Skip to content
2000
image of Antibacterial and Insecticidal Activities of Bacillus licheniformis SKS7 Methanolic Extract

Abstract

Background

Microbes are a rich source of antibacterial and anti-insect molecules. Due to rising antibiotic and anti-insect resistance in various sectors of the society, it is important to identify new compounds that may address these issues.

Aims and Objective

This study aimed to explore the bacteria isolated from soil to identify new molecules with antibacterial and anti-insect activity. Further, the current study is aimed at testing and characterizing antimicrobial and insecticidal properties of methanolic extracts from four different soil bacteria

Methods

This study reports the isolation and characterization of soil bacteria by morphological, biochemical, and molecular analysis. The antibacterial potential of methanolic extracts of four bacterial strains were tested using an agar well diffusion assay, along with development and survival of . Fractionation of the methanolic extract was performed by chromatography, and the separated fractions were tested for their antibacterial activity.

Results

The bacteria belong to , and species. The extract of SKS7 exhibited maximum antibacterial activity against all tested microbes, including human pathogens. Extract from the same microbe also showed maximum anti-insect activity against by significantly increasing the pupal period by as much as 80% and hence extending the time to adult emergence. Morphological abnormalities like deformed wings, deformed pupae, and failure to emerge from pupae were also observed. Purification of the extract by HPLC and gel permeation chromatography helped us to observe a low molecular weight protein that may be responsible for its antibacterial activity.

Conclusion

Methanolic extract of SKS7 contains bioactive molecules with antibacterial and anti-insect activities. Further characterization and identification of these molecules may form the basis for the development of novel antibacterial drugs and insecticidal molecules in the future.

from microbes has slowed since the late 1980s due to hardships in finding novel active compounds and reg

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525329580240820060847
2024-10-02
2025-01-19
Loading full text...

Full text loading...

References

  1. Besnier E. Thomson K. Stonkute D. Mohammad T. Akhter N. Todd A. Rom Jensen M. Kilvik A. Bambra C. Which public health interventions are effective in reducing morbidity, mortality and health inequalities from infectious diseases amongst children in low- and middle-income countries (LMICs): An umbrella review. PLoS One 2021 16 6 e0251905 10.1371/journal.pone.0251905 34111134
    [Google Scholar]
  2. Jones K.E. Patel N.G. Levy M.A. Storeygard A. Balk D. Gittleman J.L. Daszak P. Global trends in emerging infectious diseases. Nature 2008 451 7181 990 993 10.1038/nature06536 18288193
    [Google Scholar]
  3. Hassan M. A, Antibiotics as microbial secondary metabolites: Production and application. J. Teknol. 2012 59 1 101 111
    [Google Scholar]
  4. Theuretzbacher U. Årdal C. Harbarth S. Linking sustainable use policies to novel economic incentives to stimulate antibiotic research and development. Infect. Dis. Rep. 2017 9 1 6836 10.4081/idr.2017.6836 28458797
    [Google Scholar]
  5. Armes N.J. Wightman J.A. Jadhav D.R. Ranga Rao G.V. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pestic. Sci. 1997 50 3 240 248 10.1002/(SICI)1096‑9063(199707)50:3<240::AID‑PS579>3.0.CO;2‑9
    [Google Scholar]
  6. Araújo M.F. Castanheira E.M.S. Sousa S.F. The buzz on insecticides: A review of uses, molecular structures, targets, adverse effects, and alternatives. Molecules 2023 28 8 3641 10.3390/molecules28083641 37110875
    [Google Scholar]
  7. Bragard C. Pest categorisation of Spodoptera litura. EFSA J Eur Food Saf Auth 2019 17 7 e05765
    [Google Scholar]
  8. Gupta S. Dikshit A.K. Biopesticides: An ecofriendly approach for pest control. J. Biopesticides 2010 3 186 188
    [Google Scholar]
  9. Sharma P.K. Dureja P. Mayurika G. Tanwar R.S. Halder J. Dhingra S. Insect growth inhibition and antifeedant activity of culture filtrate extracts of Bacillus licheniformis. Pestic. Res. J. 2009 21 1 29 33
    [Google Scholar]
  10. Bérdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012 65 8 385 395 10.1038/ja.2012.27 22511224
    [Google Scholar]
  11. Masanaru Misawa Plant tissue culture: An alternative for production of useful metabolites. Rome, Italy Food and Agricultural Organization of the United Nations 1998 108
    [Google Scholar]
  12. Saggu S.K. Mishra P.C. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil. PLoS One 2017 12 11 e0188724 10.1371/journal.pone.0188724
    [Google Scholar]
  13. Saggu S.K. Jha G. Mishra P.C. Enzymatic degradation of biofilm by metalloprotease from Microbacterium sp. SKS10. Front. Bioeng. Biotechnol. 2019 7 192 10.3389/fbioe.2019.00192 31448272
    [Google Scholar]
  14. Kumar S. Stecher G. Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016 33 7 1870 1874 10.1093/molbev/msw054 27004904
    [Google Scholar]
  15. Balouiri M. Sadiki M. Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016 6 2 71 79 10.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  16. Koul O. Shankar J.S. Mehta N. Taneja S.C. Tripathi A.K. Dhar K.L. Bioefficacy of crude extracts of Aglaia species (Meliaceae) and some active fractions against lepidopteran larvae. J. Appl. Entomol. 1997 121 1-5 245 248 10.1111/j.1439‑0418.1997.tb01400.x
    [Google Scholar]
  17. Haynes W. Tukey’s Test. Encyclopedia of Systems Biology. Dubitzky W. Wolkenhauer O. Cho K.H. Yokota H. New York, NY Springer New York 2013 2303 2304 10.1007/978‑1‑4419‑9863‑7_1212
    [Google Scholar]
  18. Francisco A.S.S. Carlos A.V.A. The assistat software version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 2016 11 39 3733 3740 10.5897/AJAR2016.11522
    [Google Scholar]
  19. Santini F. Borghetti V. Amalfitano G. Mazzucco A. Bacillus licheniformis prosthetic aortic valve endocarditis. J. Clin. Microbiol. 1995 33 11 3070 3073 10.1128/jcm.33.11.3070‑3073.1995 8576381
    [Google Scholar]
  20. Raichand R Pareek S Singh NK Mayilraj S Exiguobacterium aquaticum sp. nov., a member of the genus Exiguobacterium. Int J Syst Evol Microbiol 2012 62 Pt_9 2150 2155
    [Google Scholar]
  21. Bottone E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010 23 2 382 398 10.1128/CMR.00073‑09 20375358
    [Google Scholar]
  22. Tong S.Y.C. Davis J.S. Eichenberger E. Holland T.L. Fowler V.G. Jr Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015 28 3 603 661 10.1128/CMR.00134‑14 26016486
    [Google Scholar]
  23. Murray R.J. Recognition and management of Staphylococcus aureus toxin‐mediated disease. Intern. Med. J. 2005 35 s2 Suppl. 2 S106 S119 10.1111/j.1444‑0903.2005.00984.x 16271055
    [Google Scholar]
  24. Keller R. Pedroso M.Z. Ritchmann R. Silva R.M. Occurrence of virulence-associated properties in Enterobacter cloacae. Infect. Immun. 1998 66 2 645 649 10.1128/IAI.66.2.645‑649.1998 9453621
    [Google Scholar]
  25. Jones R.N. Kugler K.C. Pfaller M.A. Winokur P.L. Characteristics of pathogens causing urinary tract infections in hospitals in North America: results from the SENTRY Antimicrobial Surveillance Program, 1997. Diagn. Microbiol. Infect. Dis. 1999 35 1 55 63 10.1016/S0732‑8893(98)00158‑8 10529882
    [Google Scholar]
  26. Sparks I.L. Derbyshire K.M. Jacobs W.R. Jr Morita Y.S. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J. Bacteriol. 2023 205 1 e00337-22 10.1128/jb.00337‑22 36598232
    [Google Scholar]
  27. Mishra A.K. Driessen N.N. Appelmelk B.J. Besra G.S. Lipoarabinomannan and related glycoconjugates: Structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction. FEMS Microbiol. Rev. 2011 35 6 1126 1157 10.1111/j.1574‑6976.2011.00276.x 21521247
    [Google Scholar]
  28. Bender C.L. Alarcón-Chaidez F. Gross D.C. Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 1999 63 2 266 292 10.1128/MMBR.63.2.266‑292.1999 10357851
    [Google Scholar]
  29. Arasu M.V. Al-Dhabi N.A. Saritha V. Duraipandiyan V. Muthukumar C. Kim S.J. Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol. 2013 13 1 105 10.1186/1471‑2180‑13‑105 23668716
    [Google Scholar]
  30. Kaur T. Vasudev A. Sohal S.K. Manhas R.K. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura(Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 2014 14 1 227 10.1186/s12866‑014‑0227‑1 25163674
    [Google Scholar]
  31. Berić T. Stanković S. Draganić V. Kojić M. Lozo J. Fira D. Novel antilisterial bacteriocin licheniocin 50.2 from Bacillus licheniformis VPS50.2 isolated from soil sample. J. Appl. Microbiol. 2014 116 3 502 510 10.1111/jam.12393 24238327
    [Google Scholar]
  32. Thakur A. Kaur S. Kaur A. Singh V. Detrimental effects of endophytic fungus Nigrospora sp. on survival and development of Spodoptera litura. Biocontrol Sci. Technol. 2012 22 2 151 161 10.1080/09583157.2011.646952
    [Google Scholar]
  33. Kayalvizhi N. Gunasekaran P. Purification and characterization of a novel broad-spectrum bacteriocin from Bacillus licheniformis MKU3. Biotechnol. Bioprocess Eng.; BBE 2010 15 2 365 370 10.1007/s12257‑009‑0164‑2
    [Google Scholar]
  34. Smitha S. Bhat S.G. Thermostable Bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment. J. Appl. Microbiol. 2013 114 3 688 694 10.1111/jam.12097 23216587
    [Google Scholar]
  35. Alessandri A Knap I Zambelli LSDF Chr Hansen AS Nematicidal composition comprising Bacillus subtilis and Bacillus licheniformis. U.S. Patent 8858933B2, 2014
  36. Halami P.M. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity. Microb. Pathog. 2019 128 139 146 10.1016/j.micpath.2018.12.044 30594640
    [Google Scholar]
  37. Shobharani P. Padmaja R.J. Halami P.M. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512. Res. Microbiol. 2015 166 6 546 554 10.1016/j.resmic.2015.06.003 26100933
    [Google Scholar]
  38. Dahmana H. Raoult D. Fenollar F. Mediannikov O. Insecticidal activity of bacteria from larvae breeding site with natural larvae mortality: Screening of Separated Supernatant and pellet fractions. Pathogens 2020 9 6 486 10.3390/pathogens9060486 32570965
    [Google Scholar]
  39. Ghribi D. Abdelkefi-Mesrati L. Boukedi H. Elleuch M. Ellouze-Chaabouni S. Tounsi S. The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J. Invertebr. Pathol. 2012 109 2 183 186 10.1016/j.jip.2011.10.014 22079884
    [Google Scholar]
/content/journals/aia/10.2174/0122113525329580240820060847
Loading
/content/journals/aia/10.2174/0122113525329580240820060847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test