Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction/Objective

The alkaloids of songorine, aconitine, and benzoylaconitine, as the processed products of Stapf., can significantly inhibit the migration and invasion of ovarian cancer cells . Herein, we studied the role and mechanism of these natural products in processed Stapf.

Methods

A xenograft tumor model was constructed. Tumor volumes and weights were calculated. HE staining assessed the histopathological changes of tumors. Inflammatory factors were detected using ELISA. Gene and protein expressions of E-cadherin, N-cadherin, PIK3CA, and AKT1 proteins were measured using RT-qPCR and immunohistochemistry. Protein expressions of E-cadherin, N-cadherin, PIK3CA, AKT1, p-PIK3CA, and p-AKT1 proteins were detected using western blot analysis.

Results

Songorine, aconitine, and benzoylaconine significantly inhibited the growth of tumors as evidenced by decreased tumor volume and weight. The extent and scope of tumor cell necrosis were less in the songorine group compared to the vehicle group. Songorine, aconitine, and benzoylaconine significantly reduced IL-6, IL-1β, and TNF-α levels. Furthermore, songorine, aconitine, and benzoylecgonine induced down-regulation of and mRNA in comparison to the vehicle group. Meanwhile, songorine, aconitine, and benzoylaconine also significantly reduced N-cadherin, p-PIK3CA, and p-AKT1 proteins, while upregulating E-cadherin protein expression in comparison to the vehicle group. These effects were further enhanced when combined with the PI3K inhibitor LY294002.

Conclusion

Songorine, aconitine, and benzoylaconine may inhibit ovarian cancer growth by blocking the signaling pathway. Our findings may provide evidence for the clinical application of the processed products of Stapf. in ovarian cancer treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206344374241219065154
2025-01-22
2025-07-13
Loading full text...

Full text loading...

References

  1. YangC. XiaB.R. ZhangZ.C. ZhangY.J. LouG. JinW.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant.Front. Immunol.20201157786910.3389/fimmu.2020.57786933123161
    [Google Scholar]
  2. LheureuxS. BraunsteinM. OzaA.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine.CA Cancer J. Clin.201969428030410.3322/caac.2155931099893
    [Google Scholar]
  3. SiminiakN. CzepczyńskiR. ZaborowskiM.P. IżyckiD. Immunotherapy in ovarian cancer.Arch. Immunol. Ther. Exp.20227011910.1007/s00005‑022‑00655‑835941287
    [Google Scholar]
  4. YangL. XieH.J. LiY.Y. WangX. LiuX.X. MaiJ. Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review).Oncol. Rep.20224748210.3892/or.2022.829335211759
    [Google Scholar]
  5. MoufarrijS. DandapaniM. ArthoferE. GomezS. SrivastavaA. Lopez-AcevedoM. VillagraA. ChiappinelliK.B. Epigenetic therapy for ovarian cancer: Promise and progress.Clin. Epigenetics2019111710.1186/s13148‑018‑0602‑030646939
    [Google Scholar]
  6. ZhangJ. ChenY. ChenX. ZhangW. ZhaoL. WengL. TianH. WuZ. TanX. GeX. WangP. FangL. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer.Cell Death Differ.202128113915510.1038/s41418‑020‑0588‑y32678307
    [Google Scholar]
  7. YuH.H. LiM. LiY.B. LeiB.B. YuanX. XingX.K. XieY.F. WangM. WangL. YangH.J. FengZ.W. ChengB.F. Benzoylaconitine inhibits production of IL-6 and IL-8 via MAPK, Akt, NF-κB signaling in IL-1β-induced human synovial cells.Biol. Pharm. Bull.202043233433910.1248/bpb.b19‑0071931735734
    [Google Scholar]
  8. FuL. DaiL.L. ZhaoF.C. JiangT. Study on the hydrolysis mechanism of Aconitum soongaricum Stapf. alkaloids and deoxyaconitine.Chin. Tradit. Herbal Drugs20184957945802
    [Google Scholar]
  9. ZhangL. SiyitiM. ZhangJ. YaoM. ZhaoF. Anti‑inflammatory and anti‑rheumatic activities in vitro of alkaloids separated from Aconitum soongoricum Stapf.Exp. Ther. Med.202121549310.3892/etm.2021.992433791002
    [Google Scholar]
  10. MukadaisS. Screening of anti-egfr active components in aconitum ungernii from junggar, xinjiang based on cell membrane chromatography.Chinese Pharmacist20182105766771
    [Google Scholar]
  11. ZhangL. Study on the anti-tumor activity of alkaloids and processed hydrolysis products of Aconitum soongaricum in Junggar.XinjiangXinjiang Medical University2019
    [Google Scholar]
  12. YangM. Mechanism research on the inhibitory effects of processed products of Aconitum soongaricum Stapf. on ovarian cancer metastasis and invasion based on network pharmacology and experimental verification.Xinjiang Medical University2022
    [Google Scholar]
  13. WangY. LiY. WangL. ChenB. ZhuM. MaC. MuC. TaoA. LiS. LuoL. MaP. JiS. LanT. Cinnamaldehyde suppressed EGF-induced EMT process and inhibits ovarian cancer progression through PI3K/AKT pathway.Front. Pharmacol.20221377960810.3389/fphar.2022.77960835645793
    [Google Scholar]
  14. CuiP. LiH. WangC. LiuY. ZhangM. YinY. SunZ. WangY. ChenX. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer.J. Ovarian Res.202215110310.1186/s13048‑022‑01034‑936088429
    [Google Scholar]
  15. HuangY. HongW. WeiX. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis.J. Hematol. Oncol.202215112910.1186/s13045‑022‑01347‑836076302
    [Google Scholar]
  16. WuX. ZhaoJ. RuanY. SunL. XuC. JiangH. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer.Cell Death Dis.2018911110210.1038/s41419‑018‑1101‑030375371
    [Google Scholar]
  17. WangH. XuY. GuoY. Novel prognostic marker TGFBI affects the migration and invasion function of ovarian cancer cells and activates the integrin αvβ3-PI3K-Akt signaling pathway.J. Ovarian Res.20241715010.1186/s13048‑024‑01377‑538395907
    [Google Scholar]
  18. LiD. PanY. HuangY. ZhangP. FangX. PAK5 induces EMT and promotes cell migration and invasion by activating the PI3K/AKT pathway in ovarian cancer.Anal. Cell. Pathol.201820181910.1155/2018/807312430245957
    [Google Scholar]
  19. LiuS.Y. ChenW. ChughtaiE.A. QiaoZ. JiangJ.T. LiS.M. ZhangW. ZhangJ. PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma.World J. Gastroenterol.201723142585259110.3748/wjg.v23.i14.258528465643
    [Google Scholar]
  20. ChengJ.C. LeungP.C.K. Type I collagen down-regulates E-cadherin expression by increasing PI3KCA in cancer cells.Cancer Lett.2011304210711610.1016/j.canlet.2011.02.00821377268
    [Google Scholar]
  21. WangX. XuX. JiangG. ZhangC. LiuL. KangJ. WangJ. OwusuL. ZhouL. ZhangL. LiW. Dihydrotanshinone I inhibits ovarian cancer cell proliferation and migration by transcriptional repression of PIK3CA gene.J. Cell. Mol. Med.20202419111771118710.1111/jcmm.1566032860347
    [Google Scholar]
  22. GengY. WuW. ZhouL. LiJ. GengY. YangY. Synergistic effects of LY294002 and ABT199 on the cell cycle in K562, HL60 and KG1a cells.Oncol. Rep.20214569710.3892/or.2021.804833846811
    [Google Scholar]
  23. XuR. ZhangY. LiA. MaY. CaiW. SongL. XieY. ZhouS. CaoW. TangX. LY‑294002 enhances the chemosensitivity of liver cancer to oxaliplatin by blocking the PI3K/AKT/HIF‑1α pathway.Mol. Med. Rep.202124150810.3892/mmr.2021.1214733982772
    [Google Scholar]
  24. JiangT. Changes in the content of four alkaloids in the processing of Aconitum Ungernii.Zhongchengyao20163826412646
    [Google Scholar]
  25. WangX. LinY. ZhengY. Antitumor effects of aconitine in A2780 cells via estrogen receptor β‑mediated apoptosis, DNA damage and migration.Mol. Med. Rep.20202232318232810.3892/mmr.2020.1132232705198
    [Google Scholar]
  26. ZhangH. DongR. ZhangP. WangY. Songorine suppresses cell growth and metastasis in epithelial ovarian cancer via the Bcl‑2/Bax and GSK3β/β‑catenin signaling pathways.Oncol. Rep.20194153069307910.3892/or.2019.707030896826
    [Google Scholar]
  27. TaoH. LiuX. TianR. LiuY. ZengY. MengX. ZhangY. A review: Pharmacokinetics and pharmacology of aminoalcohol-diterpenoid alkaloids from Aconitum species.J. Ethnopharmacol.202330111572610.1016/j.jep.2022.11572636183950
    [Google Scholar]
  28. Vahedian-MovahedH. SaberiM.R. ChamaniJ. Comparison of binding interactions of lomefloxacin to serum albumin and serum transferrin by resonance light scattering and fluorescence quenching methods.J. Biomol. Struct. Dyn.201128448350210.1080/07391102.2011.1050859021142219
    [Google Scholar]
  29. AzzaliniE. BarbazzaR. StantaG. GiordaG. BortotL. BartolettiM. PuglisiF. CanzonieriV. BoninS. Histological patterns and intra-tumor heterogeneity as prognostication tools in high grade serous ovarian cancers.Gynecol. Oncol.2021163349850510.1016/j.ygyno.2021.09.01234602289
    [Google Scholar]
  30. RongC. ShiY. HuangJ. WangX. ShimizuR. MoriY. MuraiA. LiangJ. The effect of metadherin on NF-κB activation and downstream genes in ovarian cancer.Cell Transplant.20202910.1177/096368972090550632207338
    [Google Scholar]
  31. SommerfeldL. FinkernagelF. JansenJ.M. WagnerU. NistA. StieweT. Müller-BrüsselbachS. SokolA.M. GraumannJ. ReinartzS. MüllerR. The multicellular signalling network of ovarian cancer metastases.Clin. Transl. Med.20211111e63310.1002/ctm2.63334841720
    [Google Scholar]
  32. ShiJ. HuoR. LiN. LiH. ZhaiT. LiH. ShenB. YeJ. FuR. DiW. CYR61, a potential biomarker of tumor inflammatory response in epithelial ovarian cancer microenvironment of tumor progress.BMC Cancer2019191114010.1186/s12885‑019‑6321‑x31766991
    [Google Scholar]
  33. LiuJ. LiL. LuoN. LiuQ. LiuL. ChenD. ChengZ. XiX. Inflammatory signals induce MUC16 expression in ovarian cancer cells via NF‑κB activation.Exp. Ther. Med.202021216310.3892/etm.2020.959433456530
    [Google Scholar]
  34. JoE. JangH.J. YangK.E. JangM.S. HuhY.H. YooH.S. ParkJ.S. JangI.S. ParkS.J. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation.BMC Complement. Med. Ther.2020201110.1186/s12906‑019‑2780‑532020859
    [Google Scholar]
  35. LiuC. HuangX. SuH. The role of the inflammasome and its related pathways in ovarian cancer.Clin. Transl. Oncol.20222481470147710.1007/s12094‑022‑02805‑y35288840
    [Google Scholar]
  36. GeningS.O. AbakumovaT.V. AntoneevaI.I. RizvanovA.A. GeningT.P. GafurbaevaD.U. Stem-like tumor cells and proinflammatory cytokines in the ascitic fluid of ovarian cancer patients.Russ. Clin. Lab. Diagn.202166529730310.51620/0869‑2084‑2021‑66‑5‑297‑30334047516
    [Google Scholar]
  37. MaoT.L. FanM.H. DlaminiN. LiuC.L. LncRNA MALAT1 facilitates ovarian cancer progression through promoting chemoresistance and invasiveness in the tumor microenvironment.Int. J. Mol. Sci.202122191020110.3390/ijms22191020134638541
    [Google Scholar]
  38. WangD. ZhangL. HuA. WangY. LiuY. YangJ. DuN. AnX. WuC. LiuC. Loss of 4.1N in epithelial ovarian cancer results in EMT and matrix-detached cell death resistance.Protein Cell202112210712710.1007/s13238‑020‑00723‑932448967
    [Google Scholar]
  39. FanL. LeiH. ZhangS. PengY. FuC. ShuG. YinG. Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10.Theranostics202010135895591310.7150/thno.4319832483426
    [Google Scholar]
  40. AugustineD. KhanW. RaoR. PatilS. AwanK. SowmyaS. HaragannavarV. PrasadK. Lipid metabolism in cancer: A systematic review.J. Carcinog.2021201410.4103/jcar.JCar_15_2034321955
    [Google Scholar]
  41. CaiL. HeY. HuangH. The role and mechanism of lycopene in regulating the PI3K/AKT pathway to inhibit epithelial-mesenchymal transition in ovarian cancer cells.Chin. Tradit. Herbal Drugs20220819431948
    [Google Scholar]
  42. YaoZ. GaoG. YangJ. LongY. WangZ. HuW. LiuY. Prognostic role of the activated p-AKT molecule in various hematologic malignancies and solid tumors: A meta-analysis.Front. Oncol.20201058820010.3389/fonc.2020.58820033363017
    [Google Scholar]
  43. DengS. LeongH.C. DattaA. GopalV. KumarA.P. YapC.T. PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression.Cancers2022147165210.3390/cancers1407165235406424
    [Google Scholar]
  44. Malek-EsfandiariZ. Rezvani-NoghaniA. SohrabiT. MokaberiP. Amiri-TehranizadehZ. ChamaniJ. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway.J. Fluoresc.20233341537155710.1007/s10895‑023‑03169‑436787038
    [Google Scholar]
  45. WangY. HuangZ. LiB. LiuL. HuangC. The emerging roles and therapeutic implications of epigenetic modifications in ovarian cancer.Front. Endocrinol.20221386354110.3389/fendo.2022.86354135620395
    [Google Scholar]
  46. RatovitskiE. Anticancer natural compounds as epigenetic modulators of gene expression.Curr. Genomics201718217520510.2174/138920291766616080316522928367075
    [Google Scholar]
  47. ToK.K.W. ChoW.C.S. Flavonoids overcome drug resistance to cancer chemotherapy by epigenetically modulating multiple mechanisms.Curr. Cancer Drug Targets202121428930510.2174/156800962166621020311122033535954
    [Google Scholar]
  48. ZającA. Sumorek-WiadroJ. MaciejczykA. LangnerE. WertelI. RzeskiW. Jakubowicz-GilJ. LY294002 and sorafenib as inhibitors of intracellular survival pathways in the elimination of human glioma cells by programmed cell death.Cell Tissue Res.20213861172810.1007/s00441‑021‑03481‑034236519
    [Google Scholar]
  49. AndreideszK. KoszegiB. KovacsD. BagoneV.V. GallyasF. KovacsK. Effect of oxaliplatin, olaparib and LY294002 in combination on triple-negative breast cancer cells.Int. J. Mol. Sci.2021224205610.3390/ijms2204205633669671
    [Google Scholar]
  50. BaiJ. XuY. DieoY. SunG. Combined low-dose LiCl and LY294002 for the treatment of osteoporosis in ovariectomized rats.J. Orthop. Surg. Res.201914117710.1186/s13018‑019‑1210‑131196133
    [Google Scholar]
  51. YangH. LiH. LuS. ShanS. GuoY. Fuzheng jiedu decoction induces apoptosis and enhances cisplatin efficacy in ovarian cancer cells in vitro and in vivo through inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway.BioMed Res. Int.2022202211810.1155/2022/573990935281608
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206344374241219065154
Loading
/content/journals/acamc/10.2174/0118715206344374241219065154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test