Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Over the years, researchers have endeavored to identify dependable and reproducible models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leukemia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infections, and maintaining tissue homeostasis. A comprehensive understanding of macrophage biology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230294413240415054610
2024-06-01
2025-01-24
Loading full text...

Full text loading...

References

  1. AuffrayC. SiewekeM.H. GeissmannF. Blood monocytes: Development, heterogeneity, and relationship with dendritic cells.Annu. Rev. Immunol.200927166969210.1146/annurev.immunol.021908.132557 19132917
    [Google Scholar]
  2. SwirskiF.K. NahrendorfM. EtzrodtM. WildgruberM. Cortez-RetamozoV. PanizziP. FigueiredoJ.L. KohlerR.H. ChudnovskiyA. WatermanP. AikawaE. MempelT.R. LibbyP. WeisslederR. PittetM.J. Identification of splenic reservoir monocytes and their deployment to inflammatory sites.Science2009325594061261610.1126/science.1175202 19644120
    [Google Scholar]
  3. SerbinaN.V. JiaT. HohlT.M. PamerE.G. Monocyte-mediated defense against microbial pathogens.Annu. Rev. Immunol.200826142145210.1146/annurev.immunol.26.021607.090326 18303997
    [Google Scholar]
  4. GordonS. Do macrophage innate immune receptors enhance atherogenesis?Dev. Cell20035566666810.1016/S1534‑5807(03)00329‑0 14602065
    [Google Scholar]
  5. GrosjeanA. VenteclefN. DalmasE. Understanding the heterogeneity and functions of metabolic tissue macrophages. In:In Seminars in cell & developmental biologyAcademic Press202111913013910.1016/j.semcdb.2021.09.002
    [Google Scholar]
  6. ZhangY. LiY. FuX. WangP. WangQ. MengW. WangT. YangJ. ChaiR. The detrimental and beneficial functions of macrophages after cochlear injury.Front. Cell Dev. Biol.2021963190410.3389/fcell.2021.631904 34458249
    [Google Scholar]
  7. WooY.D. JeongD. ChungD.H. Development and functions of alveolar macrophages.Mol. Cells202144529230010.14348/molcells.2021.0058 33972474
    [Google Scholar]
  8. BineshA. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends.Rev. Aquacult.202113155656610.1111/raq.12486
    [Google Scholar]
  9. NasrollahzadehE. RaziS. Keshavarz-FathiM. MazzoneM. RezaeiN. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site.Cancer Immunol. Immunother.20206991673169710.1007/s00262‑020‑02616‑6 32500231
    [Google Scholar]
  10. ChowA. BrownB.D. MeradM. Studying the mononuclear phagocyte system in the molecular age.Nat. Rev. Immunol.2011111178879810.1038/nri3087 22025056
    [Google Scholar]
  11. YeungT. TerebiznikM. YuL. SilviusJ. AbidiW.M. PhilipsM. LevineT. KapusA. GrinsteinS. Receptor activation alters inner surface potential during phagocytosis.Science2006313578534735110.1126/science.1129551 16857939
    [Google Scholar]
  12. FairnG.D. OgataK. BotelhoR.J. StahlP.D. AndersonR.A. De CamilliP. MeyerT. WodakS. GrinsteinS. An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis.J. Cell Biol.2009187570171410.1083/jcb.200909025 19951917
    [Google Scholar]
  13. ScottC.C. DobsonW. BotelhoR.J. Coady-OsbergN. ChavrierP. KnechtD.A. HeathC. StahlP. GrinsteinS. Phosphatidylinositol-4,5- bis phosphate hydrolysis directs actin remodeling during phagocytosis.J. Cell Biol.2005169113914910.1083/jcb.200412162 15809313
    [Google Scholar]
  14. DesjardinsM. HuberL.A. PartonR.G. GriffithsG. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus.J. Cell Biol.1994124567768810.1083/jcb.124.5.677 8120091
    [Google Scholar]
  15. FlannaganR.S. CosíoG. GrinsteinS. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies.Nat. Rev. Microbiol.20097535536610.1038/nrmicro2128 19369951
    [Google Scholar]
  16. RissoA. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity.J. Leukoc. Biol.200068678579210.1189/jlb.68.6.785 11129645
    [Google Scholar]
  17. HöggerP. DreierJ. DrosteA. BuckF. SorgC. Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine-rich family (CD163).J. Immunol.199816141883189010.4049/jimmunol.161.4.1883 9712057
    [Google Scholar]
  18. SteinM. KeshavS. HarrisN. GordonS. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation.J. Exp. Med.1992176128729210.1084/jem.176.1.287 1613462
    [Google Scholar]
  19. GengY.J. HanssonG.K. Interferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte-derived macrophages.J. Clin. Invest.19928941322133010.1172/JCI115718 1556191
    [Google Scholar]
  20. MosserD.M. HandmanE. Treatment of murine macrophages with interferon-γ inhibits their ability to bind leishmania promastigotes.J. Leukoc. Biol.199252436937610.1002/jlb.52.4.369 1402387
    [Google Scholar]
  21. CohenL. DavidB. CavaillonJ.M. Interleukin-3 enhances cytokine production by LPS-stimulated macrophages.Immunol. Lett.199128212112610.1016/0165‑2478(91)90109‑N 1885210
    [Google Scholar]
  22. DanisV.A. KuleszA.J. NelsonD.S. BrooksP.M. Cytokine regulation of human monocyte interleukin-1 (IL-1) production in vitro. Enhancement of IL-1 production by interferon (IFN) gamma, tumour necrosis factor-alpha, IL-2 and IL-1, and inhibition by IFN-alpha.Clin. Exp. Immunol.200880343544310.1111/j.1365‑2249.1990.tb03306.x 2115419
    [Google Scholar]
  23. HartP.H. WhittyG.A. PiccoliD.S. HamiltonJ.A. Synergistic activation of human monocytes by granulocyte-macrophage colony-stimulating factor and IFN-gamma. Increased TNF-alpha but not IL-1 activity.J. Immunol.1988141515161521
    [Google Scholar]
  24. LewW.O. OppenheimJ.J. MatsushimaK. Analysis of the suppression of IL-1 alpha and IL-1 beta production in human peripheral blood mononuclear adherent cells by a glucocorticoid hormone.J. Immunol.1988140618951902
    [Google Scholar]
  25. WaageA. BakkeO. Glucocorticoids suppress the production of tumour necrosis factor by lipopolysaccharide-stimulated human monocytes.Immunology1988632299302 3350575
    [Google Scholar]
  26. FouquerayB. PhilippeC. AmraniA. PerezJ. BaudL. Heat shock prevents lipopolysaccharide‐induced tumor necrosis factor‐α synthesis by rat mononuclear phagocytes.Eur. J. Immunol.199222112983298710.1002/eji.1830221133 1425922
    [Google Scholar]
  27. BrownB.N. BadylakS.F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions.Acta Biomater.2013924948495510.1016/j.actbio.2012.10.025 23099303
    [Google Scholar]
  28. ParkJ.E. BarbulA. Understanding the role of immune regulation in wound healing.Am. J. Surg.20041875S11S1610.1016/S0002‑9610(03)00296‑4 15147986
    [Google Scholar]
  29. TsuchiyaS. YamabeM. YamaguchiY. KobayashiY. KonnoT. TadaK. Establishment and characterization of a human acute monocytic leukemia cell line (THP‐1).Int. J. Cancer198026217117610.1002/ijc.2910260208 6970727
    [Google Scholar]
  30. TsuchiyaS. KobayashiY. GotoY. OkumuraH. NakaeS. KonnoT. TadaK. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester.Cancer Res.198242415301536 6949641
    [Google Scholar]
  31. QinZ. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature.Atherosclerosis2012221121110.1016/j.atherosclerosis.2011.09.003 21978918
    [Google Scholar]
  32. BrückW. PoradaP. PoserS. RieckmannP. HanefeldF. KretzschmarchH.A. LassmannH. Monocyte/macrophage differentiation in early multiple sclerosis lesions.Ann. Neurol.199538578879610.1002/ana.410380514 7486871
    [Google Scholar]
  33. BergesC. NaujokatC. TinappS. WieczorekH. HöhA. SadeghiM. OpelzG. DanielV. A cell line model for the differentiation of human dendritic cells.Biochem. Biophys. Res. Commun.2005333389690710.1016/j.bbrc.2005.05.171 15963458
    [Google Scholar]
  34. BremnerT.A. ChatterjeeD. HanZ. TsanM.F. WycheJ.H. THP-1 monocytic leukemia cells express Fas ligand constitutively and kill Fas-positive Jurkat cells.Leuk. Res.1999231086587010.1016/S0145‑2126(99)00101‑0 10573130
    [Google Scholar]
  35. AbrahamsV.M. KimY.M. StraszewskiS.L. RomeroR. MorG. Macrophages and apoptotic cell clearance during pregnancy.Am. J. Reprod. Immunol.200451427528210.1111/j.1600‑0897.2004.00156.x 15212680
    [Google Scholar]
  36. SchwendeH. FitzkeE. AmbsP. DieterP. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3.J. Leukoc. Biol.199659455556110.1002/jlb.59.4.555 8613704
    [Google Scholar]
  37. DobrovolskaiaM.A. VogelS.N. Toll receptors, CD14, and macrophage activation and deactivation by LPS.Microbes Infect.20024990391410.1016/S1286‑4579(02)01613‑1 12106783
    [Google Scholar]
  38. GersukG.M. RazaiL.W. MarrK.A. Methods of in vitro macrophage maturation confer variable inflammatory responses in association with altered expression of cell surface dectin-1.J. Immunol. Methods20083291-215716610.1016/j.jim.2007.10.003 17997408
    [Google Scholar]
  39. ReyesL. DavidsonM.K. ThomasL.C. DavisJ.K. Effects of Mycoplasma fermentans incognitus on differentiation of THP-1 cells.Infect. Immun.19996773188319210.1128/IAI.67.7.3188‑3192.1999 10377089
    [Google Scholar]
  40. TaylorP.R. Martinez-PomaresL. StaceyM. LinH-H. BrownG.D. GordonS. Macrophage receptors and immune recognition.Annu. Rev. Immunol.200523190194410.1146/annurev.immunol.23.021704.115816 15771589
    [Google Scholar]
  41. Martinez-PomaresL. PlattN. McknightA.J. da SilvaR.P. GordonS. Macrophage membrane molecules: markers of tissue differentiation and heterogeneity.Immunobiology19961954-540741610.1016/S0171‑2985(96)80012‑X 8933147
    [Google Scholar]
  42. DevittA. MoffattO.D. RaykundaliaC. CapraJ.D. SimmonsD.L. GregoryC.D. Human CD14 mediates recognition and phagocytosis of apoptotic cells.Nature1998392667550550910.1038/33169 9548256
    [Google Scholar]
  43. TriantafilouM. TriantafilouK. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster.Trends Immunol.200223630130410.1016/S1471‑4906(02)02233‑0 12072369
    [Google Scholar]
  44. WeisbergS.P. McCannD. DesaiM. RosenbaumM. LeibelR.L. FerranteA.W.Jr Obesity is associated with macrophage accumulation in adipose tissue.J. Clin. Invest.2003112121796180810.1172/JCI200319246 14679176
    [Google Scholar]
  45. CuratC.A. MiranvilleA. SengenèsC. DiehlM. TonusC. BusseR. BouloumiéA. From blood monocytes to adipose tissue-resident macrophages: Induction of diapedesis by human mature adipocytes.Diabetes20045351285129210.2337/diabetes.53.5.1285 15111498
    [Google Scholar]
  46. AldoP.B. CraveiroV. GullerS. MorG. Effect of culture conditions on the phenotype of THP‐1 monocyte cell line.Am. J. Reprod. Immunol.2013701808610.1111/aji.12129
    [Google Scholar]
  47. NathanC. Nitric oxide as a secretory product of mammalian cells.FASEB J.19926123051306410.1096/fasebj.6.12.1381691 1381691
    [Google Scholar]
  48. NusslerA.K. BilliarT.R. Inflammation, immunoregulation, and inducible nitric oxide synthase.J. Leukoc. Biol.199354217117810.1002/jlb.54.2.171 7689630
    [Google Scholar]
  49. SpencerM. Yao-BorengasserA. UnalR. RasouliN. GurleyC.M. ZhuB. PetersonC.A. KernP.A. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation.Am. J. Physiol. Endocrinol. Metab.20102996E1016E102710.1152/ajpendo.00329.2010 20841504
    [Google Scholar]
  50. ChanputW. MesJ.J. SavelkoulH.F.J. WichersH.J. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds.Food Funct.20134226627610.1039/C2FO30156C 23135314
    [Google Scholar]
  51. CarasI. TucureanuC. LerescuL. PiticaR. MelinceanuL. NeaguS. SalageanuA. Influence of tumor cell culture supernatants on macrophage functional polarization: in vitro models of macrophage-tumor environment interaction.Tumori201197564765410.1177/030089161109700518 22158498
    [Google Scholar]
  52. ParkE.K. JungH.S. YangH.I. YooM.C. KimC. KimK.S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli.Inflamm. Res.2007561455010.1007/s00011‑007‑6115‑5 17334670
    [Google Scholar]
  53. ZhouL. ShenL. HuL. GeH. PuJ. ChaiD. ShaoQ. WangL. ZengJ. HeB. Retinoid X receptor agonists inhibit phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 cells into macrophages.Mol. Cell. Biochem.20103351-228328910.1007/s11010‑009‑0278‑z 19784811
    [Google Scholar]
  54. DaigneaultM. PrestonJ.A. MarriottH.M. WhyteM.K.B. DockrellD.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.PLoS One201051e866810.1371/journal.pone.0008668 20084270
    [Google Scholar]
  55. BalonK. WiatrakB. PC12 and THP-1 cell lines as neuronal and microglia model in neurobiological research.Appl. Sci. 2021119372910.3390/app11093729
    [Google Scholar]
  56. KawakamiA. AikawaM. LibbyP. AlcaideP. LuscinskasF.W. SacksF.M. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells.Circulation2006113569170010.1161/CIRCULATIONAHA.105.591743 16461842
    [Google Scholar]
  57. LomovskayaY.V. KobyakovaM.I. SenotovA.S. LomovskyA.I. MinaychevV.V. FadeevaI.S. ShtatnovaD.Y. KrasnovK.S. ZvyaginaA.I. AkatovV.S. FadeevR.S. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5.Biomolecules202212215010.3390/biom12020150 35204655
    [Google Scholar]
  58. WangL. ZhuL. DuanC. LiL. ChenG. Total saponin of Dioscorea collettii attenuates MSU crystal induced inflammation via inhibiting the activation of the NALP3 inflammasome and caspase 1 in THP 1 macrophages.Mol. Med. Rep.20202162466247410.3892/mmr.2020.11035 32236574
    [Google Scholar]
  59. KritharidesL. ChristianA. StoudtG. MorelD. RothblatG.H. Cholesterol metabolism and efflux in human THP-1 macrophages.Arterioscler. Thromb. Vasc. Biol.199818101589159910.1161/01.ATV.18.10.1589 9763531
    [Google Scholar]
  60. NakagawaK. ZinggJ.M. KimS.H. ThomasM.J. DolnikowskiG.G. AzziA. MiyazawaT. MeydaniM. Differential cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation.Br. J. Nutr.2014112181410.1017/S0007114514000567 24725345
    [Google Scholar]
  61. NoronhaN. EhxG. MeunierM.C. LaverdureJ.P. ThériaultC. PerreaultC. Major multilevel molecular divergence between THP‐1 cells from different biorepositories.Int. J. Cancer202014772000200610.1002/ijc.32967 32163592
    [Google Scholar]
  62. PetinK. WeissR. MüllerG. GartenA. GrahnertA. SackU. HauschildtS. NAD metabolites interfere with proliferation and functional properties of THP-1 cells.Innate Immun.201925528029310.1177/1753425919844587 31053044
    [Google Scholar]
  63. SpangenbergSH ZavarehRB LairsonLL Protocol for highthroughput compound screening using flow cytometry in THP-1 cells.STAR protocols202122100400
    [Google Scholar]
  64. SchnoorM. BuersI. SietmannA. BroddeM.F. HofnagelO. RobenekH. LorkowskiS. Efficient non-viral transfection of THP-1 cells.J. Immunol. Methods2009344210911510.1016/j.jim.2009.03.014 19345690
    [Google Scholar]
  65. BosshartH. HeinzelmannM. Lipopolysaccharide-mediated cell activation without rapid mobilization of cytosolic free calcium.Mol. Immunol.200441101023102810.1016/j.molimm.2004.05.003 15302164
    [Google Scholar]
  66. ParkB.S. SongD.H. KimH.M. ChoiB.S. LeeH. LeeJ.O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex.Nature200945872421191119510.1038/nature07830 19252480
    [Google Scholar]
  67. SteinbachF. ThieleB. Phenotypic investigation of mononuclear phagocytes by flow cytometry.J. Immunol. Methods19941741-210912210.1016/0022‑1759(94)90015‑9 8083514
    [Google Scholar]
  68. MaeßM.B. WittigB. CignarellaA. LorkowskiS. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli.J. Immunol. Methods20144021-2768110.1016/j.jim.2013.11.006 24269601
    [Google Scholar]
  69. GordonS. Pattern recognition receptors: doubling up for the innate immune response.Cell2002111792793010.1016/S0092‑8674(02)01201‑1 12507420
    [Google Scholar]
  70. MeghariS. BerruyerC. LepidiH. GallandF. NaquetP. MegeJ.L. Vanin‐1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection.Eur. J. Immunol.2007371243210.1002/eji.200636054 17163446
    [Google Scholar]
  71. GordonS. Alternative activation of macrophages.Nat. Rev. Immunol.200331233510.1038/nri978 12511873
    [Google Scholar]
  72. GordonS. TaylorP.R. Monocyte and macrophage heterogeneity.Nat. Rev. Immunol.200551295396410.1038/nri1733 16322748
    [Google Scholar]
  73. NoëlW. RaesG. Hassanzadeh GhassabehG. De BaetselierP. BeschinA. Alternatively activated macrophages during parasite infections.Trends Parasitol.200420312613310.1016/j.pt.2004.01.004 15036034
    [Google Scholar]
  74. WynnT.A. Fibrotic disease and the TH1/TH2 paradigm.Nat. Rev. Immunol.20044858359410.1038/nri1412 15286725
    [Google Scholar]
  75. KzhyshkowskaJ. WorkmanG. Cardó-VilaM. ArapW. PasqualiniR. GratchevA. KrusellL. GoerdtS. SageE.H. Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC.J. Immunol.2006176105825583210.4049/jimmunol.176.10.5825 16670288
    [Google Scholar]
  76. OeckinghausA. HaydenM.S. GhoshS. Crosstalk in NF-κB signaling pathways.Nat. Immunol.201112869570810.1038/ni.2065 21772278
    [Google Scholar]
  77. SchonthalerH.B. Guinea-ViniegraJ. WagnerE.F. Targeting inflammation by modulating the Jun/AP-1 pathway.Ann. Rheum. Dis.2011701i109i11210.1136/ard.2010.140533 21339212
    [Google Scholar]
  78. KrausgruberT. BlazekK. SmallieT. AlzabinS. LockstoneH. SahgalN. HussellT. FeldmannM. UdalovaI.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses.Nat. Immunol.201112323123810.1038/ni.1990 21240265
    [Google Scholar]
  79. OhmoriY. HamiltonT.A. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages.J. Immunol.19971591154745482
    [Google Scholar]
  80. SatohT. TakeuchiO. VandenbonA. YasudaK. TanakaY. KumagaiY. MiyakeT. MatsushitaK. OkazakiT. SaitohT. HonmaK. MatsuyamaT. YuiK. TsujimuraT. StandleyD.M. NakanishiK. NakaiK. AkiraS. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection.Nat. Immunol.2010111093694410.1038/ni.1920 20729857
    [Google Scholar]
  81. OdegaardJ.I. Ricardo-GonzalezR.R. GoforthM.H. MorelC.R. SubramanianV. MukundanL. EagleA.R. VatsD. BrombacherF. FerranteA.W. ChawlaA. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance.Nature200744771481116112010.1038/nature05894 17515919
    [Google Scholar]
  82. RuffellD. MourkiotiF. GambardellaA. KirstetterP. LopezR.G. RosenthalN. NerlovC.A. CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair.Proc. Natl. Acad. Sci. 200910641174751748010.1073/pnas.0908641106 19805133
    [Google Scholar]
  83. XuL.L. WarrenM.K. RoseW.L. GongW. WangJ.M. Human recombinant monocyte chemotactic protein and other c-c chemokines bind and induce directional migration of dendritic cells in vitro.J. Leukoc. Biol.199660336537110.1002/jlb.60.3.365 8830793
    [Google Scholar]
  84. CottonM. ClaingA. G protein-coupled receptors stimulation and the control of cell migration.Cell. Signal.20092171045105310.1016/j.cellsig.2009.02.008 19249352
    [Google Scholar]
  85. ElomaaO. KangasM. SahlbergC. TuukkanenJ. SormunenR. LiakkaA. ThesleffI. KraalG. TryggvasonK. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages.Cell199580460360910.1016/0092‑8674(95)90514‑6 7867067
    [Google Scholar]
  86. O’NeillL.A.J. GolenbockD. BowieA.G. The history of Toll-like receptors redefining innate immunity.Nat. Rev. Immunol.201313645346010.1038/nri3446 23681101
    [Google Scholar]
  87. BertinJ. NirW.J. FischerC.M. TayberO.V. ErradaP.R. GrantJ.R. KeiltyJ.J. GosselinM.L. RobisonK.E. WongG.H.W. GlucksmannM.A. DiStefanoP.S. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB.J. Biol. Chem.199927419129551295810.1074/jbc.274.19.12955 10224040
    [Google Scholar]
  88. InoharaN. KosekiT. del PesoL. HuY. YeeC. ChenS. CarrioR. MerinoJ. LiuD. NiJ. NúñezG. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB.J. Biol. Chem.199927421145601456710.1074/jbc.274.21.14560 10329646
    [Google Scholar]
  89. MinakamiR. SumimotoaH. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family.Int. J. Hematol.200684319319810.1532/IJH97.06133 17050190
    [Google Scholar]
  90. El-GayarS. Thüring-NahlerH. PfeilschifterJ. RöllinghoffM. BogdanC. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages.J. Immunol.200317194561456810.4049/jimmunol.171.9.4561 14568929
    [Google Scholar]
  91. MostowyS. BonazziM. HamonM.A. ThamT.N. MalletA. LelekM. GouinE. DemangelC. BroschR. ZimmerC. SartoriA. KinoshitaM. LecuitM. CossartP. Entrapment of intracytosolic bacteria by septin cage-like structures.Cell Host Microbe20108543344410.1016/j.chom.2010.10.009 21075354
    [Google Scholar]
  92. DereticV. SaitohT. AkiraS. Autophagy in infection, inflammation and immunity.Nat. Rev. Immunol.2013131072273710.1038/nri3532 24064518
    [Google Scholar]
  93. DengB. Wehling-HenricksM. VillaltaS.A. WangY. TidballJ.G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration.J. Immunol.201218973669368010.4049/jimmunol.1103180 22933625
    [Google Scholar]
  94. TroidlC. MöllmannH. NefH. MasseliF. VossS. SzardienS. WillmerM. RolfA. RixeJ. TroidlK. KostinS. HammC. ElsässerA. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction.J. Cell. Mol. Med.2009139b3485349610.1111/j.1582‑4934.2009.00707.x 19228260
    [Google Scholar]
  95. BeutlerB. RietschelE.T. Innate immune sensing and its roots: the story of endotoxin.Nat. Rev. Immunol.20033216917610.1038/nri1004 12563300
    [Google Scholar]
  96. MedzhitovR. JanewayC.J. Jr Innate immune recognition: mechanisms and pathways.Immunol. Rev.20001731899710.1034/j.1600‑065X.2000.917309.x 10719670
    [Google Scholar]
  97. MonickM.M. CarterA.B. RobeffP.K. FlahertyD.M. PetersonM.W. HunninghakeG.W. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of β-catenin.J. Immunol.200116674713472010.4049/jimmunol.166.7.4713 11254732
    [Google Scholar]
  98. MonickM.M. RobeffP.K. ButlerN.S. FlahertyD.M. CarterA.B. PetersonM.W. HunninghakeG.W. Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase 2 mRNA.J. Biol. Chem.200227736329923300010.1074/jbc.M203218200 12072439
    [Google Scholar]
  99. ZhangZ. TangJ. CuiX. QinB. ZhangJ. ZhangL. ZhangH. LiuG. WangW. ZhangJ. New insights and novel therapeutic potentials for macrophages in myocardial infarction.Inflammation20214451696171210.1007/s10753‑021‑01467‑2 33866463
    [Google Scholar]
  100. MoskalikA. Niderla-BielińskaJ. RatajskaA. Multiple roles of cardiac macrophages in heart homeostasis and failure.Heart Fail. Rev.20222741413143010.1007/s10741‑021‑10156‑z 34387811
    [Google Scholar]
  101. HeidtT. CourtiesG. DuttaP. SagerH.B. SebasM. IwamotoY. SunY. Da SilvaN. PanizziP. van der LaanA.M. SwirskiF.K. WeisslederR. NahrendorfM. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction.Circ. Res.2014115228429510.1161/CIRCRESAHA.115.303567 24786973
    [Google Scholar]
  102. DickS.A. MacklinJ.A. NejatS. MomenA. Clemente-CasaresX. AlthagafiM.G. ChenJ. KantoresC. HosseinzadehS. AronoffL. WongA. ZamanR. BarbuI. BeslaR. LavineK.J. RazaniB. GinhouxF. HusainM. CybulskyM.I. RobbinsC.S. EpelmanS. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction.Nat. Immunol.2019201293910.1038/s41590‑018‑0272‑2 30538339
    [Google Scholar]
  103. KainD. AmitU. YagilC. LandaN. Naftali-ShaniN. MolotskiN. AvivV. FeinbergM.S. GoiteinO. KushnirT. KonenE. EpsteinF.H. YagilY. LeorJ. Macrophages dictate the progression and manifestation of hypertensive heart disease.Int. J. Cardiol.201620338139510.1016/j.ijcard.2015.10.126 26539962
    [Google Scholar]
  104. HulsmansM. SagerH.B. RohJ.D. Valero-MuñozM. HoustisN.E. IwamotoY. SunY. WilsonR.M. WojtkiewiczG. TricotB. OsborneM.T. HungJ. VinegoniC. NaxerovaK. SosnovikD.E. ZileM.R. BradshawA.D. LiaoR. TawakolA. WeisslederR. RosenzweigA. SwirskiF.K. SamF. NahrendorfM. Cardiac macrophages promote diastolic dysfunction.J. Exp. Med.2018215242344010.1084/jem.20171274 29339450
    [Google Scholar]
  105. SteinbergG.R. SchertzerJ.D. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease.Immunol. Cell Biol.201492434034510.1038/icb.2014.11 24638063
    [Google Scholar]
  106. MantovaniA AllavenaP SicaA BalkwillF. Cancer-related inflammation.nature20084547203436444
    [Google Scholar]
  107. BoussiotisV.A. ChatterjeeP. LiL. Biochemical signaling of PD-1 on T cells and its functional implications.Cancer J.201420426527110.1097/PPO.0000000000000059 25098287
    [Google Scholar]
  108. BarkalA.A. WeiskopfK. KaoK.S. GordonS.R. RosentalB. YiuY.Y. GeorgeB.M. MarkovicM. RingN.G. TsaiJ.M. McKennaK.M. HoP.Y. ChengR.Z. ChenJ.Y. BarkalL.J. RingA.M. WeissmanI.L. MauteR.L. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy.Nat. Immunol.2018191768410.1038/s41590‑017‑0004‑z 29180808
    [Google Scholar]
  109. OkazawaH. MotegiS. OhyamaN. OhnishiH. TomizawaT. KanekoY. OldenborgP.A. IshikawaO. MatozakiT. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system.J. Immunol.200517442004201110.4049/jimmunol.174.4.2004 15699129
    [Google Scholar]
  110. OgdenC.A. deCathelineauA. HoffmannP.R. BrattonD. GhebrehiwetB. FadokV.A. HensonP.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells.J. Exp. Med.2001194678179610.1084/jem.194.6.781 11560994
    [Google Scholar]
  111. ZhengP. LuoQ. WangW. LiJ. WangT. WangP. ChenL. ZhangP. ChenH. LiuY. DongP. XieG. MaY. JiangL. YuanX. ShenL. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E.Cell Death Dis.20189443410.1038/s41419‑018‑0465‑5 29567987
    [Google Scholar]
  112. BinenbaumY. FridmanE. YaariZ. MilmanN. SchroederA. Ben DavidG. ShlomiT. GilZ. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma.Cancer Res.201878185287529910.1158/0008‑5472.CAN‑18‑0124 30042153
    [Google Scholar]
  113. KanedaM.M. MesserK.S. RalainirinaN. LiH. LeemC.J. GorjestaniS. WooG. NguyenA.V. FigueiredoC.C. FoubertP. SchmidM.C. PinkM. WinklerD.G. RauschM. PalombellaV.J. KutokJ. McGovernK. FrazerK.A. WuX. KarinM. SasikR. CohenE.E.W. VarnerJ.A. PI3Kγ is a molecular switch that controls immune suppression.Nature2016539762943744210.1038/nature19834 27642729
    [Google Scholar]
  114. AnC. WenJ. HuZ. MitchW.E. WangY. Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II–induced hypertension.Nephrol. Dial. Transplant.20203591491150010.1093/ndt/gfaa062 32500132
    [Google Scholar]
  115. AmanoM.T. CastoldiA. Andrade-OliveiraV. LatanciaM.T. TerraF.F. Correa-CostaM. BredaC.N.S. FelizardoR.J.F. PereiraW.O. da SilvaM.B. MiyagiM.Y.S. AguiarC.F. HiyaneM.I. SilvaJ.S. MouraI.C. CamaraN.O.S. The lack of PI3Kγ favors M1 macrophage polarization and does not prevent kidney diseases progression.Int. Immunopharmacol.20186415116110.1016/j.intimp.2018.08.020 30176533
    [Google Scholar]
  116. MarkóL. VigoloE. HinzeC. ParkJ.K. RoëlG. BaloghA. ChoiM. WübkenA. CordingJ. BlasigI.E. LuftF.C. ScheidereitC. Schmidt-OttK.M. Schmidt-UllrichR. MüllerD.N. Tubular epithelial NF-κB activity regulates ischemic AKI.J. Am. Soc. Nephrol.20162792658266910.1681/ASN.2015070748 26823548
    [Google Scholar]
  117. BanerjeeS. BiehlA. GadinaM. HasniS. SchwartzD.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects.Drugs201777552154610.1007/s40265‑017‑0701‑9 28255960
    [Google Scholar]
  118. WangS. ZhangC. LiJ. NiyaziS. ZhengL. XuM. RongR. YangC. ZhuT. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization.Cell Death Dis.201784e272510.1038/cddis.2017.104 28383559
    [Google Scholar]
  119. ZhuM. WangL. YangJ. XieK. LiuS. XuC. WangJ. GuL. NiZ. XuG. CheM. Erythropoietin ameliorates lung injury by accelerating pulmonary endothelium cell proliferation via Janus kinase-signal transducer and activator of transcription 3 pathway after kidney ischemia and reperfusion injury. In:In Transplantation proceedingsElsevier201951397297810.1016/j.transproceed.2019.01.059
    [Google Scholar]
  120. KaurC. HaoA.J. WuC.H. LingE.A. Origin of microglia.Microsc. Res. Tech.20015412910.1002/jemt.1114 11526953
    [Google Scholar]
  121. FerrariD. ChiozziP. FalzoniS. Dal SusinoM. ColloG. BuellG. Di VirgilioF. ATP-mediated cytotoxicity in microglial cells.Neuropharmacology19973691295130110.1016/S0028‑3908(97)00137‑8 9364484
    [Google Scholar]
  122. TedescoS. De MajoF. KimJ. TrentiA. TrevisiL. FadiniG.P. BolegoC. ZandstraP.W. CignarellaA. VitielloL. Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization?Front. Pharmacol.201897110.3389/fphar.2018.00071 29520230
    [Google Scholar]
  123. HoppenbrouwersT. Bastiaan-NetS. GarssenJ. PellegriniN. WillemsenL.E.M. WichersH.J. Functional differences between primary monocyte-derived and THP-1 macrophages and their response to LCPUFAs.PharmaNutrition20222210032210.1016/j.phanu.2022.100322
    [Google Scholar]
  124. SchildbergerA RossmanithE EichhornT StrasslK WeberV Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide.Med. inflamm.20132013697972
    [Google Scholar]
  125. HijiyaN. MiyakeK. AkashiS. MatsuuraK. HiguchiY. YamamotoS. Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide.Pathobiology2002701182510.1159/000066000 12415188
    [Google Scholar]
  126. BineshA. Devaraj SivasitambaramN. HalagowderD. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis.J. Biochem. Mol. Toxicol.2020343e2244210.1002/jbt.22442 31926051
    [Google Scholar]
  127. GaoX.X. WangB.X. FeiX.F. ZhangJ. GongY.J. MinamiM. NagataT. IkejimaT. Effects of polysaccharides (FI0-c) from mycelium of Ganoderma tsugae on proinflammatory cytokine production by THP-1 cells and human PBMC (II).Acta Pharmacol. Sin.2000211211861192 11603298
    [Google Scholar]
  128. HanX.Q. Chung Lap ChanB. DongC.X. YangY.H. KoC.H. Gar-Lee YueG. ChenD. WongC.K. Bik-San LauC. TuP.F. ShawP.C. FungK.P. LeungP.C. HsiaoW.L. HanQ.B. Isolation, structure characterization, and immunomodulating activity of a hyperbranched polysaccharide from the fruiting bodies of Ganoderma sinense.J. Agric. Food Chem.201260174276428110.1021/jf205056u 22500548
    [Google Scholar]
  129. SchroecksnadelS. GostnerJ. SchennachH. überall, F.; Fuchs, D.; Jenny, M. Peripheral blood mononuclear cells versus myelomonocytic cell line THP-1 to test for immumodulatory properties of chemicals.J. Bionanosci.20126213414110.1166/jbns.2012.1083
    [Google Scholar]
  130. ChanputW. MesJ.J. WichersH.J. THP-1 cell line: An in vitro cell model for immune modulation approach.Int. Immunopharmacol.2014231374510.1016/j.intimp.2014.08.002 25130606
    [Google Scholar]
  131. NascimentoC.R. Rodrigues FernandesN.A. Gonzalez MaldonadoL.A. RossaJunior C. Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies.Biochem. Biophys. Rep.20223210138310.1016/j.bbrep.2022.101383 36420419
    [Google Scholar]
  132. MinafraL. Di CaraG. AlbaneseN.N. CancemiP. Proteomic differentiation pattern in the U937 cell line.Leuk. Res.201135222623610.1016/j.leukres.2010.07.040 20801507
    [Google Scholar]
  133. Valdés LópezJ.F. Urcuqui-InchimaS. Synergism between phorbol-12-myristate-13-acetate and vitamin D3 in the differentiation of U937 cells to monocytes and macrophages.Morphologie201810233820521810.1016/j.morpho.2018.06.001 30075941
    [Google Scholar]
  134. OdgerelT. KikuchiJ. WadaT. ShimizuR. FutakiK. KanoY. FurukawaY. The FLT3 inhibitor PKC412 exerts differential cell cycle effects on leukemic cells depending on the presence of FLT3 mutations.Oncogene200827223102311010.1038/sj.onc.1210980 18071308
    [Google Scholar]
  135. LamichhaneP.P. PuthavathanaP. PR8 virus harbouring H5N1 NS gene contributed for THP-1 cell tropism.Virusdisease201829454855210.1007/s13337‑018‑0499‑4 30539061
    [Google Scholar]
  136. ChanputW. PetersV. WichersH. The Impact of Food Bioactives on Health: in vitro and ex vivo models.Springer2015
    [Google Scholar]
  137. SongJ. SeoY. ParkH. Pinosylvin enhances leukemia cell death via down‐regulation of AMPKα expression.Phytother. Res.201832102097210410.1002/ptr.6156 30027566
    [Google Scholar]
  138. FernandesC. HornA.Jr LopesB.F. BullE.S. AzeredoN.F.B. KanashiroM.M. BorgesF.V. BortoluzziA.J. SzpoganiczB. PiresA.B. FrancoR.W.A. AlmeidaJ.C.A. MacielL.L.F. ResendeJ.A.L.C. SchenkG. Induction of apoptosis in leukemia cell lines by new copper(II) complexes containing naphthyl groups via interaction with death receptors.J. Inorg. Biochem.2015153688710.1016/j.jinorgbio.2015.09.014 26485179
    [Google Scholar]
  139. PlattR.J. ChenS. ZhouY. YimM.J. SwiechL. KemptonH.R. DahlmanJ.E. ParnasO. EisenhaureT.M. JovanovicM. GrahamD.B. JhunjhunwalaS. HeidenreichM. XavierR.J. LangerR. AndersonD.G. HacohenN. RegevA. FengG. SharpP.A. ZhangF. CRISPR-Cas9 knockin mice for genome editing and cancer modeling.Cell2014159244045510.1016/j.cell.2014.09.014 25263330
    [Google Scholar]
  140. BrzicovaT. JavorkovaE. VrbovaK. ZajicovaA. HolanV. PinkasD. PhilimonenkoV. SikorovaJ. KlemaJ. TopinkaJ. RossnerP. Jr Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles.Nanomaterials 20199568710.3390/nano9050687 31052583
    [Google Scholar]
  141. ChenS.J. HuangW.C. ShenH.J. ChenR.Y. ChangH. HoY.S. TsaiP.J. ChuangL.T. Investigation of modulatory effect of pinolenic acid (PNA) on inflammatory responses in human THP-1 macrophage-like cell and mouse models.Inflammation202043251853110.1007/s10753‑019‑01134‑7 31776889
    [Google Scholar]
  142. WardynJ.D. ChanA.S.Y. JeyasekharanA.D. A robust protocol for CRISPR‐Cas9 gene editing in human suspension cell lines.Curr. Protoc.2021111e28610.1002/cpz1.286 34748280
    [Google Scholar]
  143. FarooqU NotaniD Optimized protocol to create deletion in adherent cell lines using CRISPR/Cas9 system.STAR protocols.202124100857
    [Google Scholar]
  144. Sanjurjo-SorianoC. ErkilicN. MamaevaD. KalatzisV. CRISPR/Cas9-mediated genome editing to generate clonal iPSC lines.Induced Pluripotent Stem (iPS) Cells: Methods and Protocols.New York, NYSpringer US2021589606
    [Google Scholar]
  145. AuwerxJ.H. DeebS. BrunzellJ.D. PengR. ChaitA. Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines.Biochemistry19882782651265510.1021/bi00408a003 3401441
    [Google Scholar]
  146. PangJ.H.S. WuC.J. ChauL.Y. Post-transcriptional regulation of H-ferritin gene expression in human monocytic THP-1 cells by protein kinase C.Biochem. J.1996319118518910.1042/bj3190185 8870667
    [Google Scholar]
  147. a LiuT. HuangT. LiJ. LiA. LiC. HuangX. LiD. WangS. LiangM. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA.PLoS One2023187e028605610.1371/journal.pone.0286056 37459313
    [Google Scholar]
  148. b AhnCB. JeJY. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.Immunopharmacology and Immunotoxicology20121;34337984
    [Google Scholar]
  149. ClouetE. BecharaR. RaffalliC. DamiensM.H. GrouxH. PallardyM. FerretP.J. Kerdine-RömerS. The THP-1 cell toolbox: A new concept integrating the key events of skin sensitization.Arch. Toxicol.201993494195110.1007/s00204‑019‑02416‑7 30806763
    [Google Scholar]
  150. SmallA. LansdownN. Al-BaghdadiM. QuachA. FerranteA. Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes.J. Immunol. Methods2018461737710.1016/j.jim.2018.06.019 30158075
    [Google Scholar]
  151. DengY. GoversC. BeestE. van DijkA.J. HettingaK. WichersH.J. THP-1 cell line-based exploration of immune responses toward heat-treated BLG.Front. Nutr.2021761239710.3389/fnut.2020.612397 33521038
    [Google Scholar]
  152. ZhangJ.Z. WardK.W. Besifloxacin, a novel fluoroquinolone antimicrobial agent, exhibits potent inhibition of pro-inflammatory cytokines in human THP-1 monocytes.J. Antimicrob. Chemother.200761111111610.1093/jac/dkm398 17965029
    [Google Scholar]
  153. HabeebF. StablesG. BradburyF. NongS. CameronP. PlevinR. FerroV.A. The inner gel component of Aloe vera suppresses bacterial-induced pro-inflammatory cytokines from human immune cells.Methods200742438839310.1016/j.ymeth.2007.03.005 17560326
    [Google Scholar]
  154. GiambartolomeiG.H. DennisV.A. LasaterB.L. MurthyP.K. PhilippM.T. Autocrine and exocrine regulation of interleukin-10 production in THP-1 cells stimulated with Borrelia burgdorferi lipoproteins.Infect. Immun.20027041881188810.1128/IAI.70.4.1881‑1888.2002 11895951
    [Google Scholar]
  155. HsuW.H. LeeB.H. LiaoT.H. HsuY.W. PanT.M. Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes.Food Chem. Toxicol.20125051178118610.1016/j.fct.2012.02.029 22381257
    [Google Scholar]
  156. KimY. SoH.S. KimS.J. YounM.J. LeeJ.H. KimN.S. LeeJ.H. WooW.H. LeeD.W. ChoK.H. MoonB.S. ParkR. Antiinflammatory effect of Daesiho, a Korean traditional prescription for cerebral infarct patients.Phytother. Res.200822682983510.1002/ptr.2389 18412147
    [Google Scholar]
  157. EguchiA. MurakamiA. OhigashiH. Nobiletin, a citrus flavonoid, suppresses phorbol ester‐induced expression of multiple scavenger receptor genes in THP‐1 human monocytic cells.FEBS Lett.2006580133321332810.1016/j.febslet.2006.04.077 16698017
    [Google Scholar]
  158. HeX. ShuJ. XuL. LuC. LuA. Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-a and IL-1β production in THP-1 cells.Molecules20121733155316410.3390/molecules17033155 22410422
    [Google Scholar]
  159. IioA. OhguchiK. MaruyamaH. TazawaS. ArakiY. IchiharaK. NozawaY. ItoM. Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages.Phytomedicine201219538338810.1016/j.phymed.2011.10.007 22305277
    [Google Scholar]
  160. YangC.W. ChangC.L. LeeH.C. ChiC.W. PanJ.P. YangW.C. Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK Pathways.BMC Complement. Altern. Med.20121212210.1186/1472‑6882‑12‑22 22443687
    [Google Scholar]
  161. XuL. ShenS. MaY. KimJ.K. Rodriguez-AgudoD. HeumanD.M. HylemonP.B. PandakW.M. RenS. 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages.Am. J. Physiol. Endocrinol. Metab.20123027E788E79910.1152/ajpendo.00337.2011 22275753
    [Google Scholar]
  162. SmiderleF.R. RuthesA.C. van ArkelJ. ChanputW. IacominiM. WichersH.J. Van GriensvenL.J.L.D. Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells.BMC Complement. Altern. Med.20111115810.1186/1472‑6882‑11‑58 21787425
    [Google Scholar]
  163. LiM. LiuZ.H. ChenQ. ZhouW.Q. YuM.W. LüG.X. LüX.L. ShenY.N. LiuW.D. WuS.X. Insoluble β-glucan from the cell wall of Candida albicans induces immune responses of human THP-1 monocytes through Dectin-1.Chin. Med. J. 20091225496501 19323897
    [Google Scholar]
  164. BineshA. DevarajS.N. HalagowderD. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis.J. Cell. Physiol.201923457040705010.1002/jcp.27458 30478968
    [Google Scholar]
  165. SongM. PhelpsD.S. Interaction of surfactant protein A with lipopolysaccharide and regulation of inflammatory cytokines in the THP-1 monocytic cell line.Infect. Immun.200068126611661710.1128/IAI.68.12.6611‑6617.2000 11083772
    [Google Scholar]
  166. HarrisonL.M. van HaaftenW.C.E. TeshV.L. Regulation of proinflammatory cytokine expression by Shiga toxin 1 and/or lipopolysaccharides in the human monocytic cell line THP-1.Infect. Immun.20047252618262710.1128/IAI.72.5.2618‑2627.2004 15102770
    [Google Scholar]
  167. HarrisonL.M. Van Den HoogenC. Van HaaftenW.C. TeshV.L. Chemokine expression in the monocytic cell line THP-1 in response to purified shiga toxin 1 and/or lipopolysaccharides.Infect. Immun.2005731403412
    [Google Scholar]
  168. NeedhamB.D. CarrollS.M. GeorgiouP.G. Modulating the innate immune response by combinatorial engineering of endotoxin.Proc. Natl. Acad. Sci. 2013110414641469 23297218
    [Google Scholar]
  169. GrodzkiA.C.G. GiuliviC. LeinP.J. Oxygen tension modulates differentiation and primary macrophage functions in the human monocytic THP-1 cell line.PLoS One201381e5492610.1371/journal.pone.0054926 23355903
    [Google Scholar]
  170. GostnerJ.M. SchröcksnadelS. BeckerK. JennyM. SchennachH. ÜberallF. FuchsD. Antimalarial drug chloroquine counteracts activation of indoleamine (2,3)‐dioxygenase activity in human PBMC.FEBS Open Bio20122124124510.1016/j.fob.2012.08.004 23650606
    [Google Scholar]
  171. NieJ. HeY. Integration of three-dimensional printing and microfluidics.Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-chip.Elsevier202238540610.1016/B978‑0‑444‑59432‑7.00003‑0
    [Google Scholar]
  172. LiangW. LiY. Cuellar-CamachoJ.L. YuL. ZhouS. LiW. HaagR. Chemically defined stem cell microniche engineering by microfluidics compatible with iPSCs’ growth in 3D culture.Biomaterials202228012125310.1016/j.biomaterials.2021.121253 34801253
    [Google Scholar]
  173. Ortiz-CárdenasJ.E. ZatorskiJ.M. ArnejaA. MontalbineA.N. MunsonJ.M. LuckeyC.J. PompanoR.R. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiol-ene and methacryloyl hydrogels in a microfluidic device.Organs-on-a-Chip2022410001810.1016/j.ooc.2022.100018 35535262
    [Google Scholar]
  174. TerrellJ.A. JonesC.G. KabandanaG.K.M. ChenC. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics.J. Mater. Chem. B Mater. Biol. Med.20208316667668510.1039/D0TB00718H 32567628
    [Google Scholar]
  175. BirolS.Z. FucucuogluR. CadirciS. Sayi-YazganA. TrabzonL. Studying dynamic stress effects on the behaviour of THP-1 cells by microfluidic channels.Sci. Rep.20211111437910.1038/s41598‑021‑93935‑w 34257375
    [Google Scholar]
  176. LvovaT.Y. StepanovaO.I. ViazminaL.P. OkorokovaL.S. BelyakovaK.L. BelikovaM.E. SelkovS.A. SokolovD.I. Effect of factors secreted by the placenta on phenotype of THP-1 cells cultured on a 3D scaffold.Bull. Exp. Biol. Med.2016161116216710.1007/s10517‑016‑3368‑4 27259498
    [Google Scholar]
  177. RichmondT. TompkinsN. 3D microfluidics in PDMS: manufacturing with 3D molding.Microfluid. Nanofluidics20212597610.1007/s10404‑021‑02478‑z
    [Google Scholar]
  178. BineshA. DevarajS.N. DevarajH. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression.Biochimie2018148637110.1016/j.biochi.2018.02.011 29481959
    [Google Scholar]
  179. MizunoK. ToyodaY. FukamiT. NakajimaM. YokoiT. Stimulation of pro-inflammatory responses by mebendazole in human monocytic THP-1 cells through an ERK signaling pathway.Arch. Toxicol.201185319920710.1007/s00204‑010‑0584‑y 20848085
    [Google Scholar]
  180. MizunoK. FukamiT. ToyodaY. NakajimaM. YokoiT. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.Life Sci.20108717-1853754410.1016/j.lfs.2010.08.010 20816994
    [Google Scholar]
  181. EdlingY. SivertssonL. AnderssonT.B. Porsmyr-PalmertzM. Ingelman-SundbergM. Pro-inflammatory response and adverse drug reactions: Mechanisms of action of ximelagatran on chemokine and cytokine activation in a monocyte in vitro model.Toxicol. In Vitro 20082261588159410.1016/j.tiv.2008.06.011 18640260
    [Google Scholar]
  182. EdlingY. SivertssonL.K. ButuraA. Ingelman-SundbergM. EkM. Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model.Toxicol. In Vitro 20092371387139510.1016/j.tiv.2009.07.026 19631733
    [Google Scholar]
  183. PlattnerV.E. RatzingerG. EnglederE.T. GallaunerS. GaborF. WirthM. Alteration of the glycosylation pattern of monocytic THP-1 cells upon differentiation and its impact on lectin-mediated drug delivery.Eur. J. Pharm. Biopharm.200973332433010.1016/j.ejpb.2009.07.004 19602437
    [Google Scholar]
  184. LiR. MouillesseauxK.P. MontoyaD. CruzD. GharaviN. DunM. KoroniakL. BerlinerJ.A. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC.Circ. Res.200698564265010.1161/01.RES.0000207394.39249.fc 16456101
    [Google Scholar]
  185. KiyotaniK. ToyoshimaY. NakamuraY. Personalized immunotherapy in cancer precision medicine.Cancer Biol. Med.2021184955965 34369137
    [Google Scholar]
  186. MatsaE. AhrensJ.H. WuJ.C. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine.Physiol. Rev.20169631093112610.1152/physrev.00036.2015 27335446
    [Google Scholar]
  187. ZhaoY. HaoC. ZhaiR. BaoL. WangD. LiY. YuX. HuangR. YaoW. Effects of cyclophosphamide on the phenotypes and functions of THP-1 cells.Environ. Toxicol. Pharmacol.20197010320110.1016/j.etap.2019.103201 31202006
    [Google Scholar]
  188. KeuperM. BlüherM. SchönM.R. MöllerP. DzyakanchukA. AmreinK. DebatinK.M. WabitschM. Fischer-PosovszkyP. An inflammatory micro-environment promotes human adipocyte apoptosis.Mol. Cell. Endocrinol.20113391-210511310.1016/j.mce.2011.04.004 21501656
    [Google Scholar]
  189. AzenaborA.A. Cintrón-CuevasJ. SchmittH. BumahV. Chlamydia trachomatis induces anti-inflammatory effect in human macrophages by attenuation of immune mediators in Jurkat T-cells.Immunobiology2011216121248125510.1016/j.imbio.2011.07.002 21802168
    [Google Scholar]
  190. RisitanoA. BeaulieuL.M. VitsevaO. FreedmanJ.E. Platelets and platelet-like particles mediate intercellular RNA transfer.Blood2012119266288629510.1182/blood‑2011‑12‑396440 22596260
    [Google Scholar]
  191. ThiyagarajanM. WaldbeserL. WhitmillA. THP-1 leukemia cancer treatment using a portable plasma device.Stud. Health Technol. Inform.2012173515517 22357047
    [Google Scholar]
  192. ThuerE. GabaldónT. Comparative transcriptomics of THP-1 monocytes in response to different pathogens.bioRxiv201715585310.1101/155853
    [Google Scholar]
  193. ZHOUHF. LUYXP. SUNZH. GUOY. Establishment and characterization of thp-1 cell model stably expressing hiv-1 auxiliary protein rev.Zool. Res.2008294421426
    [Google Scholar]
  194. ZubovaS.V. RadzyukevichY.V. GrachevS.V. ProkhorenkoI.R. Effect of various agents on the direction of THP-1 cell differentiation.Serb. J. Exp. Clin. Res.201819326326910.2478/sjecr‑2018‑0029
    [Google Scholar]
  195. PintoS.M. KimH. SubbannayyaY. GiambellucaM. BöslK. KandasamyR.K. Dose-dependent phorbol 12-myristate-13-acetate-mediated monocyte-to-macrophage differentiation induces unique proteomic signatures in THP-1 cells.bioRxiv202010.1101/2020.02.27.968016
    [Google Scholar]
  196. BineshA. DevarajS.N. DevarajH. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis.J. Biochem. Mol. Toxicol.2020342e2242210.1002/jbt.22422 31729780
    [Google Scholar]
  197. LiuW. ChenX. WuM. LiL. LiuJ. ShiJ. HongT. Recombinant Klotho protein enhances cholesterol efflux of THP-1 macrophage-derived foam cells via suppressing Wnt/β-catenin signaling pathway.BMC Cardiovasc. Disord.202020112010.1186/s12872‑020‑01400‑9 32138681
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230294413240415054610
Loading
/content/journals/aiaamc/10.2174/0118715230294413240415054610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test