects of Erzhi formula via regulation of bone resorption through osteoclast differentiation: A network pharmacology-integrated experimental study.J. Ethnopharmacol.202127011381510.1016/j.jep.2021.11381533444724
    [Google Scholar]
  24. The UniProt ConsortiumUniProt: The universal protein knowledgebase.Nucleic Acids Res.2018465269910.1093/nar/gky09229425356
    [Google Scholar]
  25. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D85510.1093/nar/gkz102131680165
    [Google Scholar]
  26. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards version 3: The human gene integrator.Database20102010baq02010.1093/database/baq02020689021
    [Google Scholar]
  27. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  28. AmbergerJ.S. HamoshA. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr Protoc Bioinformatics20175811210.1002/cpbi.2728654725
    [Google Scholar]
  29. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑29325176396
    [Google Scholar]
  30. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  31. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  32. TangY. LiM. WangJ. PanY. WuF.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks.Biosystems2015127677210.1016/j.biosystems.2014.11.00525451770
    [Google Scholar]
  33. JiaoX. ShermanB.T. HuangD.W. StephensR. BaselerM.W. LaneH.C. LempickiR.A. DAVID-WS: A stateful web service to facilitate gene/protein list analysis.Bioinformatics201228131805180610.1093/bioinformatics/bts25122543366
    [Google Scholar]
  34. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  35. KouranovA. XieL. de la CruzJ. ChenL. WestbrookJ. BourneP.E. BermanH.M. The RCSB PDB information portal for structural genomics.Nucleic Acids Res.20063490001D302D30510.1093/nar/gkj12016381872
    [Google Scholar]
  36. MiyauchiY. SatoY. KobayashiT. YoshidaS. MoriT. KanagawaH. KatsuyamaE. FujieA. HaoW. MiyamotoK. TandoT. MoriokaH. MatsumotoM. ChambonP. JohnsonR.S. KatoS. ToyamaY. MiyamotoT. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis.Proc. Natl. Acad. Sci. USA201311041165681657310.1073/pnas.130875511024023068
    [Google Scholar]
  37. ColeH.A. OhbaT. NymanJ.S. HirotakaH. CatesJ.M.M. FlickM.J. DegenJ.L. SchoeneckerJ.G. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice.Arthritis Rheumatol.20146682222223310.1002/art.3863924664548
    [Google Scholar]
  38. LiC. DuX. LiuY. LiuQ.Q. ZhiW.B. WangC.L. ZhouJ. LiY. ZhangH. A systems pharmacology approach for identifying the multiple mechanisms of action for the rougui-fuzi herb pair in the treatment of cardiocerebral vascular diseases.Evid. Based Complement. Alternat. Med.2020202011710.1155/2020/519630232025235
    [Google Scholar]
  39. FuggleN.R. CurtisE.M. WardK.A. HarveyN.C. DennisonE.M. CooperC. Fracture prediction, imaging and screening in osteoporosis.Nat. Rev. Endocrinol.201915953554710.1038/s41574‑019‑0220‑831189982
    [Google Scholar]
  40. ChenG. ZhangZ. LiuY. LuJ. QiX. FangC. ZhouC. Efficacy and safety of Zuogui Pill in treating osteoporosis.Medicine2019988e1393610.1097/MD.000000000001393630813123
    [Google Scholar]
  41. LiuM. LiY. PanJ. LiuH. WangS. TengJ. ZhaoH. JuD. Effects of zuogui pill (see text) on Wnt singal transduction in rats with glucocorticoid-induced osteoporosis.J. Tradit. Chin. Med.20113129810210.1016/S0254‑6272(11)60020‑421977807
    [Google Scholar]
  42. YangA. YuC. YouF. HeC. LiZ. Mechanisms of zuogui pill in treating osteoporosis: Perspective from bone marrow mesenchymal stem cells.Evid. Based Complement. Alternat. Med.201820181810.1155/2018/371739130327678
    [Google Scholar]
  43. LiuF-X. TanF. FanQ-L. TongW-W. TengZ-L. YeS-M. LiX. ZhangM-Y. ChaiY. MaiC-Y. Zuogui Wan improves trabecular bone microarchitecture in ovariectomy-induced osteoporosis rats by regulating orexin-A and orexin receptor.J. Tradit. Chin. Med.202141692793410.19852/j.cnki.jtcm.20210903.00134939389
    [Google Scholar]
  44. ZhouW. WangY. LuA. ZhangG. Systems pharmacology in small molecular drug discovery.Int. J. Mol. Sci.201617224610.3390/ijms1702024626901192
    [Google Scholar]
  45. WangN. WangL. YangJ. WangZ. ChengL. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway.Phytother. Res.20213552639265010.1002/ptr.701033421256
    [Google Scholar]
  46. PanditA.P. OmaseS.B. MuteV.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis.Drug Deliv. Transl. Res.20201051495150610.1007/s13346‑020‑00708‑531942700
    [Google Scholar]
  47. VakiliS. ZalF. Mostafavi-pourZ. SavardashtakiA. KoohpeymaF. Quercetin and vitamin E alleviate ovariectomy‐induced osteoporosis by modulating autophagy and apoptosis in rat bone cells.J. Cell. Physiol.202123653495350910.1002/jcp.3008733030247
    [Google Scholar]
  48. LiuH. YiX. TuS. ChengC. LuoJ. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12.Mol. Cell. Endocrinol.202152011107410.1016/j.mce.2020.11107433157164
    [Google Scholar]
  49. WongS.K. ChinK.Y. Ima-NirwanaS. The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies.Drug Des. Devel. Ther.2019133497351410.2147/DDDT.S22773831631974
    [Google Scholar]
  50. KouraH.M. IsmailN.A. KamelA.F. AhmedA.M. Saad-HusseinA. EffatL.K. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy.Arch. Med. Sci.20113349350010.5114/aoms.2011.2341722295034
    [Google Scholar]
  51. MesserJ.G. HopkinsR.G. KippD.E. Quercetin metabolites up-regulate the antioxidant response in osteoblasts isolated from fetal rat calvaria.J. Cell. Biochem.201511691857186610.1002/jcb.2514125716194
    [Google Scholar]
  52. KřížováL. DadákováK. KašparovskáJ. KašparovskýT. Isoflavones.Molecules2019246107610.3390/molecules2406107630893792
    [Google Scholar]
  53. HeQ. YangJ. ZhangG. ChenD. ZhangM. PanZ. WangZ. SuL. ZengJ. WangB. WangH. ChenP. Sanhuang Jiangtang tablet protects type 2 diabetes osteoporosis via AKT-GSK3β-NFATc1 signaling pathway by integrating bioinformatics analysis and experimental validation.J. Ethnopharmacol.202127311394610.1016/j.jep.2021.11394633647426
    [Google Scholar]
  54. ZhangY. WangN. MaJ. ChenX.C. LiZ. ZhaoW. Expression profile analysis of new candidate genes for the therapy of primary osteoporosis.Eur. Rev. Med. Pharmacol. Sci.201620343344026914116
    [Google Scholar]
  55. JiaX. YangM. HuW. CaiS. Overexpression of miRNA-22-3p attenuates osteoporosis by targeting MAPK14.Exp. Ther. Med.202122169210.3892/etm.2021.1012433986857
    [Google Scholar]
  56. LiJ. AyoubA. XiuY. YinX. SandersJ.O. MesfinA. XingL. YaoZ. BoyceB.F. TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis.Nat. Commun.2019101279510.1038/s41467‑019‑10677‑031243287
    [Google Scholar]
  57. NeugebauerJ. HeiligJ. HosseinibarkooieS. RossB.C. Mendoza-FerreiraN. NolteF. PetersM. HölkerI. HupperichK. TschanzT. GryskoV. ZauckeF. NiehoffA. WirthB. Plastin 3 influences bone homeostasis through regulation of osteoclast activity.Hum. Mol. Genet.201827244249426210.1093/hmg/ddy31830204862
    [Google Scholar]
  58. LiuZ. LiC. HuangP. HuF. JiangM. XuX. LiB. DengL. YeT. GuoL. CircHmbox1 targeting mirna-1247-5p is involved in the regulation of bone metabolism by tnf-α in postmenopausal osteoporosis.Front. Cell Dev. Biol.2020859478510.3389/fcell.2020.59478533425899
    [Google Scholar]
  59. YangF. JiaY. SunQ. ZhengC. LiuC. WangW. DuL. KangS. NiuX. LiJ. Raloxifene improves TNF α induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis.Exp. Ther. Med.202020130931410.3892/etm.2020.868932550885
    [Google Scholar]
  60. LerbsT. CuiL. MuscatC. SaleemA. van NesteC. DomiziP. ChanC. WernigG. Expansion of bone precursors through jun as a novel treatment for osteoporosis-associated fractures.Stem Cell Reports202014460361310.1016/j.stemcr.2020.02.00932197115
    [Google Scholar]
  61. ChenS. LiY. ZhiS. DingZ. HuangY. WangW. ZhengR. YuH. WangJ. HuM. MiaoJ. LiJ. lncRNA xist regulates osteoblast differentiation by sponging mir-19a-3p in aging-induced osteoporosis.Aging Dis.20201151058106810.14336/AD.2019.072433014522
    [Google Scholar]
  62. MazurekA.H. SzeleszczukŁ. SimonsonT. PisklakD.M. Application of various molecular modelling methods in the study of estrogens and xenoestrogens.Int. J. Mol. Sci.20202117641110.3390/ijms2117641132899216
    [Google Scholar]
  63. CaoB. ChaiC. ZhaoS. Protective effect of Edaravone against hypoxia-induced cytotoxicity in osteoblasts MC3T3-E1 cells.IUBMB Life2015671292893310.1002/iub.143626596678
    [Google Scholar]
  64. BeringerA. GouriouY. LavocatF. OvizeM. MiossecP. Blockade of store-operated calcium entry reduces il-17/tnf cytokine-induced inflammatory response in human myoblasts.Front. Immunol.20199317010.3389/fimmu.2018.0317030693003
    [Google Scholar]
  65. WuL. LuoZ. LiuY. JiaL. JiangY. DuJ. GuoL. BaiY. LiuY. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation.Stem Cell Res. Ther.201910137510.1186/s13287‑019‑1500‑x31805984
    [Google Scholar]
  66. Al MamunM.A. AsimM.M.H. SahinM.A.Z. Al-BariM.A.A. Flavonoids compounds from Tridax procumbens inhibit osteoclast differentiation by down‐regulating c‐Fos activation.J. Cell. Mol. Med.20202442542255110.1111/jcmm.1494831919976
    [Google Scholar]
  67. JeongY.H. HurH.J. LeeA.S. LeeS.H. SungM.J. Amaranthus mangostanus inhibits the differentiation of osteoclasts and prevents ovariectomy-induced bone loss.Evid. Based Complement. Alternat. Med.2020202011110.1155/2020/192701732089716
    [Google Scholar]
  68. WuD. ZhangX. LiuL. GuoY. Key CMM combinations in prescriptions for treating mastitis and working mechanism analysis based on network pharmacology.Evid. Based Complement. Alternat. Med.2019201911110.1155/2019/824507130911319
    [Google Scholar]
  69. ZhaJ. WangX. DiJ. MiR-920 promotes osteogenic differentiation of human bone mesenchymal stem cells by targeting HOXA7.J. Orthop. Surg. Res.202015125410.1186/s13018‑020‑01775‑732650806
    [Google Scholar]
  70. WuH. HuB. ZhouX. ZhouC. MengJ. YangY. ZhaoX. ShiZ. YanS. Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway.Cell Death Dis.20189549810.1038/s41419‑018‑0540‑y29703893
    [Google Scholar]
  71. Zantut-WittmannD.E. Quintino-MoroA. dos SantosP.N.S. Melhado-KimuraV. BahamondesL. FernandesA. Lack of influence of thyroid hormone on bone mineral density and body composition in healthy euthyroid women.Front. Endocrinol.20201089010.3389/fendo.2019.0089031998231
    [Google Scholar]
  72. DelitalaA.P. ScuteriA. DoriaC. Thyroid hormone diseases and osteoporosis.J. Clin. Med.202094103410.3390/jcm904103432268542
    [Google Scholar]
/content/journals/cad/10.2174/1573409919666230302111951
Loading
/content/journals/cad/10.2174/1573409919666230302111951
Loading

Data & Media loading...

Supplements

Supplementary Material

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test