Skip to content
2000
image of Discovery and Chemical Exploration of Spiro[Benzofuran-3,3'-Pyrroles] Derivatives as Innovative FLT3 Inhibitors for Targeting Acute Myeloid Leukemia

Abstract

Aims

This study aimed at the synthesis of several spiro[benzofuran-3,3'-pyrroles] derivatives by a three-component reaction conducted by mixing DMAD, -bridgehead heterocycles, and benzofuran-2,3-diones in dichloromethane at room temperature for 24 h. Moreover, evaluation of their cytotoxicity affinities against FMS-like tyrosine kinase 3 was carried out.

Objectives

The objective of this study was to use a one-pot, three-component reaction to synthesize a novel set of spiro[benzofuran-3,3'-pyrroles] derivatives.

Methods

A novel set of spiro[benzofuran-3,3'-pyrroles] (() was synthesized by a one-pot three-component reaction involving dimethyl acetylenedicarboxylate, -bridgehead heterocycles and benzofuran-2,3-diones in dichloromethane at room temperature for 24 h. The compounds were analyzed using NMR 1H, 13C, 2D-NMR (COSY, HMQC, HMBC), and HRMS. Docking simulations were conducted to elucidate the anticancer activity of synthesized compounds on FLT3 protein, with Gilteritinib as a reference for comparison.

Results

This study demonstrated the successful design, synthesis, and biological evaluation of spiro[benzofuran-3,3'-pyrroles] derivatives as FLT3 inhibitors for AML treatment. The synthesized compounds demonstrated promising binding affinities and significant inhibitory activity against FLT3 kinase. The inhibitors (11a, 11b, 11c, 12d, and 12e) exhibited excellent selectivity profiles against FLT3. Particularly, compound showed strong binding affinity and potent inhibitory activity (IC = 2.5 μM).

Conclusion

Fifteen new synthetic spiro[benzofuran-3,3'-pyrroles] were prepared, characterized, and evaluated for cytotoxicity affinities against FMS-like tyrosine kinase 3. Compound showed strong binding affinity and potent inhibitory activity (IC = 2.5 μM), making it a promising candidate for further development as a therapeutic option for AML treatment. These findings lay the groundwork for further optimization and development of spiro[benzofuran-3,3'-pyrroles] derivatives as potential therapeutics for AML treatment. Further studies are needed to explore their efficacy and safety profiles in preclinical and clinical settings.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230343474241009112335
2024-12-06
2025-01-19
Loading full text...

Full text loading...

References

  1. Zhao J.C. Agarwal S. Ahmad H. Amin K. Bewersdorf J.P. Zeidan A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev. 2022 52 100905 10.1016/j.blre.2021.100905 34774343
    [Google Scholar]
  2. Ezelarab H.A.A. Ali T.F.S. Abbas S.H. Hassan H.A. Beshr E.A.M. Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. BMC Chem. 2023 17 1 73 10.1186/s13065‑023‑00981‑8 37438819
    [Google Scholar]
  3. Ningombam A. Verma D. Kumar R. Singh J. Ali M.S. Pandey A.K. Singh I. Bakhshi S. Sharma A. Pushpam D. Palanichamy J.K. Tanwar P. Singh A.R. Chopra A. Prognostic relevance of NPM1, CEBPA, and FLT3 mutations in cytogenetically normal adult AML patients. Am. J. Blood Res. 2023 13 1 28 43 36937459
    [Google Scholar]
  4. Alserihi R. Ahmad H. Alkhatabi H. Analysis of NPM1 and FLT3 Mutations in Patients with Acute Myeloid Leukemia in Jeddah, Saudi Arabia: A Pilot Study. Int. J. Biom. 2023 13 1 73 83 10.21103/Article13(1)_OA9
    [Google Scholar]
  5. Tseng S. Lee M.E. Lin P.C. A review of childhood acute myeloid leukemia: Diagnosis and novel treatment. Pharmaceuticals (Basel) 2023 16 11 1614 10.3390/ph16111614 38004478
    [Google Scholar]
  6. Ge S.S. Qiu Q.C. Dai H.P. Shen X.D. Wu T.M. Du J.H. Wan C.L. Shen H.J. Wu D.P. Xue S.L. Liu S.B. Mutation spectrum of FLT3 and significance of non‐canonical FLT3 mutations in haematological malignancy. Br. J. Haematol. 2023 202 3 539 549 10.1111/bjh.18877 37246158
    [Google Scholar]
  7. Kurzer J.H. Weinberg O.K. Updates in molecular genetics of acute myeloid leukemia. Semin. Diagn. Pathol. 2023 40 3 140 151 10.1053/j.semdp.2023.04.002 37059636
    [Google Scholar]
  8. Kiyoi H. Kawashima N. Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020 111 2 312 322 10.1111/cas.14274 31821677
    [Google Scholar]
  9. Ge S.S. Liu S.B. Xue S.L. Developments and challenges of FLT3 inhibitors in acute myeloid leukemia. Front. Oncol. 2022 12 996438 10.3389/fonc.2022.996438 36185253
    [Google Scholar]
  10. Gui H.Z. Meng Z. Xiao Z.S. Yang Z.R. Wei Y. Shi M. Stereo‐ and regioselective construction of spirooxindoles having continuous spiral rings via asymmetric [3+2] cyclization of 3‐isothiocyanato oxindoles with thioaurone derivatives. Eur. J. Org. Chem. 2020 2020 42 6614 6622 10.1002/ejoc.202001146
    [Google Scholar]
  11. Mhiri C. Boudriga S. Askri M. Knorr M. Sriram D. Yogeeswari P. Nana F. Golz C. Strohmann C. Design of novel dispirooxindolopyrrolidine and dispirooxindolopyrrolothiazole derivatives as potential antitubercular agents. Bioorg. Med. Chem. Lett. 2015 25 19 4308 4313 10.1016/j.bmcl.2015.07.069 26271585
    [Google Scholar]
  12. Al-Mahadeen M.M. Jaber A.M. Zahra J.A. El-Abadelah M.M. Alshaer W. Taha M.O. Synthesis of novel benzothieno-[3,2′-f][1,3] oxazepines and their isomeric 2-oxo-2H-spiro[benzothiophene-3,3′-pyrrolines] via 1,4-dipolar cycloaddition reaction and their evaluation as cytotoxic anticancer leads. Med. Chem. Res. 2024 33 6 918 929 10.1007/s00044‑024‑03229‑9
    [Google Scholar]
  13. Chen H. Liu H. Zhao S.H. Cheng S-B. Xu X-Y. Yuan W-C. Zhang X-M. Enantioselective arylation of 3-carboxamide oxindoles with quinone monoimines and synthesis of chiral spirooxindole-benzofuranones. Synlett 2019 30 9 1067 1072 10.1055/s‑0037‑1611782
    [Google Scholar]
  14. Jaber A.M. Zahra J.A. El-Abadelah M.M. Al-Mahadeen M.M. Sabri S.S. Kasabri V. Haddadin R.N. Evaluation of spirooxindole-3,3′-pyrrolines-incorporating isoquinoline motif as antitumor, anti-inflammatory, antibacterial, antifungal, and antioxidant agents. Antiinflamm. Antiallergy Agents Med. Chem. 2024 23 1 12 10.2174/0118715230322113240705071750 39069700
    [Google Scholar]
  15. Al-Mahadeen M.M. Zahra J.A. El-Abadelah M.M. Jaber A.M. Khanfar M.A. One-pot synthesis of novel 2-oxo(2H)-spiro[benzofuran-3,3′-pyrrolines] via 1,4-dipolar cycloaddition reaction. Results Chem. 2022 4 100643 10.1016/j.rechem.2022.100643
    [Google Scholar]
  16. Jaber A.M. Zahra J.A. El-Abadelah M.M. Sabri S.S. Sabbah D.S. Thermodynamic control synthesis of spiro[oxindole-3,3′-pyrrolines] via 1,4-dipolar cycloaddition utilizing imidazo[1,5- a ]quinoline. Z. Naturforsch. C J. Biosci. 2023 78 3-4 141 148 10.1515/znc‑2022‑0085 36796786
    [Google Scholar]
  17. Jaber A.M. Zahra J.A. Sabri S.S. Khanfar M.A. Awwadi F.F. El-Abadelah M.M. New Trends in 1,4-Dipolar Cycloaddition Reactions. Thermodynamic Control Synthesis of Model 2′-(isoquinolin-1-yl)-spiro[oxindole-3,3′-pyrrolines]. Curr. Org. Chem. 2022 26 5 542 549 10.2174/1385272826666220221141306
    [Google Scholar]
  18. Jaber A.M. Zahra J.A. El-Abadelah M.M. Sabri S.S. Khanfar M.A. Voelter W. Utilization of 1-phenylimidazo[1,5- a ]quinoline as partner in 1,4-dipolar cycloaddition reactions. Z. Naturforsch. B. J. Chem. Sci. 2020 75 3 259 267 10.1515/znb‑2019‑0150
    [Google Scholar]
  19. Al-Mahadeen M.M. Jaber A.M. Al-Najjar B.O. Design, synthesis and biological evaluation of novel 2-hydroxy-1 H-indene-1,3(2 H)-dione derivatives as FGFR1 inhibitors. Pharmacia 2024 71 1 9 10.3897/pharmacia.71.e122127
    [Google Scholar]
  20. Al-Mahadeen M.M. Jaber A.M. Al-Qawasmeh R.A. Taha M.O. Synthesis, evaluation, and docking study of adamantyl-1,3,4-oxadiazol hybrid compounds as CaMKIIδ kinase inhibitor. J. Chem. Res. 2024 48 3 17475198241262467 10.1177/17475198241262467
    [Google Scholar]
  21. Jaber A.M. Al-Mahadeen M.M. Al-Qawasmeh R.A. Taha M.O. Synthesis, anticancer evaluation and docking studies of novel adamantanyl-1,3,4-oxadiazol hybrid compounds as Aurora-A kinase inhibitors. Med. Chem. Res. 2023 32 11 2394 2404 10.1007/s00044‑023‑03145‑4
    [Google Scholar]
  22. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  23. Kawase T. Nakazawa T. Eguchi T. Tsuzuki H. Ueno Y. Amano Y. Suzuki T. Mori M. Yoshida T. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget 2019 10 58 6111 6123 10.18632/oncotarget.27222 31692922
    [Google Scholar]
  24. Morris G.M. Goodsell D.S. Halliday R.S. Huey R. Hart W.E. Belew R.K. Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998 19 14 1639 1662 10.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  25. Wang Q. Zhang S. Guo F. Zhang B. Hu P. Wang Z. Natural α-amino acids applied in the synthesis of imidazo[1,5-a]N-heterocycles under mild conditions. J. Org. Chem. 2012 77 24 11161 11166 10.1021/jo302299u 23181828
    [Google Scholar]
  26. Yohda M. Yamamoto Y. Ruthenium–Me-BIPAM-catalyzed addition reaction of aryl-boronic acids to benzofuran-2,3-diones for the enantioselective synthesis of 3-aryl-3-hydroxybenzofuran-2-ones. Tetrahedron Asymmetry 2015 26 24 1430 1435 10.1016/j.tetasy.2015.10.010
    [Google Scholar]
  27. Kropp K.G. Goncalves J.A. Andersson J.T. Fedorak P.M. Bacterial transformations of benzothiophene and methylbenzothiophenes. Environ. Sci. Technol. 1994 28 7 1348 1356 10.1021/es00056a025 22176329
    [Google Scholar]
  28. Zwanenburg D.J. Reynen W.A.P. An improved synthesis of salicylaldehydes. no influence of steric hindrance. Synthesis 1976 1976 9 624 625 10.1055/s‑1976‑24147
    [Google Scholar]
  29. Zhang Y.Y. Li H. Jiang X. Subba Reddy C.V. Liang H. Zhang Y. Cao R. Sun R.W-Y. Tse M.K. Qiu L. Nickel‐catalyzed decarbonylative cycloaddition of benzofuran‐2,3‐diones with alkynes to flavones. Adv. Synth. Catal. 2022 364 3 525 530 10.1002/adsc.202101241
    [Google Scholar]
  30. Smith L.I. Holmes R.R. Action of Pyridine and Iodine upon Two o-Phenolic-1,4-diketones: 4,6,7-Trimethylcoumarandione and its 5-Hydroxy Derivative. J. Am. Chem. Soc. 1951 73 9 4294 4297 10.1021/ja01153a078
    [Google Scholar]
  31. Hevener K.E. Zhao W. Ball D.M. Babaoglu K. Qi J. White S.W. Lee R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model. 2009 49 2 444 460 10.1021/ci800293n 19434845
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230343474241009112335
Loading
/content/journals/aiaamc/10.2174/0118715230343474241009112335
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test