Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Background

The development of analgesic and anti-inflammatory drugs plays a crucial role in modern medicine, aiming to alleviate pain and reduce inflammation in patients. Opioids and nonsteroidal anti-inflammatory drugs are groups of drugs conventionally used to treat pain and inflammation, but a wide range of adverse effects and ineffectiveness in some pathological conditions leads us to search for new drugs with analgesic and anti-inflammatory properties.

Objectives

In this regard, the authors intend to investigate the ((2s,6s)-6-ethyl-tetrahydro-2h-pyran-2-yl) methanol compound (LS20) on pain and acute inflammation.

Methods

Male Swiss mice were evaluated using acetic acid-induced abdominal writhing, formalin, and tail-flick as models of nociceptive evaluation and edema paw, air pouch and cell culture as models of inflammatory evaluation besides the rotarod test for assessment of motor impairment.

Results

The compound showed an effect on the acetic acid-induced abdominal writhing, formalin and tail-flick tests. Studying the mechanism of action, reversion of the antinociceptive effect of the compound was observed from previous intraperitoneal administration of selective and non-selective opioid antagonists on the tail flick test. In addition, the compound induced an antiedematogenic effect and reduced leukocyte migration and the production of pro-inflammatory cytokines in the air pouch model. LS20 was able to maintain cell viability, in addition to reducing cell production of TNF-α and IL-6.

Conclusion

In summary, the LS20 compound presented an antinociceptive effect, demonstrating the participation of the opioid system and an anti-inflammatory effect related to the inhibition of pro-inflammatory cytokine production. The compound also demonstrated safety at the cellular level.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230282982240202052127
2024-06-01
2025-01-24
Loading full text...

Full text loading...

References

  1. RajaS.N. CarrD.B. CohenM. FinnerupN.B. FlorH. GibsonS. The Revised IASP definition of pain: Concepts, challenges, and compromises.Pain202016191976198210.1097/j.pain.0000000000001939 32694387
    [Google Scholar]
  2. WangL.H. DingW.Q. SunY.G. Spinal ascending pathways for somatosensory information processing.Trends Neurosci.202245859460710.1016/j.tins.2022.05.005 35701247
    [Google Scholar]
  3. ToddA.J. Neuronal circuitry for pain processing in the dorsal horn.Nat. Rev. Neurosci.2010111282383610.1038/nrn2947 21068766
    [Google Scholar]
  4. KheraT. RangasamyV. Cognition and pain: A Review.Front. Psychol.20211267396210.3389/fpsyg.2021.673962
    [Google Scholar]
  5. KopfA. PatelN.B. Guide to Pain Management in Low-Resource Settings. 1.International Association for the Study of Pain2010
    [Google Scholar]
  6. BacchiS. PalumboP. SpontaA. CoppolinoM.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: A review.Antiinflamm. Antiallergy Agents Med. Chem.2012111526410.2174/187152312803476255 22934743
    [Google Scholar]
  7. McMahonA.D. Observation and experiment with the efficacy of drugs: A warning example from a cohort of nonsteroidal anti-inflammatory and ulcer-healing drug users.Am. J. Epidemiol.2001154655756210.1093/aje/154.6.557 11549561
    [Google Scholar]
  8. ViscusiE.R. PappagalloM. A review of opioids for in-hospital pain management.Hosp. Pract.201240114915910.3810/hp.2012.02.955
    [Google Scholar]
  9. KeïtaH. GeachanN. DahmaniS. CoudercE. ArmandC. QuazzaM. MantzJ. DesmontsJ.M. Comparison between patient-controlled analgesia and subcutaneous morphine in elderly patients after total hip replacement.Br. J. Anaesth.2003901535710.1093/bja/aeg019 12488379
    [Google Scholar]
  10. KongaraK. Pharmacogenetics of opioid analgesics in dogs.J. Vet. Pharmacol. Ther.201841219520410.1111/jvp.12452 28892154
    [Google Scholar]
  11. TrescotA.M. DattaS. LeeM. HansenH. Opioid pharmacology.Pain Physician20082s11S133S15310.36076/ppj.2008/11/S133 18443637
    [Google Scholar]
  12. EversA.S. MazeM. KharaschE.D. Anesthetic Pharmacology.Cambridge University Press2011
    [Google Scholar]
  13. MercadanteS. ArcuriE. SantoniA. Opioid-induced tolerance and hyperalgesia.CNS Drugs2019331094395510.1007/s40263‑019‑00660‑0 31578704
    [Google Scholar]
  14. GhoshA.K. AndersonD.D. Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors.Future Med. Chem.2011391181119710.4155/fmc.11.68 21806380
    [Google Scholar]
  15. FuwaH. Contemporary strategies for the synthesis of tetrahydropyran derivatives: Application to total synthesis of neopeltolide, a marine macrolide natural product.Mar. Drugs201614465
    [Google Scholar]
  16. MaleY.T. SutapaI.W. KapelleI.B. LopulalanM. QSAR Modeling and design of a new model of anti-HIV drug 1-aryl-tetrahydroisoquinoline derived using the PM3 semiempirical method.Rasayan J. Chem.2022151359
    [Google Scholar]
  17. MaleY.T. SutapaI.W. MaahuryM.F. JamalM. MalleD. Computational study potency of eugenol and safrole derivatives as active sunscreen material.20221713948
    [Google Scholar]
  18. WalshC.T. TangY. Recent advances in enzymatic complexity generation: Cyclization reactions.Biochemistry201857223087310410.1021/acs.biochem.7b01161 29236467
    [Google Scholar]
  19. YeY. FuH. HysterT.K. Activation modes in biocatalytic radical cyclization reactions.J. Ind. Microbiol. Biotechnol.2021483-4kuab02110.1093/jimb/kuab021 33674826
    [Google Scholar]
  20. NairV.N. TambarU.K. Catalytic rearrangements of onium ylides in aromatic systems.Org. Biomol. Chem.202220173427343910.1039/D2OB00218C 35388871
    [Google Scholar]
  21. AherU.P. SrivastavaD. SinghG.P. S, J.B. Synthetic strategies toward 1,3-oxathiolane nucleoside analogues.Beilstein J. Org. Chem.2021172680271510.3762/bjoc.17.182 34804240
    [Google Scholar]
  22. JinM. TangC. LiY. YangS. YangY.T. PengL. Enantioselective access to tricyclic tetrahydropyran derivatives by a remote hydrogen bonding mediated intramolecular IEDHDA reaction.Nat. Commun.2021121718810.1038/s41467‑021‑27521‑z
    [Google Scholar]
  23. MarinhoB.G. MirandaL.S.M. GomesN.M. MatheusM.E. LeitãoS.G. VasconcellosM.L.A.A. FernandesP.D. Antinociceptive action of (±)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice.Eur. J. Pharmacol.20065501-3475310.1016/j.ejphar.2006.06.067 17030031
    [Google Scholar]
  24. CapimS.L. CarneiroP.H.P. CastroP.C. BarrosM.R.M. MarinhoB.G. VasconcellosM.L.A.A. Design, Prins-cyclization reaction promoting diastereoselective synthesis of 10 new tetrahydropyran derivatives and in vivo antinociceptive evaluations.Eur. J. Med. Chem.20125811110.1016/j.ejmech.2012.09.046 23085140
    [Google Scholar]
  25. MarinhoB.G. MirandaL.S.M. da S Costa, J.; Leitão, S.G.; Vasconcellos, M.L.A.A.; Pereira, V.L.P.; Fernandes, P.D. The antinociceptive properties of the novel compound (±)-trans-4-hydroxy-6-propyl-1-oxocyclohexan-2-one in acute pain in mice.Behav. Pharmacol.2013241101910.1097/FBP.0b013e32835cf420 23263483
    [Google Scholar]
  26. Rosas-BallinaM. OlofssonP.S. OchaniM. Valdés-FerrerS.I. LevineY.A. ReardonC. TuscheM.W. PavlovV.A. AnderssonU. ChavanS. MakT.W. TraceyK.J. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit.Science201133460529810110.1126/science.1209985 21921156
    [Google Scholar]
  27. HessS. PadoaniC. ScorteganhaL.C. HolzmannI. MalheirosA. YunesR.A. Delle MonacheF. de SouzaM.M. Assessment of mechanisms involved in antinociception caused by myrsinoic acid B.Biol. Pharm. Bull.201033220921510.1248/bpb.33.209 20118542
    [Google Scholar]
  28. GonçalvesG.M. CapimS.L. VasconcellosM.L.A.A. MarinhoB.G. Antihyperalgesic effect of [(±)-(2,4,6-cis)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H-pyran-2-yl]methanol: participation of the NO/cGMP/KATP pathway and κ-opioid receptor.Behav. Pharmacol.201627650651510.1097/FBP.0000000000000238 27035064
    [Google Scholar]
  29. KosterR. AndersonM. De BeerE.J. Acetic acid for analgesic screening.Fed. Proc.195918412417
    [Google Scholar]
  30. HunskaarS. HoleK. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain.Pain198730110311410.1016/0304‑3959(87)90088‑1 3614974
    [Google Scholar]
  31. Ben-BassatJ. PeretzE. SulmanF.G. Analgesimetry and ranking of analgesic drugs by the receptacle method.Arch. Int. Pharmacodyn. Ther.1959122434447 13798682
    [Google Scholar]
  32. DunhamN.W. MiyaT.S. A note on a simple apparatus for detecting neurological deficit in rats and mice.J. Am. Pharm. Assoc.195746320820910.1002/jps.3030460322 13502156
    [Google Scholar]
  33. FerreiraS.H. Van ArmanC.G. Oedema and increased vascular permeability.Handbook of experimental pharmacology. VaneJ.R. Van ArmanC.G. Springer-VerlagNew York19797591
    [Google Scholar]
  34. VigilS.V.G. de LizR. MedeirosY.S. FrödeT.S. Efficacy of tacrolimus in inhibiting inflammation caused by carrageenan in a murine model of air pouch.Transpl. Immunol.2008191252910.1016/j.trim.2008.01.003 18346634
    [Google Scholar]
  35. RamanaK.V. TammaliR. ReddyA.B.M. BhatnagarA. SrivastavaS.K. Aldose reductase-regulated tumor necrosis factor-α production is essential for high glucose-induced vascular smooth muscle cell growth.Endocrinology200714894371438410.1210/en.2007‑0512 17584970
    [Google Scholar]
  36. GreenL.C. WagnerD.A. GlogowskiJ. SkipperP.L. WishnokJ.S. TannenbaumS.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.Anal. Biochem.1982126113113810.1016/0003‑2697(82)90118‑X 7181105
    [Google Scholar]
  37. dos SantosG. GomesG. GonçalvesG. de SousaL. SantiagoG. de CarvalhoM. MarinhoB. Essential oil from Myrcia ovata: chemical composition, antinociceptive and anti-inflammatory properties in mice.Planta Med.201480171588159610.1055/s‑0034‑1383120 25295670
    [Google Scholar]
  38. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  39. HuangZ. LiH. ZhangQ. TanX. LuF. LiuH. LiS. Characterization of preclinical in vitro and in vivo pharmacokinetics properties for KBP-7018, a new tyrosine kinase inhibitor candidate for treatment of idiopathic pulmonary fibrosis.Drug Des. Devel. Ther.20159943194328 26273193
    [Google Scholar]
  40. MohamadA.S. AkhtarM.N. ZakariaZ.A. PerimalE.K. KhalidS. MohdP.A. KhalidM.H. IsrafD.A. LajisN.H. SulaimanM.R. Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice.Eur. J. Pharmacol.20106471-310310910.1016/j.ejphar.2010.08.030 20826146
    [Google Scholar]
  41. Shamsi MeymandiM. KeyhanfarF. Assessment of the antinociceptive effects of pregabalin alone or in combination with morphine during acetic acid-induced writhing in mice.Pharmacol. Biochem. Behav.201311024925410.1016/j.pbb.2013.07.021 23921185
    [Google Scholar]
  42. ParveenZ. DengY. SaeedM.K. DaiR. AhamadW. YuY.H. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside.Yakugaku Zasshi200712781275127910.1248/yakushi.127.1275 17666881
    [Google Scholar]
  43. AlvarengaF.Q. MotaB.C.F. LeiteM.N. FonsecaJ.M.S. OliveiraD.A. de Andrade RoyoV. e SilvaM.L.A. EsperandimV. BorgesA. LaurentizR.S. In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine.J. Ethnopharmacol.2013150128028410.1016/j.jep.2013.08.044 24021301
    [Google Scholar]
  44. VerriW.A. CunhaT.M. ParadaC.A. PooleS. CunhaF.Q. FerreiraS.H. Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development?Pharmacol. Ther.2006112111613810.1016/j.pharmthera.2006.04.001 16730375
    [Google Scholar]
  45. NessT.J. GebhartG.F. Visceral pain: A review of experimental studies.Pain199041216723410.1016/0304‑3959(90)90021‑5 2195438
    [Google Scholar]
  46. McNamaraC.R. Mandel-BrehmJ. BautistaD.M. SiemensJ. DeranianK.L. ZhaoM. HaywardN.J. ChongJ.A. JuliusD. MoranM.M. FangerC.M. TRPA1 mediates formalin-induced pain.Proc. Natl. Acad. Sci.200710433135251353010.1073/pnas.0705924104 17686976
    [Google Scholar]
  47. ParadaC.A. TambeliC.H. CunhaF.Q. FerreiraS.H. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception.Neuroscience2001102493794410.1016/S0306‑4522(00)00523‑6 11182255
    [Google Scholar]
  48. FerreiraA.A. AmaralF.A. DuarteI.D.G. OliveiraP.M. AlvesR.B. SilveiraD. AzevedoA.O. RaslanD.S. CastroM.S.A. Antinociceptive effect from Ipomoea cairica extract.J. Ethnopharmacol.20061051-214815310.1016/j.jep.2005.10.012 16307856
    [Google Scholar]
  49. TornosM.P. SáenzM.T. GarcíaM.D. FernándezM.A. Antinociceptive effects of the tubercles of Anredera leptostachys.J. Ethnopharmacol.1999681-322923410.1016/S0378‑8741(99)00098‑7 10624882
    [Google Scholar]
  50. MilanoJ. OliveiraS.M. RossatoM.F. SauzemP.D. MachadoP. BeckP. ZanattaN. MartinsM.A.P. MelloC.F. RubinM.A. FerreiraJ. BonacorsoH.G. Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice.Eur. J. Pharmacol.20085811-2869610.1016/j.ejphar.2007.11.042 18190906
    [Google Scholar]
  51. FischerL.G. SantosD. SerafinC. MalheirosA. MonacheF.D. MonacheG.D. FilhoV.C. de SouzaM.M. Further antinociceptive properties of extracts and phenolic compounds from Plinia glomerata (Myrtaceae) leaves.Biol. Pharm. Bull.200831223523910.1248/bpb.31.235 18239279
    [Google Scholar]
  52. CamarataP.J. YakshT.L. Characterization of the spinal adrenergic receptors mediating the spinal effects produced by the microinjection of morphine into the periaqueductal gray.Brain Res.1985336113314210.1016/0006‑8993(85)90424‑X
    [Google Scholar]
  53. Le BarsD. GozariuM. CaddenS.W. Animal models of nociception.Pharmacol. Rev.2001534597652 11734620
    [Google Scholar]
  54. InturrisiC.E. Clinical pharmacology of opioids for pain.Clin. J. Pain2002184S3S1310.1097/00002508‑200207001‑00002 12479250
    [Google Scholar]
  55. MelzackR. WallP.D. Pain mechanisms: A new theory.Science1965150369997197910.1126/science.150.3699.971 5320816
    [Google Scholar]
  56. SteinC. Opioid receptors.Annu. Rev. Med.201667143345110.1146/annurev‑med‑062613‑093100 26332001
    [Google Scholar]
  57. FerreiraS.H. A classification of peripheral analgesics based upon their mode of action.Migraine: A Spectrum of Ideas. SandlerM. CollinsG.M. OxfordOxford University Press199010.1093/acprof:oso/9780192618108.003.0006
    [Google Scholar]
  58. AmaranteL.H. DuarteI.D.G. The κ-opioid agonist (±)-bremazocine elicits peripheral antinociception by activation of the l-arginine/nitric oxide/cyclic GMP pathway.Eur. J. Pharmacol.20024541192310.1016/S0014‑2999(02)02275‑6 12409000
    [Google Scholar]
  59. NaserP.V. KunerR. Molecular, cellular and circuit basis of cholinergic modulation of pain.Neuroscience201838713514810.1016/j.neuroscience.2017.08.049 28890048
    [Google Scholar]
  60. BektasN. NemutluD. CamM. OkcayY. EkenH. ArslanR. Review: The nicotinic modulation of pain.Pak. J. Pharm. Sci.2020331229239 32122853
    [Google Scholar]
  61. CesselinF. BourgoinS. ArtaudF. GozlanH. HamonM. [The spinal enkephalinergic and serotoninergic systems in the control of transmission of nociceptive messages].J. Pharmacol.198516119137 2993751
    [Google Scholar]
  62. SommerC. Serotonin in pain and analgesia: Actions in the periphery.Mol. Neurobiol.200430211712610.1385/MN:30:2:117 15475622
    [Google Scholar]
  63. ShiotsukiH. YoshimiK. ShimoY. FunayamaM. TakamatsuY. IkedaK. A rotarod test for evaluation of motor skill learning.J. Neurosci. Methods20101892180185
    [Google Scholar]
  64. ThomazziS.M. SilvaC.B. SilveiraD.C.R. VasconcellosC.L.C. LiraA.F. CambuiE.V.F. EstevamC.S. AntoniolliA.R. Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira).J. Ethnopharmacol.2010127245145610.1016/j.jep.2009.10.014 19837149
    [Google Scholar]
  65. ZhuZ.Z. MaK.J. RanX. ZhangH. ZhengC.J. HanT. ZhangQ.Y. QinL.P. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum.J. Ethnopharmacol.201113331126113110.1016/j.jep.2010.11.042 21126565
    [Google Scholar]
  66. DawsonJ. SedgwickA.D. EdwardsJ.C. LeesP. A comparative study of the cellular, exudative and histological responses to carrageenan, dextran and zymosan in the mouse.Int. J. Tissue React.1991134171185 1726538
    [Google Scholar]
  67. DuarteD.B. VaskoM.R. FehrenbacherJ.C. Models of inflammation: Carrageenan air pouch.Curr. Protocols Pharmacol2012 Chapter 5, 6. 22383000
    [Google Scholar]
  68. Colville-NashP. LawrenceT. Air-pouch models of inflammation and modifications for the study of granuloma-mediated cartilage degradation.Methods Mol. Biol.200322518119010.1385/1‑59259‑374‑7:181 12769487
    [Google Scholar]
  69. JainM. ParmarH.S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation.Inflamm. Res.201160548349110.1007/s00011‑010‑0295‑0 21181230
    [Google Scholar]
  70. WilloughbyD.A. SedgwickA.D. GiroudJ.P. Al-DuaijA.Y. de BritoF. The use of the air pouch to study experimental synovitis and cartilage breakdown.Biomed. Pharmacother.19864024549 3530345
    [Google Scholar]
  71. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature07201 18650913
    [Google Scholar]
  72. HalleguaD.S. WeismanM.H. Potential therapeutic uses of interleukin 1 receptor antagonists in human diseases.Ann. Rheum. Dis.2002611196096710.1136/ard.61.11.960 12379516
    [Google Scholar]
  73. AbdulkhaleqL.A. AssiM.A. AbdullahR. Zamri-SaadM. Taufiq-YapY.H. HezmeeM.N.M. The crucial roles of inflammatory mediators in inflammation: A review.Vet. World201811562763510.14202/vetworld.2018.627‑635 29915501
    [Google Scholar]
  74. ThuraiaiyahJ. Erritzøe-JervildM. Al-KhazaliH.M. SchytzH.W. YounisS. The role of cytokines in migraine: A systematic review.Cephalalgia202242141565158810.1177/03331024221118924 35962530
    [Google Scholar]
  75. LazarovT. Juarez-CarreñoS. CoxN. GeissmannF. Physiology and diseases of tissue-resident macrophages.Nature2023618796669870710.1038/s41586‑023‑06002‑x 37344646
    [Google Scholar]
  76. BansalS. BalaM. SutharS.K. ChoudharyS. BhattacharyaS. BhardwajV. SinglaS. JosephA. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity.Eur. J. Med. Chem.2014808016717410.1016/j.ejmech.2014.04.045 24780593
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230282982240202052127
Loading
/content/journals/aiaamc/10.2174/0118715230282982240202052127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test