Skip to content
2000
image of Exploring the Therapeutic Potential of Benzimidazole Hybrids as Antimicrobial Agents: An In-Depth Analysis

Abstract

Background

Heterocyclic compounds play an essential role in biological systems and occur widely in nature. They are fundamental in the development of pharmaceuticals aimed at combating microbial infections and other” with “with the potential biological activities. Pharmacological evaluations have demonstrated their efficacy against diverse bacterial strains. This study investigates the antimicrobial properties of various benzimidazole hybrids. The findings highlight the significant influence of substituting nitrogenous scaffolds with various heteroatoms on the potential development of new antimicrobial agents.

Objective

This review article is expected to make a substantial contribution to the advancement of antibacterial medications. The research's goal is to improve the efficacy of combating bacterial infections by utilizing the potent properties of benzimidazole-based hybrid scaffolds. In the end, this will aid in reducing the global incidence of this contagious illness.

Methods

Several nitrogen-containing heterocyclic compounds display substantial potential as antibacterial agents. These compounds possess fused benzene and imidazole nuclei. These nuclei could change the number of electrons they have, which in turn affects their physiochemical characteristics. The versatility of drugs arises from their capacity to interact with receptors in various modalities, which is a key factor in drug pharmacological screening. Benzimidazole-based hybrids have demonstrated a wide range of pharma cological effects, including antibacterial, anti-HIV, anticancer, antimalarial, antiviral, an tifungal, antioxidant, anti-inflammatory, and anti-tubercular activities.

Results

Pyrazole, imidazole, oxazole, thiazole, indole, and benzimidazole are examples of compounds that include nitrogen species. These nitrogen-containing compounds engage in metabolic interactions with other molecules within the cell. Nevertheless, an overabundance of reactive nitrogen species can cause cytotoxicity, causing harm to vital biological macromolecules. But benzimidazole is traditionally the most effective, with a wide range of important qualities, including antibacterial, anti-HIV, anticancer, antimalarial, antiviral, antifungal, antioxidant, anti-inflammatory, and anti-tubercular activities.

Conclusion

This study focuses on the efficacy of novel benzimidazole-based hybrid scaffolds in inhibiting microbial growth. The study primarily focuses on recent studies carried out from 2009 to 2024. The study highlights the effectiveness of different benzimidazole-based hybrids using minimum inhibitory concentration (MIC) values. More in-depth studies also show that adding electron-withdrawing groups (EWGs) to the nitrogenous framework might make them more effective. Further research is necessary to design strong, least-toxic benzimidazole-based hybrids that can either kill or inhibit multidrug-resistant (MDR) bacteria.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525350256250107073402
2025-01-23
2025-04-22
Loading full text...

Full text loading...

References

  1. Kerru N. Gummidi L. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020 25 8 1909 10.3390/molecules25081909
    [Google Scholar]
  2. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  3. Patel M. Avashthi G. Gacem A. Alqahtani M.S. Park H.K. Jeon B.H. A review of approaches to the metallic and non-metallic synthesis of benzimidazole (BnZ) and their derivatives for biological efficacy. Molecules 2023 28 14 5490 10.3390/molecules28145490
    [Google Scholar]
  4. Mahurkar N.D. Gawhale N.D. Lokhande M.N. Uke S.J. Kodape M.M. Benzimidazole: A versatile scaffold for drug discovery and beyond: A comprehensive review of synthetic approaches and recent advancements in medicinal chemistry. Results Chem 2023 6 101139 10.1016/j.rechem.2023.101139
    [Google Scholar]
  5. Guo Y. Hou X. Fang H. Recent applications of benzimidazole as a privileged scaffold in drug discovery. Mini Rev. Med. Chem. 2021 21 11 1367 1379 10.2174/1389557520666200804124924
    [Google Scholar]
  6. Banerjee S. Mukherjee S. Nath P. Mukherjee A. Mukherjee S. Ashok Kumar S.K. De S. Banerjee S. A critical review of benzimidazole: Sky-high objectives towards the lead molecule to predict the future in medicinal chemistry. Results Chem 2023 6 101013 10.1016/j.rechem.2023.101013
    [Google Scholar]
  7. Tahlan S. Kumar S. Narasimhan B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem. 2019 13 1 101 10.1186/s13065‑019‑0625‑4
    [Google Scholar]
  8. Alheety M.A. Mohammed L.A. Farhan M.A. Dadoosh S.A. Majeed A.H. Mahmood A.S. Mahmoud Z.H. A review on benzimidazole heterocyclic compounds: Synthesis and their medicinal activity applications. SynOpen 2023 7 4 652 673 10.1055/a‑2155‑9125
    [Google Scholar]
  9. Vasava M.S. Bhoi M.N. Rathwa S.K. Jethava D.J. Acharya P.T. Patel D.B. Patel H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini Rev. Med. Chem. 2020 20 7 532 565 10.2174/1389557519666191122125453
    [Google Scholar]
  10. Brishty S.R. Hossain M.J. Khandaker M.U. Faruque M.R.I. Osman H. Rahman S.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front. Pharmacol. 2021 12 762807 10.3389/fphar.2021.762807
    [Google Scholar]
  11. Marinescu M. Benzimidazole-triazole hybrids as antimicrobial and antiviral agents: A systematic review. Antibiotics 2023 12 7 1220 10.3390/antibiotics12071220
    [Google Scholar]
  12. Hassan F. Azad I. Asif M. Shukla D. Husain A. Khan A.R. Saquib M. Nasibullah M. Isatin conjugates as antibacterial agents: A brief review. Med. Chem. 2023 19 5 413 430 10.2174/1573406418666220930145336
    [Google Scholar]
  13. Ahmad N. Azad M.I. Khan A.R. Azad I. Benzimidazole as a promising antiviral heterocyclic scaffold: A review. J. Sci. Arts 2021 21 1 273 284 10.46939/J.Sci.Arts‑21.1‑b05
    [Google Scholar]
  14. Florio R. Carradori S. Veschi S. Brocco D. Di Genni T. Cirilli R. Casulli A. Cama A. De Lellis L. Screening of benzimidazole-based anthelmintics and their enantiomers as repurposed drug candidates in cancer therapy. Pharmaceuticals 2021 14 4 372 10.3390/ph14040372
    [Google Scholar]
  15. Pathare B. Bansode T. Review- biological active benzimidazole derivatives. Results Chem. 2021 3 100200 10.1016/j.rechem.2021.100200
    [Google Scholar]
  16. Kanwal A. Ahmad M. Aslam S. Naqvi S.A.R. Saif M.J. Recent advances in antiviral benzimidazole derivatives: A mini review. Pharm. Chem. J. 2019 53 3 179 187 10.1007/s11094‑019‑01976‑3
    [Google Scholar]
  17. World Health Organization WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance World Health Organization 2024 1 72
    [Google Scholar]
  18. Ebenezer O. Oyetunde-Joshua F. Omotoso O.D. Shapi M. Benzimidazole and its derivatives: Recent Advances (2020–2022). Results Chem 2023 5 100925 10.1016/j.rechem.2023.100925
    [Google Scholar]
  19. Nguyen V.T. Huynh T.K.C. Ho G.T.T. Nguyen T.H.A. Le Anh Nguyen T. Dao D.Q. Mai T.V.T. Huynh L.K. Hoang T.K.D. Metal complexes of benzimidazole-derived as potential anti-cancer agents: Synthesis, characterization, combined experimental and computational studies. R. Soc. Open Sci. 2022 9 9 220659 10.1098/rsos.220659
    [Google Scholar]
  20. Ansari J.A. Ahmad M.K. Fatima N. Azad I. Mahdi A.A. Satyanarayan G.N.V. Ahmad N. Chemical characterization, In-silico evaluation, and molecular docking analysis of antiproliferative compounds isolated from the bark of Anthocephalus cadamba Miq. Anticancer. Agents Med. Chem. 2022 22 20 3416 3437 10.2174/1871520622666220204123348
    [Google Scholar]
  21. Owais M. Kumar A. Hasan S.M. Singh K. Azad I. Hussain A. Suvaiv Akil M. Quinoline derivatives as promising scaffolds for antitubercular activity: A comprehensive review. Mini Rev. Med. Chem. 2024 24 13 1238 1251 10.2174/0113895575281039231218112953
    [Google Scholar]
  22. Lewis K. The Science of antibiotic discovery. Cell 2020 181 1 29 45 10.1016/j.cell.2020.02.056
    [Google Scholar]
  23. Mohapatra T.R. Ganguly S. The recent development of benzimidazole derivative as a promising pharmacological scaffold. J. Indian Chem. Soc. 2024 101 9 101237 10.1016/j.jics.2024.101237
    [Google Scholar]
  24. Picconi P. Hind C. Jamshidi S. Nahar K. Clifford M. Wand M.E. Sutton J.M. Rahman K.M. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J. Med. Chem. 2017 60 14 6045 6059 10.1021/acs.jmedchem.7b00108
    [Google Scholar]
  25. Terreni M. Taccani M. Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671
    [Google Scholar]
  26. Dokla E.M.E. Abutaleb N.S. Milik S.N. Kandil E.A.E.A. Qassem O.M. Elgammal Y. Nasr M. McPhillie M.J. Abouzid K.A.M. Seleem M.N. Imming P. Adel M. SAR investigation and optimization of benzimidazole-based derivatives as antimicrobial agents against gram-negative bacteria. Eur. J. Med. Chem. 2023 247 115040 10.1016/j.ejmech.2022.115040
    [Google Scholar]
  27. Ahmed S.K. Hussein S. Qurbani K. Ibrahim R.H. Fareeq A. Mahmood K.A. Mohamed M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. JJ. Med. Surgery, Public Heal. 2024 2 100081 10.1016/j.glmedi.2024.100081
    [Google Scholar]
  28. Malasala S. Ahmad M.N. Akunuri R. Shukla M. Kaul G. Dasgupta A. Madhavi Y.V. Chopra S. Nanduri S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem. 2021 212 112996 10.1016/j.ejmech.2020.112996
    [Google Scholar]
  29. Olczak A. Pawlak T. Kałużyńska S. Gobis K. Korona-Głowniak I. Suśniak K. Zaborowski M. Szczesio M. Structure and microbiological activity of 1h-benzo[d]imidazole derivatives. Int. J. Mol. Sci. 2023 24 4 3319 10.3390/ijms24043319
    [Google Scholar]
  30. Sharma S. Chauhan A. Ranjan A. Mathkor D.M. Haque S. Ramniwas S. Tuli H.S. Jindal T. Yadav V. Emerging challenges in antimicrobial resistance: Implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front. Microbiol. 2024 15 1403168 10.3389/fmicb.2024.1403168
    [Google Scholar]
  31. Shekhar Yadav C. Azad I. Rahman Khan A. Nasibullah M. Ahmad N. Hansda D. Nusrat Ali S. Shrivastav K. Akil M. Lohani M.B. Recent advances in the synthesis of pyrazoline derivatives from chalcones as potent pharmacological agents: A comprehensive review. Results Chem 2024 7 101326 10.1016/j.rechem.2024.101326
    [Google Scholar]
  32. Hosamani K.M. Seetharamareddy H.R. Keri R.S. Hanamanthagouda M.S. Moloney M.G. Microwave assisted, one-pot synthesis of 5-nitro- 2-aryl substituted-1H-benzimidazole libraries: Screening in vitro for antimicrobial activity. J. Enzyme Inhib. Med. Chem. 2009 24 5 1095 1100 10.1080/14756360802632716
    [Google Scholar]
  33. Al-Tel T.H. Al-Qawasmeh R.A. Post groebke–blackburn multicomponent protocol: Synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives as potential antimicrobial agents. Eur. J. Med. Chem. 2010 45 12 5848 5855 10.1016/j.ejmech.2010.09.049
    [Google Scholar]
  34. Fang B. Zhou C.H. Rao X.C. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur. J. Med. Chem. 2010 45 9 4388 4398 10.1016/j.ejmech.2010.06.012
    [Google Scholar]
  35. Jubie S. Rajeshkumar R. Siddhartha G. Surendrareddy K. And D.H.S. Elango K. Microwave assisted synthesis of some novel benzimidazole substituted fluoroquinolones and their antimicrobial evaluation. J. Pharm. Sci. Res 2010 2 2 69 76
    [Google Scholar]
  36. Dua R. Sonwane S.K. Srivastava S.K. Srivastava S.D. Conventional and greener approach for the synthesis of some novel substituted-4-oxothiazolidine and their 5-arylidene derivatives of 2-methyl-benzimidazole: Antimicrobial activities. J. Chem. Pharm. Res. 2010 2 1 415 423
    [Google Scholar]
  37. Malla Reddy V. Ravinder Reddy K. Synthesis and antimicrobial activity of some novel 4-(1H-Benz[d]imidazol-2yl)-1,3-thiazol-2-amines. Chem. Pharm. Bull. (Tokyo) 2010 58 7 953 956 10.1248/cpb.58.953
    [Google Scholar]
  38. Rohini R. Shanker K. Reddy P.M. Ravinder V. Synthesis and antimicrobial activities of a new class of 6-arylbenzimidazo[1,2-c]quinazolines. J. Braz. Chem. Soc. 2010 21 1 49 57 10.1590/S0103‑50532010000100009
    [Google Scholar]
  39. Mungra D.C. Patel M.P. Patel R.G. Microwave-assisted synthesis of some new tetrazolo[1,5-a]quinoline-based benzimidazoles catalyzed by p-TsOH and investigation of their antimicrobial activity. Med. Chem. Res. 2011 20 6 782 789 10.1007/s00044‑010‑9388‑0
    [Google Scholar]
  40. Hosamani K.M. Shingalapur R.V. Synthesis of 2‐mercaptobenzimidazole derivatives as potential anti‐microbial and cytotoxic agents. Arch. Pharm. (Weinheim) 2011 344 5 311 319 10.1002/ardp.200900291
    [Google Scholar]
  41. Soni L.K. Narsinghani T. Sethi A. Antimicrobial benzimidazole derivatives: synthesis and in vitro biological evaluation. Med. Chem. Res. 2012 21 12 4330 4334 10.1007/s00044‑012‑9976‑2
    [Google Scholar]
  42. Desai N.C. Dodiya A.M. Makwana A.H. Antimicrobial screening of novel synthesized benzimidazole nucleus containing 4-oxo-thiazolidine derivatives. Med. Chem. Res. 2012 21 9 2320 2328 10.1007/s00044‑011‑9752‑8
    [Google Scholar]
  43. Ranjith P.K. Rajeesh P. Haridas K.R. Susanta N.K. Guru Row T.N. Rishikesan R. Suchetha Kumari N. Design and synthesis of positional isomers of 5 and 6-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles as possible antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2013 23 18 5228 5234 10.1016/j.bmcl.2013.06.072
    [Google Scholar]
  44. Zhou B. Li B. Yi W. Bu X. Ma L. Synthesis, antioxidant, and antimicrobial evaluation of some 2-arylbenzimidazole derivatives. Bioorg. Med. Chem. Lett. 2013 23 13 3759 3763 10.1016/j.bmcl.2013.05.004
    [Google Scholar]
  45. Zhang H.Z. Damu G.L.V. Cai G.X. Zhou C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of fluconazole analogues and their synergistic effects with chloromycin, norfloxacin and fluconazole. Eur. J. Med. Chem. 2013 64 329 344 10.1016/j.ejmech.2013.03.049
    [Google Scholar]
  46. Sathaiah G. Ravi Kumar A. Chandra Shekhar A. Raju K. Shanthan Rao P. Narsaiah B. Raghuram Reddy A. Lakshmi D. Sridhar B. Design and synthesis of positional isomers of 1-alkyl-2-trifluoromethyl-5 or 6-substituted benzimidazoles and their antimicrobial activity. Med. Chem. Res. 2013 22 3 1229 1237 10.1007/s00044‑012‑0131‑x
    [Google Scholar]
  47. Ravindernath A. Reddy M.S. Sunil V. Synthesis and biological evaluation of benzo[d]imidazolyl chromeno[2,3-d]pyrimidinones. Med. Chem. Res. 2014 23 2 759 764 10.1007/s00044‑013‑0674‑5
    [Google Scholar]
  48. Ajani O. Aderohunmu D. Olorunshola S. Ikpo C. Olanrewaju I. Facile synthesis, characterization and antimicrobial activity of 2-alkanamino benzimidazole derivatives. Orient. J. Chem. 2016 32 1 109 120 10.13005/ojc/320111
    [Google Scholar]
  49. Kapoor A. Dhiman N. Synthesis and evaluation of 2-aryl substituted benzimidazole derivatives bearing 1,3,4-oxadiazole nucleus for antimicrobial activity. Pharm. Lett. 2016 8 12 97 104
    [Google Scholar]
  50. Shinde S.V. Tale R.H. Rodg A.H. Raote A.D. Patil K.M. Pawar R.P. Design, synthesis and biological evaluation of novel ureidobezimadazole hybrid as potent TNF-Ž ± and IL-6 inhibitor, and antimicrobial agents. J. Chem. Pharm. Res. 2016 8 4 395 401
    [Google Scholar]
  51. Garrepalli S. Tatipamula S. Gade A. Yadeli K. Guggila R. Synthesis, characterization and evaluation of new benzimidazole derivatives. World J. Pharm. 2016 37 42
    [Google Scholar]
  52. Raad H. Kubba A. Synthesis, characterization and antibacterial activity of new 5-ethoxy-2-mercapto benzimidazole derivatives. J. Pharm. Res. 2016 1010 814 824
    [Google Scholar]
  53. El-Gohary N.S. Shaaban M.I. Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Eur. J. Med. Chem. 2017 131 255 262 10.1016/j.ejmech.2017.03.018
    [Google Scholar]
  54. Singh L. R. Avula S. R. Raj S. Srivastava A. Palnati G. R. Tripathi C. K. M. Pasupuleti M. Sashidhara K. V. Coumarin–benzimidazole hybrids as a potent antimicrobial agent: Synthesis and biological elevation. J. Antibiot 2017 17 9 954 961 10.1038/ja.2017.70
    [Google Scholar]
  55. Cindrić M. Perić M. Kralj M. Martin-Kleiner I. David-Cordonnier M.H. Paljetak H.Č. Matijašić M. Verbanac D. Karminski-Zamola G. Hranjec M. Antibacterial and antiproliferative activity of novel 2-benzimidazolyl- and 2-benzothiazolyl-substituted benzo[b]thieno-2-carboxamides. Mol. Divers. 2018 22 3 637 646 10.1007/s11030‑018‑9822‑7
    [Google Scholar]
  56. Wang Y.N. Bheemanaboina R.R.Y. Cai G.X. Zhou C.H. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove. Bioorg. Med. Chem. Lett. 2018 28 9 1621 1628 10.1016/j.bmcl.2018.03.046
    [Google Scholar]
  57. Redayan M.A. Hussein M.S. lafta A.T. Synthesis, spectroscopic characterization, and antibacterial evaluation of new Schiff bases bearing benzimidazole moiety. J. Phys. Conf. Ser. 2018 1003 1 012018 10.1088/1742‑6596/1003/1/012018
    [Google Scholar]
  58. Naaz F. Srivastava R. Singh A. Singh N. Verma R. Singh V.K. Singh R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem. 2018 26 12 3414 3428 10.1016/j.bmc.2018.05.015
    [Google Scholar]
  59. Skepper C.K. Moreau R.J. Appleton B.A. Benton B.M. Drumm J.E. III Feng B.Y. Geng M. Hu C. Li C. Lingel A. Lu Y. Mamo M. Mergo W. Mostafavi M. Rath C.M. Steffek M. Takeoka K.T. Uehara K. Wang L. Wei J.R. Xie L. Xu W. Zhang Q. de Vicente J. Discovery and optimization of phosphopantetheine adenylyltransferase inhibitors with gram-negative antibacterial activity. J. Med. Chem. 2018 61 8 3325 3349 10.1021/acs.jmedchem.7b01861
    [Google Scholar]
  60. Liu H.B. Gao W.W. Tangadanchu V.K.R. Zhou C.H. Geng R.X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2018 143 66 84 10.1016/j.ejmech.2017.11.027
    [Google Scholar]
  61. Desai N.C. Pandya D. Vaja D. Synthesis and antimicrobial activity of some heterocyclic compounds bearing benzimidazole and pyrazoline motifs. Med. Chem. Res. 2018 27 1 52 60 10.1007/s00044‑017‑2040‑5
    [Google Scholar]
  62. Ashok D. Gundu S. Aamate V.K. Devulapally M.G. Conventional and microwave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities. Mol. Divers. 2018 22 4 769 778 10.1007/s11030‑018‑9828‑1
    [Google Scholar]
  63. Arab H.A. Faramarzi M.A. Samadi N. Irannejad H. Foroumadi A. Emami S. New 7-piperazinylquinolones containing (benzo[d]imidazol-2-yl)methyl moiety as potent antibacterial agents. Mol. Divers. 2018 22 4 815 825 10.1007/s11030‑018‑9834‑3
    [Google Scholar]
  64. Al-blewi F.F. Almehmadi M.A. Aouad M.R. Bardaweel S.K. Sahu P.K. Messali M. Rezki N. El Ashry E.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J. 2018 12 1 110 10.1186/s13065‑018‑0479‑1
    [Google Scholar]
  65. K G. S I. Synthesis, characterization and antimicrobial study of 1, 2-disubstituted benzimidazoles. Int. J. Chem. Sci. 2018 16 4 1 7 10.21767/0972‑768X.1000291
    [Google Scholar]
  66. Khalifa M.E. Gobouri A.A. Kabli F.M. Altalhi T.A. Almalki A.S.A. Mohamed M.A. Synthesis, Antibacterial, and anti hepg2 cell line human hepatocyte carcinoma activity of some new potentially benzimidazole-5-(aryldiazenyl)thiazole derivatives. Molecules 2018 23 12 3285 10.3390/molecules23123285
    [Google Scholar]
  67. Padhy G. K. Panda J. Raul S. K. Behera A. K. Synthesis of some new benzimidazole acid hydrazide derivatives as antibacterial agents. Indian J. Heterocycl. Chem. 2019 28 4 447 451
    [Google Scholar]
  68. Khalifa M.E. Synthesis and evaluation of new 2‐mercaptomethyl benzimidazole scaffolds as potential antibacterial, antioxidant and cytotoxic agents. ChemistrySelect 2020 5 34 10562 10566 10.1002/slct.202002822
    [Google Scholar]
  69. Shastri R. Jadhav S. A facile protocol for synthesis of some novel 2-phenethyl-1h-benzimidazole derivatives and screening of in-vitro anti-inflammatory and antimicrobial activities. Chem. Sci. Trans. 2019 8 2 10.7598/cst2019.1566
    [Google Scholar]
  70. Singh G. Kaur C. Sharma P.K. Kumar R. Mohan C. Evaluation and characterisation of antibacterial potential of novel schiff bases of benzimidazole. Int. Res. J. Pharm 2019 10 2 176 183 10.7897/2230‑8407.100264
    [Google Scholar]
  71. Bala Guraiah M. Triloknadh S. Nagaraju B. Rajesh Kumar T.V. Vijaya D. Rao C.V. Synthesis, characterization and biological activity of some novel benzimidazole linked 1,3,4-oxadiazoles. Heterocyclic Lett. 2019 9 1 2230 9632
    [Google Scholar]
  72. Wang Y.T. Shi T.Q. Fu J. Zhu H.L. Discovery of novel bacterial FabH inhibitors (Pyrazol-Benzimidazole amide derivatives): Design, synthesis, bioassay, molecular docking and crystal structure determination. Eur. J. Med. Chem. 2019 171 209 220 10.1016/j.ejmech.2019.03.026
    [Google Scholar]
  73. Singh M. Kurmi M. Liquid phase synthesis of coumarino benzimidazoles for antimicrobial activity. Indo Am. J. Pharm. Res. 2019 9 9 430 456 10.5281/ZENODO.3463901
    [Google Scholar]
  74. Chaithanya B. Kasiviswanath I.V. Prabhakara Chary D. Synthesis and pharmacological screening of new Isatin-3-[n2-(benzimidazol-1- acetyl)]hydrazone. Bull. Chem. Soc. Ethiop. 2019 33 2 321 329 10.4314/bcse.v33i2.12
    [Google Scholar]
  75. Tahlan S. Kumar S. Ramasamy K. Lim S.M. Shah S.A.A. Mani V. Pathania R. Narasimhan B. Design, synthesis and biological profile of heterocyclic benzimidazole analogues as prospective antimicrobial and antiproliferative agents. BMC Chem. 2019 13 1 50 10.1186/s13065‑019‑0567‑x
    [Google Scholar]
  76. Singh G. Kaur C. Sharma P.K. Kumar R. Mohan C. Acetamide Linked azetidinone-benzimidazole derivatives: Synthesis and antibacterial activity. Int. Res. J. Pharm 2019 10 3 148 153 10.7897/2230‑8407.100394
    [Google Scholar]
  77. Cheddie A. Shintre S.A. Bantho A. Mocktar C. Koorbanally N.A. Synthesis and antibacterial activity of a series of 2‐trifluoromethylbenzimidazole‐thiazolidinone derivatives. J. Heterocycl. Chem. 2020 57 1 299 307 10.1002/jhet.3777
    [Google Scholar]
  78. Dokla E.M.E. Abutaleb N.S. Milik S.N. Li D. El-Baz K. Shalaby M.A.W. Al-Karaki R. Nasr M. Klein C.D. Abouzid K.A.M. Seleem M.N. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. Eur. J. Med. Chem. 2020 186 111850 10.1016/j.ejmech.2019.111850
    [Google Scholar]
  79. Chaudhari S.R. Patil P.N. Patil U.K. Patel H.M. Rajput J.D. Pawar N.S. Patil D.B. Green synthesis of N-substituted benzimidazoles: The promising methicillin resistant Staphylococcus aureus (MRSA) inhibitors. Chem. Data Collect 2020 25 100344 10.1016/j.cdc.2020.100344
    [Google Scholar]
  80. Morcoss M.M. Abdelhafez E.S.M.N. Ibrahem R.A. Abdel-Rahman H.M. Abdel-Aziz M. Abou El-Ella D.A. Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg. Chem. 2020 101 103956 10.1016/j.bioorg.2020.103956
    [Google Scholar]
  81. Abdel-Motaal M. Almohawes K. Tantawy M.A. Antimicrobial evaluation and docking study of some new substituted benzimidazole-2yl derivatives. Bioorg. Chem. 2020 101 103972 10.1016/j.bioorg.2020.103972
    [Google Scholar]
  82. Marinescu M. Cinteză L.O. Marton G.I. Chifiriuc M.C. Popa M. Stănculescu I. Zălaru C.M. Stavarache C.E. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases. BMC Chem. 2020 14 1 45 10.1186/s13065‑020‑00697‑z
    [Google Scholar]
  83. Aparna Y. Nirmala G. Subhashini N.J.P. Sharada L.N. Sreekanth S. Synthesis and antimicrobial activity of novel bis-1,2,3-triazol-1h-4-yl-substituted aryl benzimidazole-2-thiol derivatives. Russ. J. Gen. Chem. 2020 90 8 1501 1506 10.1134/S1070363220080186
    [Google Scholar]
  84. Penieres-Carrillo J.G. Ríos-Guerra H. Pérez-Flores J. Rodríguez-Molina B. Torres-Reyes Á. Barrera-Téllez F. González-Carrillo J. Moreno-González L. Martínez-Zaldívar A. Nolasco-Fidencio J.J. Matus-Meza A.S. Luna-Mora R.A. Reevaluating the synthesis of 2,5‐disubstituted‐1 H ‐benzimidazole derivatives by different green activation techniques and their biological activity as antifungal and antimicrobial inhibitor. J. Heterocycl. Chem. 2020 57 1 436 455 10.1002/jhet.3801
    [Google Scholar]
  85. Obaiah N. Bodke Y.D. Telkar S. Synthesis of 3‐[(1H‐Benzimidazol‐2‐ylsulfanyl)(aryl)methyl]‐4‐hydroxycoumarin derivatives as potent bioactive molecules. ChemistrySelect 2020 5 1 178 184 10.1002/slct.201903472
    [Google Scholar]
  86. Naz S. Bagade M.B. Green route for the synthesis of oxadiazole derivative containing benzimidazole moiety and its mannich bases: In-vitro antimicrobial activity. Rasayan J. Chem. 2020 13 1 370 376 10.31788/RJC.2020.1315343
    [Google Scholar]
  87. Bhavsar Z.A. Acharya P.T. Jethava D.J. Patel D.B. Vasava M.S. Rajani D.P. Pithawala E. Patel H.D. Microwave assisted synthesis, biological activities, and in silico investigation of some benzimidazole derivatives. J. Heterocycl. Chem. 2020 57 12 4215 4238 10.1002/jhet.4129
    [Google Scholar]
  88. Eftekhari S. Foroughifar N. Hallajian S. Khajeh-Amiri A. Green synthesis of some novel imidazole schiff base derivatives under microwave irradiation / reflux conditions and evaluations of the antibacterial activity. Curr. Microw. Chem. 2020 7 3 207 215 10.2174/2213335607999200520124245
    [Google Scholar]
  89. Evrard A. Siomenan C. Etienne C.T. Daouda T. Souleymane C. Drissa S. Ané A. Evrard A. Siomenan C. Etienne C.T. Daouda T. Souleymane C. Drissa S. Ané A. Design, synthesis and in vitro antibacterial activity of 2-thiomethyl-benzimidazole derivatives. Adv. Biol. Chem. 2021 11 4 165 177 10.4236/abc.2021.114012
    [Google Scholar]
  90. Bamoro C. Bamba F. Steve-Evanes K.T.D. Aurélie V. Vincent C. Bamoro C. Bamba F. Steve-Evanes K.T.D. Aurélie V. Vincent C. Design, synthesis and antibacterial activity evaluation of 4,5-diphenyl-1<i>H</i>-imidazoles derivatives. Open J. Med. Chem. 2021 11 2 17 26 10.4236/ojmc.2021.112002
    [Google Scholar]
  91. Sapijanskaitė-Banevič B. Palskys V. Vaickelionienė R. Šiugždaitė J. Kavaliauskas P. Grybaitė B. Mickevičius V. Synthesis and antibacterial activity of new azole, diazole and triazole derivatives based on p-aminobenzoic acid. Molecules 2021 26 2597 10.3390/molecules26092597
    [Google Scholar]
  92. Kamat V. Yallur B.C. Poojary B. Patil V.B. Nayak S.P. Krishna P.M. Joshi S.D. Synthesis, molecular docking, antibacterial, and anti‐inflammatory activities of benzimidazole‐containing tricyclic systems. J. Chin. Chem. Soc. (Taipei) 2021 68 6 1055 1066 10.1002/jccs.202000454
    [Google Scholar]
  93. Patrick-Armand A. Siomenan C. Doumade Z. Adéyolé T. Eric B. Daouda T. Drissa S. Ané A. Patrick-Armand A. Siomenan C. Doumade Z. Adéyolé T. Eric B. Daouda T. Drissa S. Ané A. Synthesis and antibacterial activities of new 2-(benzylthio)pyrimidines and 2-(Benzimidazolylmethylthio)pyrimidines Derivatives. Open J. Med. Chem. 2021 11 3 27 39 10.4236/ojmc.2021.113003
    [Google Scholar]
  94. Khan S. Kale M. Siddiqui F. Nema N. Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein. Digit. Chinese Med 2021 4 2 102 119 10.1016/j.dcmed.2021.06.004
    [Google Scholar]
  95. Sun H. Ansari M.F. Fang B. Zhou C.H. Natural berberine-hybridized benzimidazoles as novel unique bactericides against Staphylococcus aureus. J. Agric. Food Chem. 2021 69 28 7831 7840 10.1021/acs.jafc.1c02545
    [Google Scholar]
  96. Waghmode K.T. Jadhav V. Nikam B.T. Synthesis and antibacterial study of thiadiazole substituted benzimidazole derivatives. World J. Pharm. Res. 2021 10 3 1572 1578 10.20959/wjpr20213‑19885
    [Google Scholar]
  97. Yan L. Fu J. Li S. Zhang J. Wang S. Gu Q. Zhang Y. Lin F. Microwave-assisted catalyzed synthesis and in vitro bioactivity evaluation of benzimidazoles bearing phenolic hydroxyl. Chem. Res. Chin. Univ. 2021 37 3 639 646 10.1007/s40242‑020‑0274‑0
    [Google Scholar]
  98. Vlasov S. V. Vlasova O. D. Severina H. I. Krolenko K. Y. Borysov O. V. Abu Sharkh A. I. M. Vlasov V. S. Georgiyants V. A. Design, synthesis and in vitro antimicrobial activity of 6-(1H-benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Sci. Pharm. 2021 89 4 49 10.3390/scipharm89040049
    [Google Scholar]
  99. Begunov R.S. Zaitseva Y.V. Sokolov A.A. Egorov D.O. Filimonov S.I. Synthesis and antibacterial activity of 1,2,3,4-tetrahydro- and pyrido[1,2-a]Benzimidazoles. Pharm. Chem. J. 2022 56 1 22 28 10.1007/s11094‑022‑02596‑0
    [Google Scholar]
  100. Jaysing Bhor R. Sakharam Sable K. Shivaji Bhosale M. Bhausaheb Dighe S. Synthesis and in-vitro antibacterial activity of n′-{4-[2-(1h-benzimidazol-2-yl)-2-oxoethyl]phenyl}-2- hydroxyacetohydrazide and it’s derivatives. Asian J. Res. Chem. Pharm. Sci. 2022 10 1 25 34 10.36673/AJRCPS.2022.v10.i01.A04
    [Google Scholar]
  101. Jaysing Bhor R. Pawar S. Magar S. Dighe S. Synthesis and in-vitro anti-bacterial activity of “3-(2-[1hbenzimidazole-2-yl)-2-oxethyl]phenyl)acetic acid and its derivatives. Asian J. Res. Chem. Pharm. Sci. 2022 10 1 35 44 10.36673/AJRCPS.2022.v10.i01.A05
    [Google Scholar]
  102. Coulibaly S. Coulibal S. Bamba F. Achi P-A. Kouadio F.K. Evrard A. Ané A. Coulibaly S. Coulibal S. Bamba F. Achi P-A. Kouadio F.K. Evrard A. Ané A. Synthesis and effect of N-alkylation on antibacterial activity of 2-(Benzylthio) methyl-1H-benzimidazole derivatives. GSC Biol. Pharm. Sci 2022 20 3 272 10.30574/gscbps.2022.20.3.0370
    [Google Scholar]
  103. Rep V. Štulić R. Koštrun S. Kuridža B. Crnolatac I. Radić Stojković M. Paljetak H.Č. Perić M. Matijašić M. Raić-Malić S. Novel tetrahydropyrimidinyl-substituted benzimidazoles and benzothiazoles: synthesis, antibacterial activity, DNA interactions and ADME profiling. RSC Med. Chem 2022 13 12 1504 1525 10.1039/D2MD00143H
    [Google Scholar]
  104. El Faydy M. Dahaieh N. Ounine K. Lakhrissi B. Warad I. Tüzün B. Zarrouk A. Synthesis, identification, antibacterial activity, ADME/T and 1BNA-docking investigations of 8-quinolinol analogs bearing a benzimidazole moiety. Arab. J. Sci. Eng. 2022 47 1 497 510 10.1007/s13369‑021‑05749‑7
    [Google Scholar]
  105. Fasiuddin G.S. Liakath Ali Khan F. Sakthivel S. Muthu S. Irfan A. Synthesis, spectroscopic, molecular docking and inhibitory activity of 6-Bromo-2-(4-chlorophenyl)-1H-benzimidazole: A DFT approach. J. Mol. Struct. 2022 1261 132815 10.1016/j.molstruc.2022.132815
    [Google Scholar]
  106. Achi P.A. Kouadio F.K. Coulibali S. Synthesis and antibacterial effect of 2-(benzylthio) methyl-1h-benzimidazole derivatives on two Bacteria of medical interest. Acta Chim. Pharm. Indica 2022 12 3 1 8 10.37532/2277‑288X.2022.12(3).183
    [Google Scholar]
  107. Yeşilçayır E. Çelik İ. Şen H.T. Gürpınar S.S. Eryılmaz M. Ayhan-Kılcıgil G. Novel benzimidazole-based compounds as antimicrobials: Synthesis, molecular docking, molecular dynamics and in silico ADME profile studies. Acta Chim. Slov. 2022 69 2 419 429 10.17344/acsi.2021.7314
    [Google Scholar]
  108. Celik I. Çevik U.A. Karayel A. Işık A. Kayış U. Gül Ü.D. Bostancı H.E. Konca S.F. Özkay Y. Kaplancıklı Z.A. Synthesis, molecular docking, dynamics, quantum-chemical computation, and antimicrobial activity studies of some new benzimidazole–thiadiazole hybrids. ACS Omega 2022 7 50 47015 47030 10.1021/acsomega.2c06142
    [Google Scholar]
  109. Perin N. Cindrić M. Zlatar I. Persoons L. Daelemans D. Radovanović V. Banjanac M. Brajša K. Hranjec M. Biological evaluation of novel bicyclic heteroaromatic benzazole derived acrylonitriles: Synthesis, antiproliferative and antibacterial activity. Med. Chem. Res. 2022 31 8 1339 1350 10.1007/s00044‑022‑02915‑w
    [Google Scholar]
  110. Işik A. Acar Çevik U. Çelik I. Bostancı H.E. Karayel A. Gündoğdu G. Ince U. Koçak A. Özkay Y. Kaplancıklı Z.A. Benzimidazole-hydrazone derivatives: Synthesis, in vitro anticancer, antimicrobial, antioxidant activities, in silico DFT and ADMET studies. J. Mol. Struct. 2022 1270 133946 10.1016/j.molstruc.2022.133946
    [Google Scholar]
  111. Souleymane C. Siomenan C. Evrard A. Bakary C. Etienne C.T. Ane A. Influence of N-methyl piperidine on antibacterial activity of 2-(Thioalkyl)-1H_methylbenzimidazole derivatives. Chem Xpress 2022 14 4 9 18
    [Google Scholar]
  112. Gadali K.E. Rafya M. Mansouri A.E. Maatallah M. Van-der lee A. Mehdi A. Ouahrouch A. Benkhalti F. Sanghvi Y.S. Taourirte M. Lazrek H.B. Synthesis, structural characterization and antibacterial activity evaluation of novel quinolone-1,2,3-triazole-benzimidazole hybrids. J. Mol. Struct. 2023 1282 135179 10.1016/j.molstruc.2023.135179
    [Google Scholar]
  113. AlDifar H.A. Baaiu B.S. Darwish K.M.A. Ali M.F. Dakhil O.O. Abd-Alsalam M. Al Difar H. Bthaloylamino K.E.Y.W.O.R.D.S.B. Synthesis of benzimidazole and phthaloylamino acid derivatives and antibacterial activity. J. Med. Chem. Sci. 2023 6 9 1975 1984
    [Google Scholar]
  114. Liu K. Luo R. Fu J. Bao L. Xue Y. Gu Q. Zhang Y. Lin F. Convenient and green synthesis of novel 1,2,5-trisubstituted benzimidazole compounds and their antibacterial activity evaluation. J. Indian Chem. Soc. 2023 20 5 1095 1105 10.1007/s13738‑022‑02736‑z
    [Google Scholar]
  115. Fu J. Yue Y. Liu K. Wang S. Zhang Y. Su Q. Gu Q. Lin F. Zhang Y. PTSA-catalyzed selective synthesis and antibacterial evaluation of 1,2-disubstituted benzimidazoles. Mol. Divers. 2023 27 2 873 887 10.1007/s11030‑022‑10460‑2
    [Google Scholar]
  116. Sukiennik J. Olczak A. Gobis K. Korona-Głowniak I. Suśniak K. Fruziński A. Szczesio M. Structures and biological activity of three 2-(pyridin-2-yl)-1 H -benzimidazole derivatives. Acta Crystallogr. C Struct. Chem. 2023 79 12 504 512 10.1107/S2053229623009452
    [Google Scholar]
  117. Mallikanti V. Thumma V. Matta R. Valluru K.R. Konidena L.N.S. Boddu L.S. Pochampally J. Synthesis, antimicrobial activity and molecular docking of novel benzimidazole conjugated 1,2,3-triazole analogues. Chem. Data Collect. 2023 45 101034 10.1016/j.cdc.2023.101034
    [Google Scholar]
  118. Phan N.K.N. Huynh T.K.C. Nguyen H.P. Le Q.T. Nguyen T.C.T. Ngo K.K.H. Nguyen T.H.A. Ton K.A. Thai K.M. Hoang T.K.D. Exploration of remarkably potential multitarget-directed n-alkylated-2-(substituted phenyl)-1 H -benzimidazole derivatives as antiproliferative, antifungal, and antibacterial agents. ACS Omega 2023 8 31 28733 28748 10.1021/acsomega.3c03530
    [Google Scholar]
  119. Selvakumaran M. Predhanekar M.I. Kubaib A. Visagaperumal D. Novel benzimidazole linked piperidine derivatives screened for antibacterial and antioxidant properties with density functional and molecular mechanic tools. Results Chem 2023 5 100765 10.1016/j.rechem.2023.100765
    [Google Scholar]
  120. Beč A. Cindrić M. Persoons L. Banjanac M. Radovanović V. Daelemans D. Hranjec M. Novel biologically active N-substituted benzimidazole derived schiff bases: Design, synthesis, and biological evaluation. Molecules 2023 28 9 3720 10.3390/molecules28093720
    [Google Scholar]
  121. Lungu L. Blaja S. Cucicova C. Ciocarlan A. Barba A. Kulcițki V. Shova S. Vornicu N. Geana E.I. Mangalagiu I.I. Aricu A. Synthesis and antimicrobial activity evaluation of homodrimane sesquiterpenoids with a benzimidazole unit. Molecules 2023 28 3 933 10.3390/molecules28030933
    [Google Scholar]
  122. Ahmed Saleh Alzahrani S. Nazreen S. Elhenawy A.A. Neamatallah T. Mahboob M. Synthesis, biological evaluation, and molecular docking of new benzimidazole-1,2,3-triazole hybrids as antibacterial and antitumor agents. Polycycl. Aromat. Compd. 2023 43 4 3380 3391 10.1080/10406638.2022.2069133
    [Google Scholar]
  123. Padhy G.K. Rath D. Bhukta P. Kumar L.A. Sethy K. Panda J. Raul S.K. Behera A.K. Synthesis Of novel benzimidazole-pyrazoline hybrid molecules as antibacterial and anticancer agent. J. Pharm. Negat. Results 2023 14 521 526 10.47750/PNR.2023.14.S01.61
    [Google Scholar]
  124. Mokariya J.A. Rajani D.P. Patel M.P. 1,2,4‐triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities. Arch. Pharm. (Weinheim) 2023 356 4 2200545 10.1002/ardp.202200545
    [Google Scholar]
  125. Duy Tuy Ha N. Phuong T. Van Cuong N. Nguyen Minh An T. Novel benzimidazol‐2‐thione derivatives: Synthesis, in vitro anticancer, antimicrobial activities, and in silico molecular docking study. Chemistry Select 2023 8 17 e202300246 10.1002/slct.202300246
    [Google Scholar]
  126. Elwahy A.H.M. Hammad H.F. Ibrahim N.S. Al-Shamiri H.A.S. Darweesh A.F. Abdelhamid I.A. Synthesis and antibacterial activities of novel hybrid molecules based on benzothiazole, benzimidazole, benzoxazole, and pyrimidine derivatives, each connected to N-arylacetamide and benzoate groups. J. Mol. Struct. 2024 1307 137965 10.1016/j.molstruc.2024.137965
    [Google Scholar]
  127. Beč A. Zlatić K. Banjanac M. Radovanović V. Starčević K. Kralj M. Hranjec M. Design, synthesis and biological activity of novel methoxy and hydroxy-substituted N-benzimidazole-derived carboxamides. Molecules 2024 29 9 2138 10.3390/molecules29092138
    [Google Scholar]
/content/journals/aia/10.2174/0122113525350256250107073402
Loading
/content/journals/aia/10.2174/0122113525350256250107073402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test