Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

The prevalence of breast cancer presents a substantial global health concern, underscoring the ongoing need for the development of inventive therapeutic remedies.

Methods

In this investigation, an array of novel indazole-pyridine hybrids () have been designed and synthesized to assess their potential as candidates for treating breast cancer. Subsequently, we have conducted biological evaluations to determine their cytotoxic effects on the human MCF-7 breast cancer cell line. Furthermore, analysis was conducted to estimate the inhibition potential of the compounds against TrkA (Tropomyosin receptor kinase A), a specific molecular target associated with breast cancer, through molecular docking. physicochemical and pharmacokinetic predictions were made to assess the compounds’ drug-like properties.

Results

Compound emerged as the most active compound among the others with GI50 < 10 μg/ml. Besides, compound showed high binding energy (BE -10.7 kcal/mol) against TrkA and was stabilized within the TrkA binding pocket through hydrophobic, H-bonding, and van der Waals interactions. physicochemical and pharmacokinetic prediction studies indicated that compound obeyed both Lipinski’s and Veber’s rule and displayed a versatile pharmacokinetic profile, implying compound to appear as a viable candidate and that it could be further refined to develop therapeutic agents for potentially treating breast cancer.

Conclusion

This study offers a promising direction for the advancement of innovative breast cancer treatments, highlighting the effectiveness of indazole-pyridine hybrids as potential anti-cancer agents. Further optimization and preclinical development are necessary to advance these compounds to clinical trials.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099308839240724100224
2024-08-06
2025-04-15
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. GiaquintoA.N. SungH. MillerK.D. KramerJ.L. NewmanL.A. MinihanA. JemalA. SiegelR.L. Breast Cancer Statistics, 2022.CA Cancer J. Clin.202272652454110.3322/caac.2175436190501
    [Google Scholar]
  3. IARCCancer Today.2022Available From: https://gco.iarc.fr/today
  4. KnightS.R. Lancet20213971027238739710.1016/S0140‑6736(21)00001‑533485461
    [Google Scholar]
  5. RoyA. LiS.D. Modifying the tumor microenvironment using nanoparticle therapeutics.Rev. Nanomed. Nanobiotechnol.20168689190810.1002/wnan.140627038329
    [Google Scholar]
  6. AbbasZ. RehmanS. An overview of cancer treatment modalities.NeoplasmLondonInTechOpen20181139157
    [Google Scholar]
  7. CharmsazS. CollinsD. PerryA. PrencipeM. Novel strategies for cancer treatment: Highlights from the 55th IACR Annual Conference.Cancers2019118112510.3390/cancers1108112531394729
    [Google Scholar]
  8. ArrueboM. VilaboaN. Sáez-GutierrezB. LambeaJ. TresA. ValladaresM. González-FernándezÁ. Assessment of the evolution of cancer treatment therapies.Cancers2011333279333010.3390/cancers303327924212956
    [Google Scholar]
  9. DescampsS. PawlowskiV. RévillionF. HornezL. HebbarM. BoillyB. HondermarckH. PeyratJ.P. Expression of nerve growth factor receptors and their prognostic value in human breast cancer.Cancer Res.200161114337434011389056
    [Google Scholar]
  10. ComE. LagadecC. PageA. El Yazidi-BelkouraI. SlomiannyC. SpencerA. HammacheD. RudkinB.B. HondermarckH. Nerve growth factor receptor TrkA signaling in breast cancer cells involves Ku70 to prevent apoptosis.Mol. Cell. Proteomics20076111842185410.1074/mcp.M700119‑MCP20017617666
    [Google Scholar]
  11. DemontY. CorbetC. PageA. Ataman-ÖnalY. Choquet-KastylevskyG. FliniauxI. Le BourhisX. ToillonR.A. BradshawR.A. HondermarckH. Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein.J. Biol. Chem.201228731923193110.1074/jbc.M110.21171422128158
    [Google Scholar]
  12. HelalM.H. El-AwdanS.A. SalemM.A. Abd-elazizT.A. MoahamedY.A. El-SherifA.A. MohamedG.A.M. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513576477310.1016/j.saa.2014.06.14525150427
    [Google Scholar]
  13. Martin-ZancaD. HughesS.H. BarbacidM. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences.Nature1986319605674374810.1038/319743a02869410
    [Google Scholar]
  14. (a DescampsS. ToillonR.A. AdriaenssensE. PawlowskiV. CoolS.M. NurcombeV. Le BourhisX. BoillyB. PeyratJ.P. HondermarckH. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways.J. Biol. Chem.200127621178641787010.1074/jbc.M01049920011359788
    [Google Scholar]
  15. (b DavidsonB. ReichR. LazaroviciP. Ann FlørenesV. NielsenS. NeslandJ.M. Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma.Breast Cancer Res. Treat.200483211912810.1023/B:BREA.0000010704.17479.8a14997042
    [Google Scholar]
  16. YoussefG. GillettC. AgbajeO. CromptonT. MontanoX. Phosphorylation of NTRK1 at Y674/Y675 induced by TP53-dependent repression of PTPN6 expression: A potential novel prognostic marker for breast cancer.Mod. Pathol.201427336137410.1038/modpathol.2013.129
    [Google Scholar]
  17. WilhelmS. CarterC. LynchM. LowingerT. DumasJ. SmithR.A. SchwartzB. SimantovR. KelleyS. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer.Nat. Rev. Drug Discov.200651083584410.1038/nrd213017016424
    [Google Scholar]
  18. Nursing CenterOncology Times2013Available From: https://www.nursingcenter.com/journalissue?Journal_ID=401957&Issue_ID=1573878
  19. CuiJ.J. Tran-DubéM. ShenH. NambuM. KungP.P. PairishM. JiaL. MengJ. FunkL. BotrousI. McTigueM. GrodskyN. RyanK. PadriqueE. AltonG. TimofeevskiS. YamazakiS. LiQ. ZouH. ChristensenJ. MroczkowskiB. BenderS. KaniaR.S. EdwardsM.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK).J. Med. Chem.201154186342636310.1021/jm200761321812414
    [Google Scholar]
  20. LiuD. OffinM. HarnicarS. LiB.T. DrilonA. Entrectinib: An orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors.Ther. Clin. Risk Manag.201814141247125210.2147/TCRM.S14738130050303
    [Google Scholar]
  21. DrilonA. SienaS. DziadziuszkoR. BarlesiF. KrebsM.G. ShawA.T. de BraudF. RolfoC. AhnM.J. WolfJ. SetoT. ChoB.C. PatelM.R. ChiuC.H. JohnT. GotoK. KarapetisC.S. ArkenauH.T. KimS.W. OheY. LiY.C. ChaeY.K. ChungC.H. OttersonG.A. MurakamiH. LinC.C. TanD.S.W. PrenenH. RiehlT. Chow-ManevalE. SimmonsB. CuiN. JohnsonA. EngS. WilsonT.R. DoebeleR.C. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: Integrated analysis of three phase 1–2 trials.Lancet Oncol.202021226127010.1016/S1470‑2045(19)30690‑431838015
    [Google Scholar]
  22. AndréF. CiruelosE. RubovszkyG. CamponeM. LoiblS. RugoH.S. IwataH. ConteP. MayerI.A. KaufmanB. YamashitaT. LuY.S. InoueK. TakahashiM. PápaiZ. LonginA.S. MillsD. WilkeC. HirawatS. JuricD. Alpelisib for PIK3CA -mutated, hormone receptor–positive advanced breast cancer.N. Engl. J. Med.2019380201929194010.1056/NEJMoa181390431091374
    [Google Scholar]
  23. FedermanN. McDermottR. Larotrectinib, a highly selective tropomyosin receptor kinase (TRK) inhibitor for the treatment of TRK fusion cancer.Expert Rev. Clin. Pharmacol.2019121093193910.1080/17512433.2019.166177531469968
    [Google Scholar]
  24. LuJ. BlakelyC.M. BarveM. ChungC.H. WaqarS.N. HuX. DelordJ-P. KrzakowskiM.J. YonemoriK. ChenD.T. KlingbielD. HeinzmannS. Le TourneauC. 173P Entrectinib in NTRK fusion-positive (NTRK-fp) breast cancer: Updated data from STARTRK-2.Ann. Oncol.202233Suppl. 3S204S20510.1016/j.annonc.2022.03.192
    [Google Scholar]
  25. RosenE.Y. ItalianoA. JuricD. ReevesJ.A. DimaL. BregaN. DrilonA. Abstract PS11-06: Efficacy and safety of larotrectinib in patients with TRK fusion breast cancer.Cancer Res.2021814_SupplementSuppl.PS11-0610.1158/1538‑7445.SABCS20‑PS11‑06
    [Google Scholar]
  26. SkerrattS.E. AndrewsM. BagalS.K. BilslandJ. BrownD. BungayP.J. ColeS. GibsonK.R. JonesR. MoraoI. NeddermanA. OmotoK. RobinsonC. RyckmansT. SkinnerK. StuppleP. WaldronG. The discovery of a potent, selective, and peripherally restricted Pan-Trk Inhibitor (PF-06273340) for the treatment of pain.J. Med. Chem.20165922100841009910.1021/acs.jmedchem.6b0085027766865
    [Google Scholar]
  27. KodeJ. KovvuriJ. NagarajuB. JadhavS. BarkumeM. SenS. KasinathanN.K. ChaudhariP. MohantyB.S. GourJ. SigalapalliD.K. Ganesh KumarC. PradhanT. BanerjeeM. KamalA. Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors.Bioorg. Chem.202010510444710.1016/j.bioorg.2020.10444733207276
    [Google Scholar]
  28. KholiyaF. ChatterjeeS. BhojaniG. SenS. BarkumeM. KasinathanN.K. KodeJ. MeenaR. Seaweed polysaccharide derived bioaldehyde nanocomposite: Potential application in anticancer therapeutics.Carbohydr. Polym.202024011628210.1016/j.carbpol.2020.11628232475566
    [Google Scholar]
  29. VichaiV. KirtikaraK. Sulforhodamine B colorimetric assay for cytotoxicity screening.Nat. Protoc.2006131112111610.1038/nprot.2006.17917406391
    [Google Scholar]
  30. SkehanP. StorengR. ScudieroD. MonksA. McMahonJ. VisticaD. WarrenJ.T. BokeschH. KenneyS. BoydM.R. New colorimetric cytotoxicity assay for anticancer-drug screening.J. Natl. Cancer Inst.199082131107111210.1093/jnci/82.13.11072359136
    [Google Scholar]
  31. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  32. LipinskiC.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.Adv. Drug Deliv. Rev.2016101344110.1016/j.addr.2016.04.02927154268
    [Google Scholar]
  33. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  34. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  35. OlasupoS.B. UzairuA. AdamuG.S. UbaS. Computational modeling and pharmacokinetics/ADMET study of some arylpiperazine derivatives as novel antipsychotic agents targeting depression.Chem Africa20203497998810.1007/s42250‑020‑00161‑4
    [Google Scholar]
  36. DainaA. ZoeteV. A BOILED‐egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
  37. Ul HassanS.S. ZhangW-D. JinH-Z. BashaS.H. Sasi PriyaS.V.S. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2 .J. Biomol. Struct. Dyn.202040148449810.1080/07391102.2020.181557932876526
    [Google Scholar]
  38. GriffinN. MarslandM. RoselliS. OldmeadowC. AttiaJ. WalkerM.M. HondermarckH. FaulknerS. The receptor tyrosine kinase TrkA is increased and targetable in HER2-positive breast cancer.Biomolecules2020109132910.3390/biom1009132932957504
    [Google Scholar]
  39. LagadecC. MeignanS. AdriaenssensE. FoveauB. VanheckeE. RomonR. ToillonR.A. OxombreB. HondermarckH. Le BourhisX. TrkA overexpression enhances growth and metastasis of breast cancer cells.Oncogene200928181960197010.1038/onc.2009.6119330021
    [Google Scholar]
  40. MelckD. De PetrocellisL. OrlandoP. BisognoT. LaezzaC. BifulcoM. Di MarzoV. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation.Endocrinology2000141111812610.1210/endo.141.1.723910614630
    [Google Scholar]
  41. ChiarenzaA. LazaroviciP. LempereurL. CantarellaG. BianchiA. BernardiniR. Tamoxifen inhibits nerve growth factor-induced proliferation of the human breast cancerous cell line MCF-7.Cancer Res.20016173002300811306479
    [Google Scholar]
  42. ArteagaC.L. SliwkowskiM.X. OsborneC.K. PerezE.A. PuglisiF. GianniL. Treatment of HER2-positive breast cancer: Current status and future perspectives.Nat. Rev. Clin. Oncol.201291163210.1038/nrclinonc.2011.17722124364
    [Google Scholar]
  43. LoiblS. GianniL. HER2-positive breast cancer.Lancet2017389100872415242910.1016/S0140‑6736(16)32417‑527939064
    [Google Scholar]
  44. PondéN. BrandãoM. El-HachemG. WerbrouckE. PiccartM. Treatment of advanced HER2-positive breast cancer: 2018 and beyond.Cancer Treat. Rev.201867102010.1016/j.ctrv.2018.04.01629751334
    [Google Scholar]
  45. TianS. WangJ. LiY. LiD. XuL. HouT. The application of in silico drug-likeness predictions in pharmaceutical research.Adv. Drug Deliv. Rev.20158621010.1016/j.addr.2015.01.00925666163
    [Google Scholar]
  46. KhanT. LawrenceA.J. AzadI. RazaS. JoshiS. KhanA.R. AbdulR. Computational drug designing and prediction of important parameters using in silico methods- a review.Curr. Computeraided Drug Des.201915538439710.2174/157339981566619032612000630914032
    [Google Scholar]
  47. ChandrasekaranB. AbedS.N. Al-AttraqchiO. KucheK. TekadeR.K. Advances in Pharmaceutical Product Development and ResearchCambridge, MassachusettsAcademic Press2018
    [Google Scholar]
/content/journals/cad/10.2174/0115734099308839240724100224
Loading
/content/journals/cad/10.2174/0115734099308839240724100224
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test