Skip to content
2000
image of Anti-HIV Treatment: History, Current Advances and Targets

Abstract

Human Immunodeficiency Virus (HIV) is a retrovirus that is well known to be the causative agent for acquired immunodeficiency syndrome. In this review, we discussed the HIV virus, its transmission, events that lead to AIDS, the historical aspect of its emergence, current prospects in antiretroviral drugs, and its evolution up until current treatment strategies. We have also discussed the recent research related to new molecules, which showed potent anti-HIV activity and have the potential to become a key targetfor drugdevelopment. New studies have explored novel drug target sites and the benefits of using artificial intelligence and machine learning in drug discovery and design, leading to better results and advancements in treatment.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525349779250101062707
2025-01-27
2025-07-08
Loading full text...

Full text loading...

References

  1. Abadie R.B. Brown E.M. Campbell J.R. Alvarez I.A. Allampalli V. Ahmadzadeh S. Varrassi G. Shekoohi S. Kaye A.D. Incidence and risks of HIV infection, medication options, and adverse effects in accidental needle stick injuries: A Narrative review. Cureus 2024 16 1 e51521 10.7759/cureus.51521 38304675
    [Google Scholar]
  2. Dandona L. Kumar G.A. Lakshmi V. Ahmed G.M.M. Akbar M. Ramgopal S.P. Sudha T. Alary M. Dandona R. HIV incidence from the first population-based cohort study in India. BMC Infect. Dis. 2013 13 1 327 10.1186/1471‑2334‑13‑327 23865751
    [Google Scholar]
  3. Fuster-RuizdeApodaca M.J. Wohl D.A. Cascio M. Guaraldi G. Rockstroh J. Hodson M. Richman B. Brown G. Anderson J. Lazarus J.V. Why we need to re‐define long‐term success for people living with HIV. HIV Med. 2023 24 S2 3 7 10.1111/hiv.13461 36920411
    [Google Scholar]
  4. Mondal M.N.I. Shitan M. Factors affecting the HIV/AIDS epidemic: An ecological analysis of global data. Afr. Health Sci. 2013 13 2 301 310 10.4314/ahs.v13i2.15 24235928
    [Google Scholar]
  5. Tian X. Chen J. Wang X. Xie Y. Zhang X. Han D. Fu H. Yin W. Wu N. Global, regional, and national HIV/AIDS disease burden levels and trends in 1990–2019: A systematic analysis for the global burden of disease 2019 study. Front. Public Health 2023 11 1068664 10.3389/fpubh.2023.1068664 36875364
    [Google Scholar]
  6. Raj Y. Sahu D. Pandey A. Venkatesh S. Reddy D.C.S. Bakkali T. Das C. Singh K.J. Kant S. Bhattacharya M. Stover J. Jha U.M. Kumar P. Mishra R.M. Chandra N. Gulati B.K. Mathur S. Joshi D. Chavan L. Modelling and estimation of HIV prevalence and number of people living with HIV in India, 2010–2011. Int. J. STD AIDS 2016 27 14 1257 1266 10.1177/0956462415612650 26494704
    [Google Scholar]
  7. Rosen F. The Acquired Immunodeficiency Syndrome. J Clin Invest 1985 75 1 3
    [Google Scholar]
  8. 24 lakh HIV-positive people in India, new cases decline. 2022 Available from: https://theindianpractitioner.com/24-lakh-hiv-positive-people-in-india-2022/
  9. UNAIDS. Global HIV statistics. 2024 Available from: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf
  10. Reeves J.D. Doms R.W. Human immunodeficiency virus type 2. J. Gen. Virol. 2002 83 6 1253 1265 10.1099/0022‑1317‑83‑6‑1253 12029140
    [Google Scholar]
  11. Mindel A. Tenant-Flowers M. ABC of AIDS: Natural history and management of early HIV infection. BMJ 2001 322 7297 1290 3 10.1136/bmj.322.7297.1290 11375235
    [Google Scholar]
  12. Marfatia Y. Sharma A. Vora R. Modi M. Sharma A. Adverse effects of antiretroviral treatment. Indian J. Dermatol. Venereol. Leprol. 2008 74 3 234 237 10.4103/0378‑6323.41368 18583790
    [Google Scholar]
  13. Gong V. Acquired immunodeficiency syndrome (AIDS). Am. J. Emerg. Med. 1984 2 4 336 346 10.1016/0735‑6757(84)90131‑1 6097278
    [Google Scholar]
  14. Patrick GL An Introduction to Medicinal Chemistry Oxford University Press 2023 10.1093/hesc/9780198866664.001.0001
    [Google Scholar]
  15. Schwartz S.A. Nair M.P.N. Current concepts in human immunodeficiency virus infection and AIDS. Clin. Diagn. Lab. Immunol. 1999 6 3 295 305 10.1128/CDLI.6.3.295‑305.1999 10225826
    [Google Scholar]
  16. Haseltine W.A. Molecular biology of the human immunodeficiency virus type 1. FASEB J. 1991 5 10 2349 2360 10.1096/fasebj.5.10.1829694 1829694
    [Google Scholar]
  17. Li G. De Clercq E. HIV Genome-Wide Protein Associations: A Review of 30 Years of Research. Microbiol. Mol. Biol. Rev. 2016 80 3 679 731 10.1128/MMBR.00065‑15 27357278
    [Google Scholar]
  18. Einkauf K.B. Osborn M.R. Gao C. Sun W. Sun X. Lian X. Parsons E.M. Gladkov G.T. Seiger K.W. Blackmer J.E. Jiang C. Yukl S.A. Rosenberg E.S. Yu X.G. Lichterfeld M. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell 2022 185 2 266 282.e15 10.1016/j.cell.2021.12.011 35026153
    [Google Scholar]
  19. Schuman J.S. Orellana J. Friedman A.H. Teich S.A. Acquired immunodeficiency syndrome (AIDS). Surv. Ophthalmol. 1987 31 6 384 410 10.1016/0039‑6257(87)90031‑2 3303395
    [Google Scholar]
  20. Curran J.W. Lawrence D.N. Jaffe H. Kaplan J.E. Zyla L.D. Chamberland M. Weinstein R. Lui K.J. Schonberger L.B. Spira T.J. Alexander W.J. Swinger G. Ammann A. Solomon S. Auerbach D. Mildvan D. Stoneburner R. Jason J.M. Haverkos H.W. Evatt B.L. Acquired immunodeficiency syndrome (AIDS) associated with transfusions. N. Engl. J. Med. 1984 310 2 69 75 10.1056/NEJM198401123100201 6606780
    [Google Scholar]
  21. Antinori A. Coenen T. Costagiola D. Dedes N. Ellefson M. Gatell J. Girardi E. Johnson M. Kirk O. Lundgren J. Mocroft A. D’Arminio Monforte A. Phillips A. Raben D. Rockstroh J.K. Sabin C. Sönnerborg A. De Wolf F. Late presentation of HIV infection: a consensus definition. HIV Med. 2011 12 1 61 64 10.1111/j.1468‑1293.2010.00857.x 20561080
    [Google Scholar]
  22. Chu C. Selwyn P.A. Diagnosis and initial management of Acute HIV Infection. American Family Physician 2010 81 10
    [Google Scholar]
  23. De Cock K.M. Jaffe H.W. Curran J.W. The evolving epidemiology of HIV/AIDS. AIDS 2012 26 10 1205 1213 10.1097/QAD.0b013e328354622a 22706007
    [Google Scholar]
  24. WHO Case Definitions Of HIV For Surveillance And Revised Clinical Staging And Immunological Classification Of HIV-Related Disease In Adults And Children. 2007 Available from: https://iris.who.int/bitstream/handle/10665/43699/9789241595629_eng.pdf
  25. Fonner V.A. Dalglish S.L. Kennedy C.E. Baggaley R. O’Reilly K.R. Koechlin F.M. Rodolph M. Hodges-Mameletzis I. Grant R.M. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. AIDS 2016 30 12 1973 1983 10.1097/QAD.0000000000001145 27149090
    [Google Scholar]
  26. U.S. Department of Health and Human Services, Office of AIDS Research, National Institutes of Health 2021 Available from: https://clinicalinfo.hiv.gov/sites/default/files/glossary/Glossary-English_HIVinfo.pdf
  27. Becerra J.C. Bildstein L.S. Gach J.S. Recent Insights into the HIV/AIDS Pandemic. Microb. Cell 2016 3 9 450 474 10.15698/mic2016.09.529 28357381
    [Google Scholar]
  28. Weiss R.A. How does HIV cause AIDS? Science 1993 260 5112 1273 1279 10.1126/science.8493571 8493571
    [Google Scholar]
  29. Gulick R.M. New HIV drugs: 2018 and beyond. Curr Opin HIV AIDS 2018 13 4 291 293 10.1097/COH.0000000000000478 29702493
    [Google Scholar]
  30. Kirchhoff F. HIV Life Cycle: Overview. Encyclopedia of AIDS Springer : New York, NY 2013 10.1007/978‑1‑4614‑9610‑6_60‑1
    [Google Scholar]
  31. Ryu W.S. Virus Life Cycle. Molecular Virology of Human Pathogenic Viruses 2016 31 45 10.1016/B978‑0‑12‑800838‑6.00003‑5
    [Google Scholar]
  32. Lusic M. Siliciano R.F. Nuclear landscape of HIV-1 infection and integration. Nat. Rev. Microbiol. 2017 15 2 69 82 10.1038/nrmicro.2016.162 27941817
    [Google Scholar]
  33. Hokello J. Tyagi K. Owor R.O. Sharma A.L. Bhushan A. Daniel R. Tyagi M. New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care. Life (Basel) 2024 14 1 104 10.3390/life14010104 38255719
    [Google Scholar]
  34. Rossi E. Meuser M.E. Cunanan C.J. Cocklin S. Structure, function, and interactions of the HIV-1 capsid protein. Life (Basel) 2021 11 2 100 10.3390/life11020100 33572761
    [Google Scholar]
  35. Merson M.H. O’Malley J. Serwadda D. Apisuk C. The history and challenge of HIV prevention. Lancet 2008 372 9637 475 488 10.1016/S0140‑6736(08)60884‑3 18687461
    [Google Scholar]
  36. Melhuish A. Lewthwaite P. Natural history of HIV and AIDS. Medicine (Abingdon) 2018 46 6 356 361 10.1016/j.mpmed.2018.03.010
    [Google Scholar]
  37. Wu Z. Chen J. Scott S.R. McGoogan J.M. History of the HIV Epidemic in China. Curr. HIV/AIDS Rep. 2019 16 6 458 466 10.1007/s11904‑019‑00471‑4 31773405
    [Google Scholar]
  38. The Origins of AIDS. Available from: https://books.google.co.in/books?hl=en&lr=&id=dCoNEAAAQBAJ&oi=fnd&pg=PR10&dq=hiv+aids+history&ots=BcBJWomN1X&sig=QaPzY9LbEYVRXGbpwHIoqJxk_Mw&redir_esc=y#v=onepage&q=hiv%20aids%20history&f=false
  39. Reeves J.D. Piefer A.J. Emerging drug targets for antiretroviral therapy. Drugs 2005 65 13 1747 1766 10.2165/00003495‑200565130‑00002 16114975
    [Google Scholar]
  40. Engelman A. Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat. Rev. Microbiol. 2012 10 4 279 290 10.1038/nrmicro2747 22421880
    [Google Scholar]
  41. Teixeira C. Gomes J.R.B. Gomes P. Maurel F. Barbault F. Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: Brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur. J. Med. Chem. 2011 46 4 979 992 10.1016/j.ejmech.2011.01.046 21345545
    [Google Scholar]
  42. Ghosh A.K. Osswald H.L. Prato G. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J. Med. Chem. 2016 59 11 5172 5208 10.1021/acs.jmedchem.5b01697 26799988
    [Google Scholar]
  43. Qadir M.I. Malik S.A. HIV fusion inhibitors. Rev. Med. Virol. 2010 20 1 23 33 10.1002/rmv.631 19827030
    [Google Scholar]
  44. Cunha R.F. Simões S. Carvalheiro M. Pereira J.M.A. Costa Q. Ascenso A. Novel antiretroviral therapeutic strategies for HIV. Molecules 2021 26 17 5305 10.3390/molecules26175305 34500737
    [Google Scholar]
  45. Arts E.J. Hazuda D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2012 2 4 a007161 10.1101/cshperspect.a007161 22474613
    [Google Scholar]
  46. Dorr P. Perros M. CCR5 inhibitors in HIV-1 therapy. Expert Opin. Drug Discov. 2008 3 11 1345 1361 10.1517/17460441.3.11.1345 23496169
    [Google Scholar]
  47. Esté J.A. Telenti A. HIV entry inhibitors. Lancet 2007 370 9581 81 88 10.1016/S0140‑6736(07)61052‑6 17617275
    [Google Scholar]
  48. Li M. Oliveira Passos D. Shan Z. Smith S.J. Sun Q. Biswas A. Choudhuri I. Strutzenberg T.S. Haldane A. Deng N. Li Z. Zhao X.Z. Briganti L. Kvaratskhelia M. Burke T.R. Jr Levy R.M. Hughes S.H. Craigie R. Lyumkis D. Mechanisms of HIV-1 integrase resistance to dolutegravir and potent inhibition of drug-resistant variants. Sci. Adv. 2023 9 29 eadg5953 10.1126/sciadv.adg5953 37478179
    [Google Scholar]
  49. Güneş F. HIV integrase inhibitors. Int. J. PharmATA 2023 3 1 23 30
    [Google Scholar]
  50. Dzinamarira T. Almehmadi M. Alsaiari A.A. Allahyani M. Aljuaid A. Alsharif A. Khan A. Kamal M. Rabaan A.A. Alfaraj A.H. AlShehail B.M. Alotaibi N. AlShehail S.M. Imran M. Highlights on the development, related patents, and prospects of lenacapavir: The first-in-class HIV-1 capsid inhibitor for the treatment of multi-drug-resistant HIV-1 infection. Medicina 2023 59 6 1041 10.3390/medicina59061041 37374245
    [Google Scholar]
  51. Staltari O. Leporini C. Caroleo B. Russo E. Siniscalchi A. De Sarro G. Gallelli L. Drug-drug interactions: antiretroviral drugs and recreational drugs. Recent Patents CNS Drug Discov. 2015 9 3 153 163 10.2174/1574889809666141127101623 25429704
    [Google Scholar]
  52. Menéndez‐Arias L. Delgado R. Molecular Biology Center, Higher Council for Scientific Research & Autonomous University of Madrid, Laboratory of Molecular Microbiology. 2021 Available from: https://digital.csic.es/bitstream/10261/304384/3/antiretroviral-therapy.pdf
  53. Tseng A. Seet J. Phillips E.J. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br. J. Clin. Pharmacol. 2015 79 2 182 194 10.1111/bcp.12403 24730660
    [Google Scholar]
  54. Cheney L. Barbaro J.M. Berman J.W. Antiretroviral drugs impact autophagy with toxic outcomes. Cells 2021 10 4 909 10.3390/cells10040909 33920955
    [Google Scholar]
  55. Cihlar T. Ray A.S. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res. 2010 85 1 39 58 10.1016/j.antiviral.2009.09.014 19887088
    [Google Scholar]
  56. Li G. Wang Y. De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm. Sin. B 2022 12 4 1567 1590 10.1016/j.apsb.2021.11.009 35847492
    [Google Scholar]
  57. Patel P.H. Zulfiqar H. Reverse Transcriptase Inhibitors. StatPearls Treasure Island (FL): StatPearls Publishing 2023
    [Google Scholar]
  58. Vaidya K. Kadam A. Nema V. Anti-Retroviral drugs for HIV: old and new. Austin J. HIV AIDS Res. 2016 3 2 1026
    [Google Scholar]
  59. Pirrone V. Thakkar N. Jacobson J.M. Wigdahl B. Krebs F.C. Combinatorial approaches to the prevention and treatment of HIV-1 infection. Antimicrob. Agents Chemother. 2011 55 5 1831 1842 10.1128/AAC.00976‑10 21343462
    [Google Scholar]
  60. Wang Y. De Clercq E. Li G. Current and emerging non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment. Expert Opin. Drug Metab. Toxicol. 2019 15 10 813 829 10.1080/17425255.2019.1673367 31556749
    [Google Scholar]
  61. Liao C. Wang Q. Chapter 18 - Authentic HIV-1 integrase inhibitors for the treatment of HIV-1/AIDS. Privileged Scaffolds in Drug Discovery Academic Press 2023 377 390 10.1016/B978‑0‑443‑18611‑0.00026‑7
    [Google Scholar]
  62. Trivedi J. Mahajan D. Jaffe R.J. Acharya A. Mitra D. Byrareddy S.N. Recent advances in the development of integrase inhibitors for HIV treatment. Curr. HIV/AIDS Rep. 2020 17 1 63 75 10.1007/s11904‑019‑00480‑3 31965427
    [Google Scholar]
  63. Wang Y Lv Z Chu Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS 2015 7 95 104 10.2147/HIV.S79956
    [Google Scholar]
  64. Banerjee R. Perera L. Tillekeratne L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discov. Today 2021 26 3 804 816 10.1016/j.drudis.2020.12.005 33309533
    [Google Scholar]
  65. van Zyl G. Bale M.J. Kearney M.F. HIV evolution and diversity in ART-treated patients. Retrovirology 2018 15 1 14 10.1186/s12977‑018‑0395‑4 29378595
    [Google Scholar]
  66. Lu D.Y. Wu H.Y. Yarla N.S. Xu B. Ding J. Lu T.R. HAART in HIV/AIDS treatments: future trends. Infect. Disord. Drug Targets 2018 18 1 15 22 10.2174/1871526517666170505122800 28474549
    [Google Scholar]
  67. Khan K. Khan A.H. Sulaiman S.A. Soo C.T. Aftab R.A. Adverse effect of Highly Active Anti-Retroviral Therapy (HAART) in HIV/AIDS patients. IJOPP 2014 7 3 29 35 10.5530/ijopp.7.3.7
    [Google Scholar]
  68. Rosenbloom D.I.S. Hill A.L. Rabi S.A. Siliciano R.F. Nowak M.A. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat. Med. 2012 18 9 1378 1385 10.1038/nm.2892 22941277
    [Google Scholar]
  69. Sharp P.M. Hahn B.H. The evolution of HIV-1 and the origin of AIDS. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010 365 1552 2487 2494 10.1098/rstb.2010.0031 20643738
    [Google Scholar]
  70. Silva B.F. Peixoto G.M.L. da Luz S.R. de Moraes S.M.F. Peres S.B. Adverse effects of chronic treatment with the Main subclasses of highly active antiretroviral therapy: a systematic review. HIV Med. 2019 20 7 429 438 10.1111/hiv.12733 31006976
    [Google Scholar]
  71. Subbaraman R. Chaguturu S.K. Mayer K.H. Flanigan T.P. Kumarasamy N. Adverse effects of highly active antiretroviral therapy in developing countries. Clin. Infect. Dis. 2007 45 8 1093 1101 10.1086/521150 17879931
    [Google Scholar]
  72. Brizzi M. Pérez S.E. Michienzi S.M. Badowski M.E. Long-acting injectable antiretroviral therapy: will it change the future of HIV treatment? Ther. Adv. Infect. Dis. 2023 10 20499361221149773 10.1177/20499361221149773 36741193
    [Google Scholar]
  73. Prasad S. The long-acting injectable shaping the future of HIV therapy. 2023 Available from: https://hdl.handle.net/10779/rcsi.23998314.v1
  74. Gandhi R.T. Bedimo R. Hoy J.F. Landovitz R.J. Smith D.M. Eaton E.F. Lehmann C. Springer S.A. Sax P.E. Thompson M.A. Benson C.A. Buchbinder S.P. del Rio C. Eron J.J. Jr Günthard H.F. Molina J.M. Jacobsen D.M. Saag M.S. Antiretroviral drugs for treatment and prevention of HIV infection in adults. JAMA 2023 329 1 63 84 10.1001/jama.2022.22246 36454551
    [Google Scholar]
  75. Bester S.M. Adu-Ampratwum D. Annamalai A.S. Wei G. Briganti L. Murphy B.C. Haney R. Fuchs J.R. Kvaratskhelia M. Structural and mechanistic bases of viral resistance to HIV-1 capsid inhibitor lenacapavir. MBio 2022 13 5 e01804-22 10.1128/mbio.01804‑22 36190128
    [Google Scholar]
  76. Hitchcock A.M. Kufel W.D. Dwyer K.A.M. Sidman E.F. Lenacapavir: A novel injectable HIV-1 capsid inhibitor. Int. J. Antimicrob. Agents 2024 63 1 107009 10.1016/j.ijantimicag.2023.107009 37844807
    [Google Scholar]
  77. Carnes S.K. Sheehan J.H. Aiken C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr. Opin. HIV AIDS 2018 13 4 359 365 10.1097/COH.0000000000000472 29782334
    [Google Scholar]
  78. ClinicSpots. HIV Treatment Costs in India. Available from: https://www.clinicspots.com/cost/hiv-treatment/india
  79. Hill A. Levi J. Fairhead C. Pilkington V. Wang J. Johnson M. Layne J. Roberts D. Fortunak J. Lenacapavir to prevent HIV infection: current prices versus estimated costs of production. J. Antimicrob. Chemother. 2024 79 11 2906 2915 10.1093/jac/dkae305 39225016
    [Google Scholar]
  80. Obisesan O.S. Tshweu L.L. Chauke S. Malatji K.B. Ramalapa B. Alexandre K.B. Mufhandu H.T. Synthesis and characterization of tenofovir disoproxil fumarate loaded nanoparticles for HIV‐1 treatment. Nano Select 2024 5 6 2300157 10.1002/nano.202300157
    [Google Scholar]
  81. Wan Z. Shi M. Gong Y. Lucci M. Li J. Zhou J. Yang X.L. Lelli M. He X. Mao J. Multitasking pharmacophores support cabotegravir-based long-acting HIV Pre-Exposure Prophylaxis (PrEP). Molecules 2024 29 2 376 10.3390/molecules29020376 38257288
    [Google Scholar]
  82. Xu Z. Chen Q. Zhang Y. Liang C. Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia 2021 150 104863 10.1016/j.fitote.2021.104863 33582266
    [Google Scholar]
  83. Fobofou S.A.T. Franke K. Brandt W. Manzin A. Madeddu S. Serreli G. Sanna G. Wessjohann L.A. Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum. Nat. Prod. Res. 2023 37 12 1947 1953 10.1080/14786419.2022.2110094 35959682
    [Google Scholar]
  84. Batran R.Z. Sabt A. Khedr M.A. Allayeh A.K. Pannecouque C. Kassem A.F. 4-Phenylcoumarin derivatives as new HIV-1 NNRTIs: Design, synthesis, biological activities, and computational studies. Bioorg. Chem. 2023 141 106918 10.1016/j.bioorg.2023.106918 37866206
    [Google Scholar]
  85. Huang X. Huang X. Li Q. Ma M. Cui Y. Yang L. Wang H. Luo R. Chen J. Yang J. Lin J. Li D. Zheng Y. Zhang J. Seco-cyclic phorbol derivatives and their anti-HIV-1 activities. Chin. J. Nat. Med. 2024 22 4 365 374 10.1016/S1875‑5364(24)60630‑8 38658099
    [Google Scholar]
  86. Jose B.J. Maity D. Analysis of innovative drug therapies via nanotechnologies against HIV/AIDS: A clinical systematic review. TBEAH 2021 2 1 10.36647/TBEAH/02.01.A005
    [Google Scholar]
  87. Guedes M.D.V. Marques M.S. Berlitz S.J. Facure M.H.M. Correa D.S. Steffens C. Contri R.V. Külkamp-Guerreiro I.C. Lamivudine and zidovudine-loaded nanostructures: Green chemistry preparation for pediatric oral administration. Nanomaterials 2023 13 4 770 10.3390/nano13040770 36839138
    [Google Scholar]
  88. Kaushik A. Jayant R.D. Nair M. Nanomedicine for neuroHIV/AIDS Management. Nanomedicine (Lond.) 2018 13 7 669 673 10.2217/nnm‑2018‑0005 29485351
    [Google Scholar]
  89. Omidian H. Mfoafo K. Exploring the potential of nanotechnology in pediatric healthcare: Advances, challenges, and future directions. Pharmaceutics 2023 15 6 1583 10.3390/pharmaceutics15061583 37376032
    [Google Scholar]
  90. Srivastava N. Mishra V. Mishra Y. Ranjan A. Aljabali A.A.A. El-Tanani M. Alfagih I.M. Tambuwala M.M. Development and evaluation of a protease inhibitor antiretroviral drug-loaded carbon nanotube delivery system for enhanced efficacy in HIV treatment. Int. J. Pharm. 2024 650 123678 10.1016/j.ijpharm.2023.123678 38065344
    [Google Scholar]
  91. Zhou L. Godse S. Sinha N. Kodidela S. Singh U. Kumar S. Darunavir nanoformulation suppresses HIV pathogenesis in macrophages and improves drug delivery to the brain in Mice. Pharmaceutics 2024 16 4 555 10.3390/pharmaceutics16040555 38675216
    [Google Scholar]
  92. Manu K.R. Abishek K.G. Rout S.R. Almalki W.H. Yadav H.N. Sahebkar A. Chapter 11 - Gold nanoparticles as a recent nanocarrier against HIV/AIDS. Gold Nanoparticles for Drug Delivery Academic Press 2024 305 329 10.1016/B978‑0‑443‑19061‑2.00015‑8
    [Google Scholar]
  93. Watanabe S.M. Chen M.H. Khan M. Ehrlich L. Kemal K.S. Weiser B. Shi B. Chen C. Powell M. Anastos K. Burger H. Carter C.A. The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities. Retrovirology 2013 10 1 143 10.1186/1742‑4690‑10‑143 24257210
    [Google Scholar]
  94. Yu F.H. Chou T.A. Liao W.H. Huang K.J. Wang C.T. Gag-Pol Transframe Domain p6* Is Essential for HIV-1 Protease-Mediated Virus Maturation. PLoS One 2015 10 6 e0127974 10.1371/journal.pone.0127974 26030443
    [Google Scholar]
  95. Sarni S. Biswas B. Liu S. Olson E.D. Kitzrow J.P. Rein A. Wysocki V.H. Musier-Forsyth K. HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. J. Biol. Chem. 2020 295 42 14391 14401 10.1074/jbc.RA120.014835 32817318
    [Google Scholar]
  96. Chen X. Wang X. The HIV-1 gag p6: a promising target for therapeutic intervention. Retrovirology 2024 21 1 1 10.1186/s12977‑024‑00633‑2 38263239
    [Google Scholar]
  97. Steier Z. Kim E.J.Y. Aylard D.A. Robey E.A. The CD4 versus CD8 T cell fate decision: A multiomics-informed perspective. Annu. Rev. Immunol. 2024 42 1 235 258 10.1146/annurev‑immunol‑083122‑040929 38271641
    [Google Scholar]
  98. Beavis A.C. Dienger-Stambaugh K. Briggs K. Chen Z. Abraham M. Spearman P. He B. A J Paramyxovirus-vectored HIV vaccine induces humoral and cellular responses in mice. Vaccine 2024 42 9 2347 2356 10.1016/j.vaccine.2024.02.068 38443277
    [Google Scholar]
  99. Maciel M. Jr Amara R.R. Bar K.J. Crotty S. Deeks S.G. Duplessis C. Gaiha G. McElrath M.J. McMichael A. Palin A. Rutishauser R. Shapiro S. Smiley S.T. D’Souza M.P. Exploring synergies between B- and T-cell vaccine approaches to optimize immune responses against HIV—workshop report. NPJ Vaccines 2024 9 1 39 10.1038/s41541‑024‑00818‑y 38383616
    [Google Scholar]
  100. Muecksch F. Fackler O.T. Eliciting CD4-mimicking broadly neutralizing antibodies: new avenues towards the rational design of an HIV vaccine. Signal Transduct. Target. Ther. 2024 9 1 49 10.1038/s41392‑024‑01776‑6 38424414
    [Google Scholar]
  101. Prokopovich A.K. Litvinova I.S. Zubkova A.E. Yudkin D.V. CXCR4 Is a Potential Target for Anti-HIV Gene Therapy. Int. J. Mol. Sci. 2024 25 2 1187 10.3390/ijms25021187 38256260
    [Google Scholar]
  102. Kothawade S. Wagh V. Pande V. Lunkad A. Gene Therapy Approaches in HIV Treatment. Infectious Diseases IntechOpen 2024 10.5772/intechopen.112138
    [Google Scholar]
  103. Kitawi R. Ledger S. Kelleher A.D. Ahlenstiel C.L. Advances in HIV Gene Therapy. Int. J. Mol. Sci. 2024 25 5 2771 10.3390/ijms25052771 38474018
    [Google Scholar]
  104. LaPlante S.R. Coric P. Bouaziz S. França T.C.C. NMR spectroscopy can help accelerate antiviral drug discovery programs. Microbes Infect. 2024 26 7 105297 10.1016/j.micinf.2024.105297 38199267
    [Google Scholar]
  105. Xiang Y. Du J. Fujimoto K. Li F. Schneider J. Tao C. Application of artificial intelligence and machine learning for HIV prevention interventions. Lancet HIV 2022 9 1 e54 e62 10.1016/S2352‑3018(21)00247‑2 34762838
    [Google Scholar]
  106. ANGYIBA Serge A. NGNOTOUOM NGNOKAM Tania C. KOUDOM Patrice L. ABENA Jerry V. AI in the Management of HIV: Case Study Cameroon. Int J Virol AIDS 2023 10 1 10.23937/2469‑567X/1510089
    [Google Scholar]
  107. Lainjo B. Artificial intelligence with machine learning and the enigmatic discovery of HIV cure. J. Auton. Intell 2023 7 2 10.32629/jai.v7i2.697
    [Google Scholar]
  108. Ebulue N.C.C. Ekkeh N.O.V. Ebulue N.O.R. Ekesiobi N.C.S. Developing predictive models for HIV Drug resistance: A genomic and AI approach. Int. Med. Sci. Res. J. 2024 4 5 521 543 10.51594/imsrj.v4i5.1119
    [Google Scholar]
  109. Fauci A.S. Lane H.C. Four Decades of HIV/AIDS — Much Accomplished, Much to Do. N. Engl. J. Med. 2020 383 1 1 4 10.1056/NEJMp1916753 32609976
    [Google Scholar]
  110. Curing HIV—How Far Have We Come? 2024 Available from: https://www.amfar.org/news/how-many-have-been-cured/
/content/journals/aia/10.2174/0122113525349779250101062707
Loading
/content/journals/aia/10.2174/0122113525349779250101062707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: AIDS ; HAART ; targets ; new molecules ; HIV ; life cycle of HIV ; evolution of HIV treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test