Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Background

Seeds of plant are traditionally used by the healers of “India” for the treatment of piles.

Objectives

The primary objective of the study was to assess the anti-hemorrhoidal potential of the ethanolic seed extract of .

Methods

After the soxhlet extraction method, the seed extract from was first submitted to phytochemical standardization and then GC-MS analysis. Rats were given Croton oil and Jatropha oil to develop hemorrhoids, and seed extract (ESA) was administered orally for 5 days and 3 days, respectively, at doses of 1000 and 500 mg/kg. The Rectoanal coefficient (RAC) was calculated as an inflammatory marker. The hemorrhoidal tissues were also subjected to cytokine profiling, biochemical estimation and histopathology.

Results

ESA demonstrated the presence of flavonoids, saponins, phytosterols, phenols, and tannins. GCMS analysis elucidated the presence of hexadecanoic acid 2 hydroxy -1,3 propane diyl ester,9 Octadecanoic acid ethyl ester, Cyclohexane 1,4 di methyl cis, Farnesol isomer,1, E-11, Z-13 octa decatriene, Stigmasterol, N-(5 ethyl -1,3,4-thiadiazol-yl) benzamide, N, N Dinitro 1,3,5,7 tetraza bicyclo 93,3,1) as major phytoconstituents. The results depicted more potent anti-hemorrhoidal activity of ESA at 1000 mg/kg, p.o., which was evident through a decrease in RAC. A significant decline in the levels of IL-1β, IL-6, and TNF-α expression was observed, along with the restoration of altered antioxidants and enzymes. Histopathological analysis confirmed the tissue recovery as it revealed minimal inflammation and decreased dilated blood vessels in treated animals.

Conclusion

Based on the results it can be concluded that seeds of showed significant anti-hemorrhoid agents which may be attributed to their anti-inflammatory and anti-oxidant potential due to the presence of certain phytoconstituents in it. The study also supports the traditional use of seeds of for the first time in the treatment of hemorrhoids.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230285370240131111539
2024-06-01
2025-01-24
Loading full text...

Full text loading...

References

  1. LeClereF.B. MossA.J. EverhartJ.E. RothH.P. Prevalence of major digestive disorders and bowel symptoms, 1989.Adv. Data1992212212115 10119851
    [Google Scholar]
  2. JebakumarA.Z. ZaharaniM.A. DPPH scavenging and reducing power analysis of aqueous extract of dolichandrone falcata stem bark.Int. J. Curr. Pharm. Res.20144129131
    [Google Scholar]
  3. FaujdarS. SatiB. SharmaS. PathakA.K. PaliwalS.K. Phytochemical evaluation and anti-hemorrhoidal activity of bark of Acacia ferruginea DC.J. Tradit. Complement. Med.201992858910.1016/j.jtcme.2018.02.003 30963042
    [Google Scholar]
  4. JohansonJ.F. SonnenbergA. The prevalence of hemorrhoids and chronic constipation.Gastroenterology199098238038610.1016/0016‑5085(90)90828‑O 2295392
    [Google Scholar]
  5. PorwalA. KunduG. BhagwatG. ButtiR. Polyherbal formulation Anoac H suppresses the expression of RANTES and VEGF for the management of bleeding hemorrhoids and fistula.Mol. Med. Rep.202124473610.3892/mmr.2021.12376 34414451
    [Google Scholar]
  6. LohsiriwatV. Hemorrhoids: From basic pathophysiology to clinical management.World J. Gastroenterol.201218172009201710.3748/wjg.v18.i17.2009 22563187
    [Google Scholar]
  7. EvansP. HalliwellB. Micronutrients: Oxidant/antioxidant status.Br. J. Nutr.200185S2S67S7410.1079/BJN2000296 11509092
    [Google Scholar]
  8. AzeemuddinM. ViswanathaG.L. RafiqM. ThippeswamyA.H. BaigM.R. KavyaK.J. PatkiP.S. ShyamR. An improved experimental model of hemorrhoids in rats: Evaluation of antihemorrhoidal activity of an herbal formulation.ISRN Pharmacol.201420141710.1155/2014/530931 25006493
    [Google Scholar]
  9. ForniC. FacchianoF. BartoliM. PierettiS. FacchianoA. D’ArcangeloD. NorelliS. ValleG. NisiniR. BeninatiS. TabolacciC. JadejaR.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases.BioMed Res. Int.2019201911610.1155/2019/8748253 31080832
    [Google Scholar]
  10. OppongabM. B. BanaheneaP. O. FangS. M. QiuF. Ethnopharmacology, phytochemistry, and pharmacology of sterculia lychnophora hance (Pangdahai).Chin. J. Nat. Med.201816100728
    [Google Scholar]
  11. PanchalP.M. Pharmacognostical and phytopharmacological investigation of peltophorum pterocarpum (DC) Backer ex.Heyne. Int. J. Ayurv. Med.20123419621710.47552/ijam.v3i4.183
    [Google Scholar]
  12. DhaswadikarS.R. ParmarK.M. KambleS.K. Anti-hemorrhoidal potential of standardized leaf extract of dolichandrone falcata. Phytomed.Plus.20222110017210.1016/j.phyplu.2021.100172
    [Google Scholar]
  13. ZaruwaM.Z. UbanaM.A. MuhammadB.Y. BamideleT.O. EleojoE. Studies on the effect of tephrosia linearis (Wild) Pers. Aqueous extract on jatropha curcas oil-induced hemorrhoids in rats.Savanna2016415457
    [Google Scholar]
  14. OjhaS. JavedH. AzimullahS. Abul KhairS.B. HaqueM.E. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease.Drug Des. Devel. Ther.2015954995510 26504373
    [Google Scholar]
  15. PulliB. AliM. ForghaniR. SchobS. HsiehK.L.C. WojtkiewiczG. LinnoilaJ.J. ChenJ.W. Measuring myeloperoxidase activity in biological samples.PLoS One201387e6797610.1371/journal.pone.0067976 23861842
    [Google Scholar]
  16. BirhanW. GidayM. TeklehaymanotT. The contribution of traditional healers’ clinics to public health care system in Addis Ababa, Ethiopia: A cross-sectional study.J. Ethnobiol. Ethnomed.2011713910.1186/1746‑4269‑7‑39 22132758
    [Google Scholar]
  17. SiswadiS. SaragihG.S. Phytochemical analysis of bioactive compounds in ethanolic extract of sterculia quadrifida R.BR.AIP Conf. Proc.202103009810.1063/5.0053057
    [Google Scholar]
  18. DelmondesG.D.A. Santiago LemosI.C. DiasD.D.Q. CunhaG.L.D. AraújoI.M. BarbosaR. CoutinhoH.D.M. FelipeC.F.B. Barbosa-FilhoJ.M. LimaN.T.R.D. De MenezesI.R.A. KerntopfM.R. Pharmacological applications of farnesol (C 15 H 26 O): A patent review.Expert Opin. Ther. Pat.202030322723410.1080/13543776.2020.1718653 31958255
    [Google Scholar]
  19. VeerabahuS. EthirajuluS. GunasekaranS. Kumba JanarthananU. SampathG. In vitro assessment of wound healing mechanisms of synthesized biomaterial with spider web as a novel raw material.Clean. Mater.2022410007710.1016/j.clema.2022.100077
    [Google Scholar]
  20. KaurN. ChaudharyJ. JainA. KishoreL. Stigmasterol, A comprehensive review.Int. J. Pharm. Sci. Res.20112922592265
    [Google Scholar]
  21. MishraG. SonawaneK. NehruJ. Review on biological activities of 1,3,4-thiadiazole derivatives.J. Appl. Pharmaceut. Sci.201101054449
    [Google Scholar]
  22. AbdelgadirH.A. Van StadenJ. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): A review.S. Afr. J. Bot.20138820421810.1016/j.sajb.2013.07.021
    [Google Scholar]
  23. SultanaS. MajedF. NafeesS. RashidS. AliN. HasanS.K. AliR. ShahidA. Terminalia chebula attenuates DMBA/Croton Oil-Induced oxidative stress and inflammation in Swiss albino mouse skin.Toxicol. Int.2015221212910.4103/0971‑6580.172252 26862256
    [Google Scholar]
  24. OskoueianE. OskoueianA. ShakeriM. JahromiM.F. Benefits and challenges of jatropha meal as novel biofeed for animal production.Vet. Sci.20218917910.3390/vetsci8090179 34564573
    [Google Scholar]
  25. SariaA. LundbergJ.M. Evans blue fluorescence: Quantitative and morphological evaluation of vascular permeability in animal tissues.J. Neurosci. Methods198381414910.1016/0165‑0270(83)90050‑X 6876872
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230285370240131111539
Loading
/content/journals/aiaamc/10.2174/0118715230285370240131111539
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anti-inflammatory; anti-oxidant; GCMS; histopathology; Piles; Scaphium affine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test