Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

is a traditional medicinal herb renowned for its anti-inflammatory, antioxidant, and immune-enhancing properties. In the realm of neurodegenerative diseases (NDDS), CLASP proteins, responsible for regulating microtubule dynamics in neurons, have emerged as critical players. Dysregulation of CLASP proteins is associated with NDDS, such as Alzheimer's, Parkinson's, and Huntington's diseases. Consequently, comprehending the role of CLASP proteins in NDDS holds promise for the development of innovative therapeutic interventions.

Objectives

The objectives of the research were to identify phytoconstituents in the hydroalcoholic extract of (HEUT), to evaluate its antioxidant potential through free radical scavenging assays and to explore its potential interaction with CLASP using molecular docking studies.

Methods

HPLC and LC-MS techniques were used to identify and quantify phytochemicals in HEUT. The antioxidant potential was assessed through DPPH, ferric reducing antioxidant power (FRAP), nitric oxide (NO) and superoxide (SO) free radical scavenging methods. Interactions between conventional quinovic acid, chlorogenic acid, epicatechin, corynoxeine, rhynchophylline and syringic acid and CLASP were studied through molecular docking using Auto Dock 4.2.

Results

The HEUT extract demonstrated the highest concentration of quinovic acid derivatives. HEUT exhibited strong free radical-scavenging activity with IC values of 0.113 µg/ml (DPPH) and 9.51 µM (FRAP). It also suppressed NO production by 47.1 ± 0.37% at 40 µg/ml and inhibited 77.3 ± 0.69% of SO generation. Additionally, molecular docking revealed the potential interaction of quinovic acid with CLASP for NDDS.

Conclusion

The strong antioxidant potential of HEUT and the interaction of quinovic acid with CLASP protein suggest a promising role in treating NDDS linked to CLASP protein dysregulation.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099284849231212095407
2024-01-02
2025-02-17
Loading full text...

Full text loading...

References

  1. BatihaG.E.S. Magdy BeshbishyA. WasefL. ElewaY.H.A. Abd El-HackM.E. TahaA.E. Al-SagheerA.A. DevkotaH.P. TufarelliV. Uncaria tomentosa (Willd. ex Schult.) DC.: A review on chemical constituents and biological activities.Appl. Sci.2020108266810.3390/app10082668
    [Google Scholar]
  2. SnowA.D. CastilloG.M. NguyenB.P. ChoiP.Y. CummingsJ.A. CamJ. HuQ. LakeT. PanW. KastinA.J. KirschnerD.A. WoodS.G. RockensteinE. MasliahE. LorimerS. TanziR.E. LarsenL. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles.Sci. Rep.20199156110.1038/s41598‑019‑38645‑030728442
    [Google Scholar]
  3. BlanckJ.J. HuebnerT.M. RollsA.M. CornellJ.S. HwangC.S. Comprehensive review of the components in cat’s claw (uncaria tomentosa) and their antibacterial activity.AppliedChem20222112910.3390/appliedchem2010001
    [Google Scholar]
  4. de PaulaL.C.L. FonsecaF. PerazzoF. CruzF.M. CuberoD. TrufelliD.C. MartinsS.P.S. SantiP.X. da SilvaE.A. del GiglioA. Uncaria tomentosa (cat’s claw) improves quality of life in patients with advanced solid tumors.J. Altern. Complement. Med.2015211223010.1089/acm.2014.012725495394
    [Google Scholar]
  5. MonroyL.V. CauichJ.C. OrtegaA.E. CamposS. Medicinal plants as potential functional foods or resources for obtaining anticancer activity metabolites.Oncological Functional Nutrition.Elsevier202110.1016/B978‑0‑12‑819828‑5.00005‑X
    [Google Scholar]
  6. PiscoyaJ. RodriguezZ. BustamanteS. A. OkuhamaN. N. MillerM. J. SandovalM. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanisms of action of the species uncaria guianensis.Inflam. Res. Off. J. Eur. Histamine Res. Soc.200150944244810.1007/PL00000268
    [Google Scholar]
  7. SandovalM. OkuhamaN.N. ZhangX.J. CondezoL.A. LaoJ. AngelesF.M. MusahR.A. BobrowskiP. MillerM.J.S. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content.Phytomedicine20029432533710.1078/0944‑7113‑0011712120814
    [Google Scholar]
  8. Alvarenga-VenutoloS. Rosales-LópezC. Sánchez-ChinchillaL. Muñoz-ArrietaR. Aguilar-CascanteF. Seasonality effect on the composition of oxindole alkaloids from distinct organs of Uncaria tomentosa from the Caribbean region of Costa Rica.Phytochemistry2018151263110.1016/j.phytochem.2018.03.00829631104
    [Google Scholar]
  9. GouvêaM.M. PuscedduB.H. Pereira NettoA.D. PeregrinoC.A.F. MacedoE.V. MourãoS.C. MarquesF.F.C. Isolation of mitraphylline from Uncaria tomentosa (Willd. ex Schult.) DC. barks and development of spectrophotometric method for total alkaloids determination in Cat’s Claw samples.Phytochem. Anal.202031226227210.1002/pca.289131769108
    [Google Scholar]
  10. Villegas VílchezL.F. AscenciosJ.H. DooleyT.P. GlucoMedix®, an extract of Stevia rebaudiana and Uncaria tomentosa, reduces hyperglycemia, hyperlipidemia, and hypertension in rat models without toxicity: A treatment for metabolic syndrome.BMC Complement. Med. Therap.20222216210.1186/s12906‑022‑03538‑935260150
    [Google Scholar]
  11. KaiserS. CarvalhoÂ.R. PittolV. DietrichF. ManicaF. MachadoM.M. de OliveiraL.F.S. Oliveira BattastiniA.M. OrtegaG.G. Genotoxicity and cytotoxicity of oxindole alkaloids from Uncaria tomentosa (cat’s claw): Chemotype relevance.J. Ethnopharmacol.2016189909810.1016/j.jep.2016.05.02627180878
    [Google Scholar]
  12. CalvoA. DévényiD. KószóB. SanzS. OelbermannA.L. MaierM. KeveT. KomkaK. GamseT. WeidnerE. SzékelyE. Controlling concentration of bioactive components in cat’s claw based products with a hybrid separation process.J. Supercrit. Fluids2017125505510.1016/j.supflu.2017.01.018
    [Google Scholar]
  13. Lima-JuniorR.S. MelloC.S. SianiA.C. ValenteL.M.M. KubelkaC.F. Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, IL-8 and NS1 production on human microvascular endothelial cells infected with dengue virus.Nat. Prod. Commun.20138111934578X130080110.1177/1934578X130080111224427938
    [Google Scholar]
  14. BatihaG.E.S. Magdy BeshbishyA. WasefL. ElewaY.H.A. Abd El-HackM.E. TahaA.E. Al-SagheerA.A. DevkotaH.P. TufarelliV. Uncaria tomentosa (Willd. ex Schult.) DC.: Review of chemical constituents and biological activities.Appl. Sci.2020108266810.3390/app10082668
    [Google Scholar]
  15. Jorge CoelhoL. Nobre Lima do NascimentoG. Anti-inflammatory and diuretic activity of uncária tomentosa (Cat’s Claw): Systematic review.Rev. Cereus202012211912910.18605/2175‑7275/cereus.v12n2p119‑129
    [Google Scholar]
  16. QinN. LuX. LiuY. QiaoY. QuW. FengF. SunH. Recent research progress of Uncaria spp. based on alkaloids: Phytochemistry, pharmacology and structural chemistry.Eur. J. Med. Chem.202121011296010.1016/j.ejmech.2020.11296033148492
    [Google Scholar]
  17. MartiC. CarreiraE.M. Construction of spiro[pyrrolidine‐3,3′‐oxindoles] − recent applications to the synthesis of oxindole alkaloids.Eur. J. Org. Chem.20032003122209221910.1002/ejoc.200300050
    [Google Scholar]
  18. ShahrestaniN. TovfighmadarK. EskandariM. JadidiK. NotashB. MirzaeiP. Synthesis of highly enantioenriched bis‐spirooxindole pyrrolizidine/pyrrolidines through asymmetric [3+2] cycloaddition reaction.Asian J. Org. Chem.20209582282810.1002/ajoc.202000056
    [Google Scholar]
  19. VopálenskáA. DočekalV. PetrželováS. CísařováI. VeselýJ. Access to spirooxindole-fused cyclopentanes via a stereoselective organocascade reaction using bifunctional catalysis.J. Org. Chem.202388127724773510.1021/acs.joc.2c0247836705518
    [Google Scholar]
  20. DietrichF. Pietrobon MartinsJ. KaiserS. Madeira SilvaR.B. RockenbachL. Albano EdelweissM.I. OrtegaG.G. MorroneF.B. CamposM.M. BattastiniA.M.O. The quinovic acid glycosides purified fraction from uncaria tomentosa protects against hemorrhagic cystitis induced by cyclophosphamide in mice.PLoS One2015107e013188210.1371/journal.pone.013188226154141
    [Google Scholar]
  21. CaoX.F. WangJ.S. WangP.R. KongL.Y. Triterpenes from the stem bark of Mitragyna diversifolia and their cytotoxic activity.Chin. J. Nat. Med.201412862863110.1016/S1875‑5364(14)60096‑025156290
    [Google Scholar]
  22. AguilarJ.L. RojasP. MarceloA. PlazaA. BauerR. ReiningerE. KlaasC.A. MerfortI. Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae).J. Ethnopharmacol.200281227127610.1016/S0378‑8741(02)00093‑412065162
    [Google Scholar]
  23. ZhangQ. ZhaoJ.J. XuJ. FengF. QuW. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria.J. Ethnopharmacol.2015173488010.1016/j.jep.2015.06.01126091967
    [Google Scholar]
  24. ShaoY. MuD. PanL. WilsonI.W. ZhengY. ZhuL. LuZ. WanL. FuJ. WeiS. SongL. QiuD. TangQ. Optimization of isolation and transformation of protoplasts from uncaria rhynchophylla and its application to transient gene expression analysis.Int. J. Mol. Sci.2023244363310.3390/ijms2404363336835049
    [Google Scholar]
  25. LiR. ChengJ. JiaoM. LiL. GuoC. ChenS. LiuA. New phenylpropanoid-substituted flavan-3-ols and flavonols from the leaves of Uncaria rhynchophylla.Fitoterapia2017116172310.1016/j.fitote.2016.11.00527847306
    [Google Scholar]
  26. ZhouJ. ZhouS. Antihypertensive and neuroprotective activities of rhynchophylline: The role of rhynchophylline in neurotransmission and ion channel activity.J. Ethnopharmacol.20101321152710.1016/j.jep.2010.08.04120736055
    [Google Scholar]
  27. YadavV.R. PrasadS. SungB. KannappanR. AggarwalB.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer.Toxins20102102428246610.3390/toxins210242822069560
    [Google Scholar]
  28. KhwazaV. MlalaS. OyedejiO.O. AderibigbeB.A. Pentacyclic triterpenoids with nitrogen-containing heterocyclic moiety, privileged hybrids in anticancer drug discovery.Molecules2021269240110.3390/molecules2609240133918996
    [Google Scholar]
  29. KallóG. KunkliB. GyőriZ. SzilvássyZ. CsőszÉ. TőzsérJ. Compounds with antiviral, anti-inflammatory and anticancer activity identified in wine from hungary’s tokaj region via high resolution mass spectrometry and bioinformatics analyses.Int. J. Mol. Sci.20202124954710.3390/ijms2124954733334025
    [Google Scholar]
  30. BenaliT. BakrimS. GhchimeR. BenkhairaN. El OmariN. BalahbibA. TahaD. ZenginG. HasanM.M. BibiS. BouyahyaA. Pharmacological insights into the multifaceted biological properties of quinic acid.Biotechnol. Genet. Eng. Rev.202213010.1080/02648725.2022.212230336123811
    [Google Scholar]
  31. AquinoR. de SimoneF. PizzaC. ContiC. SteinM.L. Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from Uncaria tomentosa and Guettarda platypoda.J. Nat. Prod.198952467968510.1021/np50064a0022553871
    [Google Scholar]
  32. GanbaatarC. GrunerM. TunsagJ. BatsurenD. GanpurevB. ChuluunnyamL. SodbayarB. SchmidtA.W. KnölkerH.J. Chemical constituents isolated from zygophyllum melongena bunge growing in mongolia.Nat. Prod. Res.201630141661166410.1080/14786419.2015.1118630
    [Google Scholar]
  33. PodolakI. GrabowskaK. SobolewskaD. Wróbel-BiedrawaD. Makowska-WąsJ. GalantyA. Saponins as cytotoxic agents: An update (2010–2021). Part II-Triterpene saponins.Phytochem. Rev.202322111316710.1007/s11101‑022‑09830‑3
    [Google Scholar]
  34. DuarteD.S. DolabelaM.F. SalasC.E. RaslanD.S. OliveirasA.B. NenningerA. WiedemannB. WagnerH. LombardiJ. LopesM.T.P. Chemical characterization and biological activity of Macfadyena unguis-cati (Bignoniaceae).J. Pharm. Pharmacol.201052334735210.1211/002235700177390410757425
    [Google Scholar]
  35. ChenL. MaJ. WangX. ZhangM. Simultaneous determination of six uncaria alkaloids in mouse blood by UPLC–MS/MS and its application in pharmacokinetics and bioavailability.BioMed Res. Int.2020202011110.1155/2020/103026932879877
    [Google Scholar]
  36. ZhaoB. HuangY. ChenQ. ChenQ. MiaoH. ZhuS. ZengC. Characteristic component profiling and identification of different uncaria species based on high-performance liquid chromatography-photodiode array detection tandem ion trap and time of flight mass spectrometry coupled with rDNA ITS sequence.Biomed. Chromatogr.2018323411910.1002/bmc.4119
    [Google Scholar]
  37. SeoC.S. LeeM.Y. HPLC–PDA and LC–MS/MS analysis for the simultaneous quantification of the 14 marker components in sojadodamgangki-tang.Appl. Sci.2020108280410.3390/app10082804
    [Google Scholar]
  38. SeoC.S. ShinH.K. Simultaneous determination of 12 marker components in yeonkyopaedok-san using HPLC-PDA and LC–MS/MS.Appl. Sci.2020105171310.3390/app10051713
    [Google Scholar]
  39. DubeyJ. RatnakaranN. KoushikaS.P. Neurodegeneration and microtubule dynamics: Death by a thousand cuts.Front. Cell. Neurosci.2015934310.3389/fncel.2015.0034326441521
    [Google Scholar]
  40. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  41. LawrenceE.J. ZanicM. RiceL.M. CLASPs at a glance.J. Cell Sci.20201338jcs24309710.1242/jcs.24309732332092
    [Google Scholar]
  42. JoshiG. BekierM.E.II WangY. Golgi fragmentation in Alzheimer’s disease.Front. Neurosci.2015934010.3389/fnins.2015.0034026441511
    [Google Scholar]
  43. BeffertU. DillonG.M. SullivanJ.M. StuartC.E. GilbertJ.P. KambourisJ.A. HoA. Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function.J. Neurosci.20123240139061391610.1523/JNEUROSCI.2108‑12.201223035100
    [Google Scholar]
  44. WuY.F.O. BryantA.T. NelsonN.T. MadeyA.G. FernandesG.F. GoodsonH.V. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate.PLoS One20211612e026040110.1371/journal.pone.026040134890409
    [Google Scholar]
  45. GoodsonH.V. JonassonE.M. Microtubules and microtubule-associated proteins.Cold Spring Harb. Perspect. Biol.2018106a02260810.1101/cshperspect.a02260829858272
    [Google Scholar]
  46. DreifussA.A. Bastos-PereiraA.L. ÁvilaT.V. SoleyB.S. RiveroA.J. AguilarJ.L. AccoA. Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model.J. Ethnopharmacol.2010130112713310.1016/j.jep.2010.04.02920435132
    [Google Scholar]
  47. YepesA.F. Herrera-CalderonO. Flórez-ÁlvarezL. Zapata-CardonaM.I. YepesL.M. Aguilar-JimenezW. RugelesM.T. ZapataW. The hydroalcoholic extract of uncaria tomentosa (Cat’s Claw) inhibits the replication of novel coronavirus (SARS-CoV-2) in vitro .bioRxiv2020202037220110.1101/2020.11.09.372201
    [Google Scholar]
  48. KaiserS. VerzaS.G. MoraesR.C. PittolV. PeñalozaE.M.C. PaveiC. OrtegaG.G. Extraction optimization of polyphenols, oxindole alkaloids and quinovic acid glycosides from cat’s claw bark by Box–Behnken design.Ind. Crops Prod.20134815316110.1016/j.indcrop.2013.04.026
    [Google Scholar]
  49. Navarro HoyosM. Sánchez-PatánF. Murillo MasisR. Martín-ÁlvarezP. Zamora RamirezW. MonagasM. BartoloméB. Phenolic assesment of uncaria tomentosa L. (Cat’s Claw): Leaves, stem, bark and wood extracts.Molecules20152012227032271710.3390/molecules20121987526694348
    [Google Scholar]
  50. BachN.X. ThuV.K. TrangD.T. Van KiemP. Quinovic acid glycosides from Mussaenda pilosissima Valeton.Vietnam J. Chem.2019571646910.1002/vjch.201960010
    [Google Scholar]
  51. FatimaN. TapondjouL.A. LontsiD. SondengamB.L. Atta-Ur-Rahman ChoudharyM.I. Quinovic acid glycosides from Mitragyna stipulosa--first examples of natural inhibitors of snake venom phosphodiesterase I.Nat. Prod. Lett.200216638939310.1080/1057563029003316912462343
    [Google Scholar]
  52. EstradaO. González-GuzmánJ.M. Salazar-BookmanM.M. CardozoA. LucenaE. Alvarado-CastilloC.P. Hypotensive and bradycardic effects of quinovic acid glycosides from Aspidosperma fendleri in spontaneously hypertensive rats.Nat. Prod. Commun.20151021934578X150100010.1177/1934578X150100021625920261
    [Google Scholar]
  53. YépezA.M.P. de UgazO.L. AlvarezC.M.P. De FeoV. AquinoR. De SimoneF. PizzaC. Quinovic acid glycosides from Uncaria guianensis.Phytochemistry19913051635163710.1016/0031‑9422(91)84223‑F1367339
    [Google Scholar]
  54. KedareS.B. SinghR.P. Genesis and development of DPPH method of antioxidant assay.J. Food Sci. Technol.201148441242210.1007/s13197‑011‑0251‑123572765
    [Google Scholar]
  55. SandovalM. CharbonnetR.M. OkuhamaN.N. RobertsJ. KrenovaZ. TrentacostiA.M. MillerM.J.S. Cat’s claw inhibits TNFα production and scavenges free radicals: Role in cytoprotection.Free Radic. Biol. Med.2000291717810.1016/S0891‑5849(00)00327‑010962207
    [Google Scholar]
  56. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.02928660627
    [Google Scholar]
  57. WetchakulP. ChonsutP. PunsawadC. SanpinitS. LC-QTOF-MS characterization, antioxidant activity, and in vitro toxicity of medicinal plants from the tri-than-thip remedy.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/447700335140798
    [Google Scholar]
  58. NwozoO.S. EffiongE.M. AjaP.M. AwuchiC.G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review.Int. J. Food Prop.202326135938810.1080/10942912.2022.2157425
    [Google Scholar]
  59. SivaramanB. ShakilaR.J. JeyasekaranG. SukumarD. ManimaranU. SumathiG. Antioxidant activities of squid protein hydrolysates prepared with papain using response surface methodology.Food Sci. Biotechnol.201625366567210.1007/s10068‑016‑0117‑430263321
    [Google Scholar]
  60. LiuF. OoiV.E.C. ChangS.T. Free radical scavenging activities of mushroom polysaccharide extracts.Life Sci.1997601076377110.1016/S0024‑3205(97)00004‑09064481
    [Google Scholar]
  61. SulimovV.B. KutovD.C. SulimovA.V. Advances in docking.Curr. Med. Chem.202026427555758010.2174/092986732566618090411500030182836
    [Google Scholar]
  62. ShenC. HuX. GaoJ. ZhangX. ZhongH. WangZ. XuL. KangY. CaoD. HouT. The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction.J. Cheminform.20211318110.1186/s13321‑021‑00560‑w34656169
    [Google Scholar]
  63. LiH. KomoriA. LiM. ChenX. YangA.W.H. SunX. LiuY. HungA. ZhaoX. ZhouL. Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2.J. Mol. Liq.202337412125310.1016/j.molliq.2023.12125336694691
    [Google Scholar]
  64. HalimiM. BararpourP. Natural inhibitors of SARS-CoV-2 main protease: Structure based pharmacophore modeling, molecular docking and molecular dynamic simulation studies.J. Mol. Model.202228927910.1007/s00894‑022‑05286‑636031629
    [Google Scholar]
  65. CS. SD.K. RagunathanV. TiwariP. AS. PB.D. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.202240258561110.1080/07391102.2020.181558432897178
    [Google Scholar]
  66. Herrera-CalderonO. SalehA.M. Yepes-PerezA.F. AljarbaN.H. AlkahtaniS. BatihaG.E.S. Hañari-QuispeR.D. ChavezH. Pari-OlarteJ.B. Loyola-GonzalesE. Almeida-GalindoJ.S. Kong-ChirinosJ.F. BenaliT. Computational study of the phytochemical constituents from Uncaria tomentosa stem bark against SARS-CoV-2 Omicron spike protein.J. Chem.2022202211910.1155/2022/8539918
    [Google Scholar]
  67. GuptaN. QayumA. SinghS. MujwarS. SangwanP.L. Isolation, cytotoxicity evaluation, docking, admet and drug likeness studies of secondary metabolites from the stem bark of anthocephalus cadamba (Roxb.).ChemistrySelect2022743e20220295010.1002/slct.202202950
    [Google Scholar]
  68. MohammedH.A. KhanR.A. Abdel-HafezA.A. Abdel-AzizM. AhmedE. EnanyS. MahgoubS. Al-RugaieO. AlsharidahM. AlyM.S.A. MehanyA.B.M. HegazyM.M. Phytochemical profiling, in vitro and in silico anti-microbial and anti-cancer activity evaluations and staph gyraseb and h-top-iiβ receptor-docking studies of major constituents of zygophyllum coccineum l. aqueous-ethanolic extract and its subsequent fractions: An approach to validate traditional phytomedicinal knowledge.Molecules202126357710.3390/molecules2603057733499325
    [Google Scholar]
  69. WuW. ZhangZ. LiF. DengY. LeiM. LongH. HouJ. WuW. A network-based approach to explore the mechanisms of uncaria alkaloids in treating hypertension and alleviating alzheimer’s disease.Int. J. Mol. Sci.2020215176610.3390/ijms2105176632143538
    [Google Scholar]
  70. YuZ.L. BaiR. ZhouJ.J. HuangH.L. ZhaoW.Y. HuoX.K. YangY.H. LuanZ.L. ZhangB.J. SunC.P. MaX.C. Uncarialins J-M from uncaria rhynchophylla and their anti‐depression mechanism in unpredictable chronic mild stress‐induced Mice via Activating 5‐HT 1A Receptor.Chin. J. Chem.20213951331134310.1002/cjoc.202000652
    [Google Scholar]
  71. GaoL. KongX. WuW. FengZ. ZhiH. ZhangZ. LongH. LeiM. HouJ. WuW. GuoD. Dissecting the regulation of arachidonic acid metabolites by uncaria rhynchophylla (Miq). Miq. in Spontaneously hypertensive rats and the predictive target sEH in the anti-hypertensive effect based on metabolomics and molecular docking.Front. Pharmacol.20221390963110.3389/fphar.2022.90963135712719
    [Google Scholar]
  72. FatriansyahJ.F. RizqillahR.K. YandiM.Y. Fadilah SahlanM. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2.J. King Saud Univ. Sci.202234110170710.1016/j.jksus.2021.10170734803333
    [Google Scholar]
  73. Al-KarmalawyA.A. DahabM.A. MetwalyA.M. ElhadyS.S. ElkaeedE.B. EissaI.H. DarwishK.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor.Front Chem.2021966123010.3389/fchem.2021.66123034017819
    [Google Scholar]
  74. TriM.D. PhatN.T. MinhP.N. ChiM.T. HaoB.X. Minh AnT.N. AlamM. Van KieuN. DangV.S. MaiT.T.N. DuongT.H. In vitro anti-inflammatory, in silico molecular docking and molecular dynamics simulation of oleanane-type triterpenes from aerial parts of Mussaenda recurvata.RSC Advances20231385324533610.1039/D2RA06870B36793303
    [Google Scholar]
  75. GuptaA. SahuN. SinghA.P. SinghV.K. SinghS.C. UpadhyeV.J. MathewA.T. KumarR. SinhaR.P. Exploration of novel lichen compounds as inhibitors of SARS-COV-2 MPRO: Ligand-Based Design, Molecular Dynamics, and ADMET analyses.Appl. Biochem. Biotechnol.2022194126386640610.1007/s12010‑022‑04103‑335921031
    [Google Scholar]
  76. Navarro-HoyosM. Lebrón-AguilarR. Quintanilla-LópezJ. CuevaC. HeviaD. QuesadaS. AzofeifaG. Moreno-ArribasM. MonagasM. BartoloméB. Proanthocyanidin characterization and bioactivity of extracts from different parts of uncaria tomentosa L. (Cat’s Claw).Antioxidants2017611210.3390/antiox601001228165396
    [Google Scholar]
  77. MukraschM.D. von BergenM. BiernatJ. FischerD. GriesingerC. MandelkowE. ZweckstetterM. The “jaws” of the tau-microtubule interaction.J. Biol. Chem.200728216122301223910.1074/jbc.M60715920017307736
    [Google Scholar]
  78. BlagovA.V. GrechkoA.V. NikiforovN.G. BorisovE.E. SadykhovN.K. OrekhovA.N. Role of impaired mitochondrial dynamics processes in the pathogenesis of alzheimer’s disease.Int. J. Mol. Sci.20222313695410.3390/ijms2313695435805958
    [Google Scholar]
/content/journals/cad/10.2174/0115734099284849231212095407
Loading
/content/journals/cad/10.2174/0115734099284849231212095407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test