Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Background

Indomethacin (IND), classified as class 2 in the Biopharmaceutical Classification System (BCS), has emerged as an anti-inflammatory agent with low solubility and high permeability. Widely used in the treatment of various diseases, such as rheumatoid arthritis and ankylosing spondylitis, this drug is well-known for its adverse effects, particularly in the stomach, and a short biological half-life, which is around 1.5-2 hours.

Objectives

The aim of this study was to overcome the challenges of low solubility, short half-life, and serious side effects occurring with the use of IND-loaded formulations of Solid Lipid Nanoparticles (SLNs) and Polymeric Nanoparticles (PNPs).

Methods

For PNPs, emulsification/solvent evoporation method was employed, and for SLNs, the hot homogenizaton method was applied. Eudragit® RLPO (RLPO) and Eudragit® RSPO (RSPO) were used as polymers for PNP and Dynasan®116 (DYN) was used as the solid lipid for SLN. Prepared formulations were characterized for Particle Size (PS), Polydispersity Index (PDI), Zeta Potential (ZP), Encapsulation Efficiency (%EE), and drug-excipient compatibility using DSC, FT-IR, and 1H NMR; cumulative drug release rates were assessed using HPLC and cytotoxicities were examined by the MTT assay.

Results

Both PNP and SLN formulations’ zeta potential, particle size, and PDI results indicated the formulations to have good stability. Encapsulation efficiency values were obtained as desired. Drug-excipient compatibility was proved using DSC, FT-IR, and 1H NMR. dissolution results have proven both formulations to have longer release than pure indomethacin. In the MTT analysis of indomethacin application for 24 and 48 hours, a linear correlation was observed between drug concentration and cell viability, and it was determined that the PNP formulation exhibited fewer toxic effects among the formulations. This has proven the PNP nanocarrier as safer for normal cells.

Conclusion

IND-loaded PNP and SLN formulations have been successfully prepared in this work and they have achieved drug release in the intestine and prolonged the release duration.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230348349241126053733
2024-12-27
2025-07-15
Loading full text...

Full text loading...

References

  1. ValentovicM. Indomethacin.Huntington200710.1016/B978‑008055232‑3.61929‑4
    [Google Scholar]
  2. HellebergL. Clinical Pharmacokinetics of indomethacin.Clin. Pharmacokinet.19816424525810.2165/00003088‑198106040‑000017249487
    [Google Scholar]
  3. YehK.C. Pharmacokinetic overview of indomethacin and sustained-release indomethacin.Am. J. Med.198579431210.1016/0002‑9343(85)90510‑83904441
    [Google Scholar]
  4. SobczyńskiJ. BieleckaG. Nanostructure lipid carriers.Nanoparticles in Pharmacotherapy.Elsevier201927530910.1016/B978‑0‑12‑816504‑1.00006‑5
    [Google Scholar]
  5. WilczewskaA.Z. NiemirowiczK. MarkiewiczK.H. CarH. Nanoparticles as drug delivery systems.Pharmacol. Rep.20126451020103710.1016/S1734‑1140(12)70901‑523238461
    [Google Scholar]
  6. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  7. CastelliF. PugliaC. SarpietroM.G. RizzaL. BoninaF. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry.Int. J. Pharm.20053041-223123810.1016/j.ijpharm.2005.08.01116188405
    [Google Scholar]
  8. HippalgaonkarK. AdelliG.R. HippalgaonkarK. RepkaM.A. MajumdarS. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: Development, characterization, and in vitro evaluation.J. Ocul. Pharmacol. Ther.201329221622810.1089/jop.2012.006923421502
    [Google Scholar]
  9. ÖztürkA.A. BanderasL.M. OteroM.D.C. YenilmezE. ŞenelB. YazanY. Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: Preparation, in vitro characterization and cyctotoxity.Trop. J. Pharm. Res.201918111110.4314/tjpr.v18i1.1
    [Google Scholar]
  10. Al-HeibshyF.N.S. BaşaranE. ArslanR. ÖztürkN. ErolK. DemirelM. Physicochemical characterization and pharmacokinetic evaluation of rosuvastatin calcium incorporated solid lipid nanoparticles.Int. J. Pharm.202057811910610.1016/j.ijpharm.2020.11910632014599
    [Google Scholar]
  11. DandićA. RajkovačaK. JozanovićM. PuklešI. SzéchenyiA. BudetićM. SamardžićM. Review of characteristics and analytical methods for determination of indomethacin.Rev. Anal. Chem.2022411346210.1515/revac‑2022‑0032
    [Google Scholar]
  12. ÖztürkA.A. YenilmezE. ÖzardaM.G. Clarithromycin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for oral administration: Effect of polymer molecularweight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects.Polymers20191110163210.3390/polym1110163231600969
    [Google Scholar]
  13. ÖztürkA.A. YenilmezE. YazanY. Dexketoprofen trometamol-loaded eudragit® rl 100 nanoparticle formulation, characterization and release kinetics.ACTA Pharm. Sci.2019571698410.23893/1307‑2080.APS.05705
    [Google Scholar]
  14. CetinM. AtilaA. SahinS. VuralI. Preparation and characterization of metformin hydrochloride loaded-Eudragit ® RSPO and Eudragit ® RSPO/PLGA nanoparticles.Pharm. Dev. Technol.201318357057610.3109/10837450.2011.60478321864098
    [Google Scholar]
  15. GandhiA. JanaS. SenK.K. In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery.Int. J. Biol. Macromol.20146747848210.1016/j.ijbiomac.2014.04.01924755259
    [Google Scholar]
  16. ÖztürkA.A. GuvenU. YenilmezE. ŞenelK.B. Effects of different derivatives of eudragit polymer on entrapment efficiency, in vitro dissolution, release kinetics and cell viability results on extended release.Latin American J. Pharm.201837101981
    [Google Scholar]
  17. LiversidgeM.E.M. LiversidgeG.G. Drug nanoparticles: Formulating poorly water-soluble compounds.Toxicol. Pathol.2008361434810.1177/019262330731094618337220
    [Google Scholar]
  18. SurS RathoreA DaveV ReddyKR ChouhanRS SadhuV Recent developments in functionalized polymer nanoparticles for efficient drug delivery systemNano-Structures & Nano-Objects20192010039710.1016/j.nanoso.2019.100397
    [Google Scholar]
  19. KırımlıoğluG.Y. OzerS. BuyukkorogluG. YazanY. Formulation and in vitro evaluation of moxifloxacin hydrochloride-loaded polymeric nanoparticles for ocular application.Latin American J. Pharm.201837918501862
    [Google Scholar]
  20. BüyükköroğluG. ŞenelB. BaşaranE. YenilmezE. YazanY. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer.Eur. J. Pharm. Biopharm.201610917418310.1016/j.ejpb.2016.10.01727793757
    [Google Scholar]
  21. DemirelM. YazanY. Katı lipit nanopartiküller (SLN).FABAD J Pharm Sci.200025167179
    [Google Scholar]
  22. BaşaranE. Ocular administration of dirithromycin-loaded polymeric nanoparticles: In vitro evaluation.Turk. J. Pharm. Sci.201714219120032454613
    [Google Scholar]
  23. MenczelJ.D. PrimeR.B. Thermal analysis of polymers.John Wiley20091819
    [Google Scholar]
  24. YenilmezE. Release characteristics of vitamin e incorporated chitosan microspheres and in vitro-in vivo evaluation for topical application.Carbohydrate Polymers201184280711
    [Google Scholar]
  25. ÖztürkA.A. YenilmezE. ArslanR. ŞenelB. YazanY. Dexketoprofen trometamol-loaded kollidon ® SR and Eudragit ® RS 100 polymeric nanoparticles: Formulation and in vitro-in vivo evaluation.Am. J. Pharm.201736115365
    [Google Scholar]
  26. DupeyrónD. KawakamiM. FerreiraA.M. Caceres RieumontJ. AzevedoR. CarvalhoT.J.C. Design of indomethacin-loaded nanoparticles: Effect of polymer matrix and surfactant.Int. J. Nanomedicine201383467347710.2147/IJN.S4762124092971
    [Google Scholar]
  27. YurtdaşG. DemirelM. GençL. Inclusion complexes of fluconazole with β-cyclodextrin: Physicochemical characterization and in vitro evaluation of its formulation.J. Inclu. Phen. Macro. Chem.20117042935
    [Google Scholar]
  28. BhartiS.K. RoyR. Quantitative 1H NMR spectroscopy.Trends Analyt. Chem.20123552610.1016/j.trac.2012.02.007
    [Google Scholar]
  29. ÖztürkA.A. Yeni̇lmezE. ArslanR. ŞenelB. YazanY. Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation.J. Res. Pharm.202024111810.35333/jrp.2020.114
    [Google Scholar]
  30. El-BannaS.T. El-fekyG.S. El-bannaS.T. Preparation, in vitro and in vivo evaluation of oral indomethacin-b-cyclodextrin loaded chitosan nanoparticles.Int. J. Pharm. Pharm. Sci.201354638645
    [Google Scholar]
  31. ChimeS.A. AttamaA.A. OnunkwoG.C. Sustained release indomethacin-loaded solid lipid microparticles based on solidified reverse micellar solution (SRMS): In vitro and in vivo evaluation.J. Drug Deliv. Sci. Technol.201222648549210.1016/S1773‑2247(12)50085‑7
    [Google Scholar]
  32. CarvalhoA. LopesI. GonçalvesO. BárbaraE. OliveiraM.E.C.D.R. OliveiraC.D.R. LúcioM. Polymeric versus lipid nanoparticles: Comparative study of nanoparticulate systems as indomethacin carriers.J. Appl. Solut. Chem. Model.2015429510910.6000/1929‑5030.2015.04.02.2
    [Google Scholar]
  33. VermaP.R.P. BanuV. Sustained release of theophylline from eudragit RLPO and RSPO tablets.Drug Dev. Ind. Pharm.199622121243124710.3109/03639049609063244
    [Google Scholar]
  34. VenkateswarluV. ManjunathK. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles.J. Control. Release200495362763810.1016/j.jconrel.2004.01.00515023472
    [Google Scholar]
  35. SahM.L. SainiT.R. Formulation development and release studies of indomethacin suppositories.Indian J. Pharm. Sci.200870449850110.4103/0250‑474X.4460220046779
    [Google Scholar]
  36. International organization for standardization. Biological evaluation of medical devices - Tests for in vitro cytotoxicitySwitzerland2009109935Available from: https://nhiso.com/wp-content/uploads/2018/05/ISO-10993-5-2009.pdf
    [Google Scholar]
  37. YoshitomiT. ShaS. VongL.B. ChonpathompikunlertP. MatsuiH. NagasakiY. Indomethacin-loaded redox nanoparticles improve oral bioavailability of indomethacin and suppress its small intestinal inflammation.Ther. Deliv.201451293810.4155/tde.13.13324341815
    [Google Scholar]
  38. RiasatR. GuangjunN. Effects of nanoparticles on gastrointestinal disorders and therapy.J. Clin. Toxicol.20166431310.4172/2161‑0495.1000313
    [Google Scholar]
  39. KangY. WuJ. YinG. HuangZ. YaoY. LiaoX. ChenA. PuX. LiaoL. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.Eur. J. Pharm. Biopharm.2008701859710.1016/j.ejpb.2008.03.01118495445
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230348349241126053733
Loading
/content/journals/aiaamc/10.2174/0118715230348349241126053733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test