Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Anti-tubercular drug discovery is a critical research area aimed at addressing the global health burden imposed by . Nowadays, computational techniques have increased the likelihood of drug development compared to traditional, labor-intensive, and time-consuming drug design approaches. The pivotal goal of drug design is to identify compounds capable of selectively targeting protein, thereby disrupting its enzymatic activity. InhA, or NADH-dependent enoyl-acyl carrier protein reductase, stands at the forefront of targeted approaches in the battle against TB. Isatin derivatives have garnered interest for their diverse pharmacological activities.

Objectives

To identify novel isatin derivatives that could serve as potential chemical templates for anti-TB drug discovery by targeting InhA.

Methods

The present work utilized various computational approaches, including molecular docking, binding free energy calculations, and conformational alignment studies to investigate the binding mode and interactions of carefully selected dataset of 88 isatin derivatives within InhA active site. Study also employed MD simulations of the most promising molecule to check the stability of the protein-ligand complex and ADMET profiling of the top compounds to predict their pharmacokinetic and toxicity properties.

Results

Results provided insights into the structural features contributing to InhA inhibition, assessing overall drug-like characteristics of isatin derivatives and identified compound (BA= -10.4 kcal mol-1) with potential for further optimization. MD simulation analysis revealed that compound binds firmly within the InhA protein, exhibiting minimal conformational fluctuations and enhanced stability.

Conclusion

Considering the aforementioned, isatin derivatives represents a novel framework for creating targeted InhA inhibitors during anti- therapy. However, experimental validations and in-depth analyses are crucial to confirm efficacy and safety of these derivatives as potential InhA inhibitors for TB treatment.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099333313240909103833
2024-09-13
2025-04-04
Loading full text...

Full text loading...

References

  1. MacalinoS.J.Y. BillonesJ.B. OrganoV.G. CarrilloM.C.O. ConstanciaO. In silico strategies in tuberculosis drug discovery.Molecules202025366510.3390/molecules2503066532033144
    [Google Scholar]
  2. MongaV. NayyarA. VaitilingamB. PaldeP.B. Singh JhambS. KaurS. SinghP.P. JainR. Ring-substituted quinolines. Part 2: Synthesis and antimycobacterial activities of ring-substituted quinolinecarbohydrazide and ring-substituted quinolinecarboxamide analogues.Bioorg. Med. Chem.200412246465647210.1016/j.bmc.2004.09.01715556764
    [Google Scholar]
  3. Global Tuberculosis report.2023Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023
  4. OliveiraJ.R.S. ShiguemotoC.Y.K. GomesG.B. PerdomoR.T. BarbosaS.L. CrodaJ. BaroniA.C.M. das NevesA.R. Guerrero JrP.G. MoreiraF.M.F. Design, synthesis and antitubercular activity of novel isoniazid-cyclic-amine-azachalcones hybrids.J. Braz. Chem. Soc.20203112841295
    [Google Scholar]
  5. SouzaM.V.N. VasconcelosT.R.A. Drugs to combat tuberculosis: Past, present and future.Quim. Nova200528467868210.1590/S0100‑40422005000400022
    [Google Scholar]
  6. Available from: https://tbfacts.org/new-tb-drugs/
  7. NayakN. RamprasadJ. DalimbaU. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives.J. Fluor. Chem.2016183596810.1016/j.jfluchem.2016.01.011
    [Google Scholar]
  8. CorbettE.L. WattC.J. WalkerN. MaherD. WilliamsB.G. RaviglioneM.C. DyeC. The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic.Arch. Intern. Med.200316391009102110.1001/archinte.163.9.100912742798
    [Google Scholar]
  9. GreenblattD.J. Elimination half-life of drugs: Value and limitations.Annu. Rev. Med.198536142142710.1146/annurev.me.36.020185.0022253994325
    [Google Scholar]
  10. NasiruddinM. NeyazM.K. DasS. Nanotechnology-based approach in tuberculosis treatment.Tuberc. Res. Treat.2017201711210.1155/2017/492020928210505
    [Google Scholar]
  11. VandanaK. MarathakamA. ThusharaB.S. RajithaK. A review on isatin derivatives with diverse biological activities.World J. Pharm. Res.2017616318332
    [Google Scholar]
  12. XuZ. ZhangS. GaoC. FanJ. ZhaoF. LvZ.S. FengL.S. Isatin hybrids and their anti-tuberculosis activity.Chin. Chem. Lett.201728215916710.1016/j.cclet.2016.07.032
    [Google Scholar]
  13. JiangD. WangG.Q. LiuX. ZhangZ. FengL.S. LiuM.L. Isatin derivatives with potential antitubercular activities.J. Heterocycl. Chem.20185561263127910.1002/jhet.3189
    [Google Scholar]
  14. BugaliaS. DhayalY. SachdevaH. KumariS. AtalK. PhageriaU. SainiP. GurjarO.P. Review on Isatin- A remarkable scaffold for designing potential therapeutic complexes and its macrocyclic complexes with transition metals.J. Inorg. Organomet. Polym. Mater.20233371782180110.1007/s10904‑023‑02666‑0
    [Google Scholar]
  15. (a BanerjeeA. DubnauE. QuemardA. BalasubramanianV. UmK.S. WilsonT. CollinsD. de LisleG. JacobsW.R.Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis .Science1994263514422723010.1126/science.82846738284673
    [Google Scholar]
  16. (b ModiP. PatelS. ChhabriaM.T. Identification of some novel pyrazolo[1,5- a ]pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking.J. Biomol. Struct. Dyn.20193771736174910.1080/07391102.2018.146585229663870
    [Google Scholar]
  17. TakayamaK. WangC. BesraG.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis .Clin. Microbiol. Rev.20051818110110.1128/CMR.18.1.81‑101.200515653820
    [Google Scholar]
  18. ZhangY. HeymB. AllenB. YoungD. ColeS. The catalase—peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis .Nature1992358638759159310.1038/358591a01501713
    [Google Scholar]
  19. WangF. LangleyR. GultenG. DoverL.G. BesraG.S. JacobsW.R.Jr SacchettiniJ.C. Mechanism of thioamide drug action against tuberculosis and leprosy.J. Exp. Med.20072041737810.1084/jem.2006210017227913
    [Google Scholar]
  20. HeX. AlianA. Ortiz de MontellanoP.R. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides.Bioorg. Med. Chem.200715216649665810.1016/j.bmc.2007.08.01317723305
    [Google Scholar]
  21. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  22. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  23. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  24. LuC. WuC. GhoreishiD. ChenW. WangL. DammW. RossG.A. DahlgrenM.K. RussellE. Von BargenC.D. AbelR. FriesnerR.A. HarderE.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space.J. Chem. Theory Comput.20211774291430010.1021/acs.jctc.1c0030234096718
    [Google Scholar]
  25. BanksJ.L. BeardH.S. CaoY. ChoA.E. DammW. FaridR. FeltsA.K. HalgrenT.A. MainzD.T. MapleJ.R. MurphyR. PhilippD.M. RepaskyM.P. ZhangL.Y. BerneB.J. FriesnerR.A. GallicchioE. LevyR.M. Integrated modeling program, applied chemical theory (IMPACT).J. Comput. Chem.200526161752178010.1002/jcc.2029216211539
    [Google Scholar]
  26. NuttD.R. SmithJ.C. Molecular dynamics simulations of proteins:Can the explicit water model be varied?J. Chem. Theory Comput.2007341550156010.1021/ct700053u26633225
    [Google Scholar]
  27. (a DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  28. (b PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: predicting small-molecules pharmacokinetic properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  29. BoströmJ. GreenwoodJ.R. GottfriesJ. Assessing the performance of OMEGA with respect to retrieving bioactive conformations.J. Mol. Graph. Model.200321544946210.1016/S1093‑3263(02)00204‑812543140
    [Google Scholar]
  30. SinghA.K. QuraishiM.A. Investigation of adsorption of isoniazid derivatives at mild steel/hydrochloric acid interface: Electrochemical and weight loss methods.Mater. Chem. Phys.20101232-366667710.1016/j.matchemphys.2010.05.035
    [Google Scholar]
  31. PoppF.D. Potential anticonvulsants. IX. Some isatin hydrazones and related compounds.J. Heterocycl. Chem.19842161641164510.1002/jhet.5570210614
    [Google Scholar]
  32. SomogyiL. Transformation of isatin 3-acylhydrazones under acetylating conditions: Synthesis and structure elucidation of 1,5′-disubstituted 3′-acetylspiro[oxindole-3,2′-[1,3, 4]oxadiazolines].Bull. Chem. Soc. Jpn.200174587388110.1246/bcsj.74.873
    [Google Scholar]
  33. BekircanO. BektasH. Synthesis of Schiff and Mannich bases of isatin derivatives with 4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones.Molecules20081392126213510.3390/molecules1309212618830145
    [Google Scholar]
  34. PandeyaS.N. SriramD. NathG. De ClercqE. Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine.Farmaco199954962462810.1016/S0014‑827X(99)00075‑010555264
    [Google Scholar]
  35. Aboul-FadlT. Abdel-HamidM.K. YoussefA.F. Schiff bases of indoline-2, 3-dione (isatin) derivatives as efficient agents against resistant strains of Mycobacterium tuberculosis.Der Pharma Chem.20157217225
    [Google Scholar]
  36. Aboul-FadlT. Abdel-AzizH.A. Abdel-HamidM.K. ElsamanT. ThanassiJ. PucciM.J. Schiff bases of indoline-2,3-dione: potential novel inhibitors of Mycobacterium tuberculosis (Mtb) DNA gyrase.Molecules20111697864787910.3390/molecules1609786422143547
    [Google Scholar]
  37. HaiderS. SaifyZ.S. NazA. FizzaK. TabinaZ.M. ArainA. RaoT.A. AshrafS. GhaffarA. Synthesis and conformational studies of N′-(3Z)-5-fluoro-2-oxo-2,3-dihydro-1H-indol-3-ylidene]-3-carbohydrazide with specific pharmacophoric features.World J. Pharm. Res.201437342351
    [Google Scholar]
  38. Al-KadhimiA.A. Al-AzzawiN.K. KhalafA.I. Facile synthesis of Schiff and Mannich bases of isatin derivatives.J. Chem. Biol. Phys. Sci.20155323382349
    [Google Scholar]
  39. AliS. AlamM. Potential antimicrobial agents-I: Structural modifications and antimicrobial activity of some isatin derivatives.Arch. Pharm. Res.199417213113310.1007/BF0297423710319145
    [Google Scholar]
  40. BawazirW.A.B. Synthesis of some new thioethers and 4-thiazolidinones bearing 3-(pyridine-4′-yl)-1,2,4-triazino [5,6-b]indole moiety as antifungal agents.Int. J. Org. Chem. (Irvine)201991374610.4236/ijoc.2019.91004
    [Google Scholar]
  41. LipinskiC.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.Adv. Drug Deliv. Rev.2016101344110.1016/j.addr.2016.04.02927154268
    [Google Scholar]
  42. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  43. OlasupoS.B. UzairuA. AdamuG.S. UbaS. Computational modeling and pharmacokinetics/ADMET study of some arylpiperazine derivatives as novel antipsychotic agents targeting depression.Chemistry Africa20203497998810.1007/s42250‑020‑00161‑4
    [Google Scholar]
  44. DainaA. ZoeteV. A boiled-egg to predict gastrointestinal absorption and brain penetration of small moelcules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
  45. HassanS.S. ZhangW.D. JinH. BashaS.H. PriyaS.V.S.S. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2.J. Biomol. Struct. Dyn.202240148449810.1080/07391102.2020.181557932876526
    [Google Scholar]
/content/journals/cad/10.2174/0115734099333313240909103833
Loading
/content/journals/cad/10.2174/0115734099333313240909103833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test