Skip to content
2000
image of Processed Products of Aconitum soongaricum Stapf. Inhibit the Growth of Ovarian Cancer Cells In vivo via Regulating the PI3K/AKT Signal Pathway

Abstract

Introduction/Objective

The alkaloids of songorine, aconitine, and benzoylaconitine, as the processed products of Stapf., can significantly inhibit the migration and invasion of ovarian cancer cells . Herein, we studied the role and mechanism of these natural products in processed Stapf.

Methods

A xenograft tumor model was constructed. Tumor volumes and weights were calculated. HE staining assessed the histopathological changes of tumors. Inflammatory factors were detected using ELISA. Gene and protein expressions of E-cadherin, N-cadherin, PIK3CA, and AKT1 proteins were measured using RT-qPCR and immunohistochemistry. Protein expressions of E-cadherin, N-cadherin, PIK3CA, AKT1, p-PIK3CA, and p-AKT1 proteins were detected using western blot analysis.

Results

Songorine, aconitine, and benzoylaconine significantly inhibited the growth of tumors as evidenced by decreased tumor volume and weight. The extent and scope of tumor cell necrosis were less in the songorine group compared to the vehicle group. Songorine, aconitine, and benzoylaconine significantly reduced IL-6, IL-1β, and TNF-α levels. Furthermore, songorine, aconitine, and benzoylecgonine induced down-regulation of and mRNA in comparison to the vehicle group. Meanwhile, songorine, aconitine, and benzoylaconine also significantly reduced N-cadherin, p-PIK3CA, and p-AKT1 proteins, while upregulating E-cadherin protein expression in comparison to the vehicle group. These effects were further enhanced when combined with the PI3K inhibitor LY294002.

Conclusion

Songorine, aconitine, and benzoylaconine may inhibit ovarian cancer growth by blocking the signaling pathway. Our findings may provide evidence for the clinical application of the processed products of Stapf. in ovarian cancer treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206344374241219065154
2025-01-22
2025-03-29
Loading full text...

Full text loading...

References

  1. Yang C. Xia B.R. Zhang Z.C. Zhang Y.J. Lou G. Jin W.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front. Immunol. 2020 11 577869 10.3389/fimmu.2020.577869 33123161
    [Google Scholar]
  2. Lheureux S. Braunstein M. Oza A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019 69 4 280 304 10.3322/caac.21559 31099893
    [Google Scholar]
  3. Siminiak N. Czepczyński R. Zaborowski M.P. Iżycki D. Immunotherapy in ovarian cancer. Arch. Immunol. Ther. Exp. 2022 70 1 19 10.1007/s00005‑022‑00655‑8 35941287
    [Google Scholar]
  4. Yang L. Xie H.J. Li Y.Y. Wang X. Liu X.X. Mai J. Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol. Rep. 2022 47 4 82 10.3892/or.2022.8293 35211759
    [Google Scholar]
  5. Moufarrij S. Dandapani M. Arthofer E. Gomez S. Srivastava A. Lopez-Acevedo M. Villagra A. Chiappinelli K.B. Epigenetic therapy for ovarian cancer: Promise and progress. Clin. Epigenetics 2019 11 1 7 10.1186/s13148‑018‑0602‑0 30646939
    [Google Scholar]
  6. Zhang J. Chen Y. Chen X. Zhang W. Zhao L. Weng L. Tian H. Wu Z. Tan X. Ge X. Wang P. Fang L. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer. Cell Death Differ. 2021 28 1 139 155 10.1038/s41418‑020‑0588‑y 32678307
    [Google Scholar]
  7. Yu H.H. Li M. Li Y.B. Lei B.B. Yuan X. Xing X.K. Xie Y.F. Wang M. Wang L. Yang H.J. Feng Z.W. Cheng B.F. Benzoylaconitine inhibits production of IL-6 and IL-8 via MAPK, Akt, NF-κB signaling in IL-1β-induced human synovial cells. Biol. Pharm. Bull. 2020 43 2 334 339 10.1248/bpb.b19‑00719 31735734
    [Google Scholar]
  8. Fu L. Dai L.L. Zhao F.C. Jiang T. Study on the hydrolysis mechanism of Aconitum soongaricum Stapf. alkaloids and deoxyaconitine. Chin. Tradit. Herbal Drugs 2018 49 5794 5802
    [Google Scholar]
  9. Zhang L. Siyiti M. Zhang J. Yao M. Zhao F. Anti‑inflammatory and anti‑rheumatic activities in vitro of alkaloids separated from Aconitum soongoricum Stapf. Exp. Ther. Med. 2021 21 5 493 10.3892/etm.2021.9924 33791002
    [Google Scholar]
  10. Mukadais S. Screening of anti-egfr active components in aconitum ungernii from junggar, xinjiang based on cell membrane chromatography. Chinese Pharmacist 2018 21 05 766 771
    [Google Scholar]
  11. Zhang L. Study on the anti-tumor activity of alkaloids and processed hydrolysis products of Aconitum soongaricum in Junggar. Xinjiang Xinjiang Medical University 2019
    [Google Scholar]
  12. Yang M. Mechanism research on the inhibitory effects of processed products of Aconitum soongaricum Stapf. on ovarian cancer metastasis and invasion based on network pharmacology and experimental verification. Xinjiang Medical University 2022
    [Google Scholar]
  13. Wang Y. Li Y. Wang L. Chen B. Zhu M. Ma C. Mu C. Tao A. Li S. Luo L. Ma P. Ji S. Lan T. Cinnamaldehyde suppressed EGF-induced EMT process and inhibits ovarian cancer progression through PI3K/AKT pathway. Front. Pharmacol. 2022 13 779608 10.3389/fphar.2022.779608 35645793
    [Google Scholar]
  14. Cui P. Li H. Wang C. Liu Y. Zhang M. Yin Y. Sun Z. Wang Y. Chen X. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. J. Ovarian Res. 2022 15 1 103 10.1186/s13048‑022‑01034‑9 36088429
    [Google Scholar]
  15. Huang Y. Hong W. Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 2022 15 1 129 10.1186/s13045‑022‑01347‑8 36076302
    [Google Scholar]
  16. Wu X. Zhao J. Ruan Y. Sun L. Xu C. Jiang H. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell Death Dis. 2018 9 11 1102 10.1038/s41419‑018‑1101‑0 30375371
    [Google Scholar]
  17. Wang H. Xu Y. Guo Y. Novel prognostic marker TGFBI affects the migration and invasion function of ovarian cancer cells and activates the integrin αvβ3-PI3K-Akt signaling pathway. J. Ovarian Res. 2024 17 1 50 10.1186/s13048‑024‑01377‑5 38395907
    [Google Scholar]
  18. Li D. Pan Y. Huang Y. Zhang P. Fang X. PAK5 induces EMT and promotes cell migration and invasion by activating the PI3K/AKT pathway in ovarian cancer. Anal. Cell. Pathol. 2018 2018 1 9 10.1155/2018/8073124 30245957
    [Google Scholar]
  19. Liu S.Y. Chen W. Chughtai E.A. Qiao Z. Jiang J.T. Li S.M. Zhang W. Zhang J. PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma. World J. Gastroenterol. 2017 23 14 2585 2591 10.3748/wjg.v23.i14.2585 28465643
    [Google Scholar]
  20. Cheng J.C. Leung P.C.K. Type I collagen down-regulates E-cadherin expression by increasing PI3KCA in cancer cells. Cancer Lett. 2011 304 2 107 116 10.1016/j.canlet.2011.02.008 21377268
    [Google Scholar]
  21. Wang X. Xu X. Jiang G. Zhang C. Liu L. Kang J. Wang J. Owusu L. Zhou L. Zhang L. Li W. Dihydrotanshinone I inhibits ovarian cancer cell proliferation and migration by transcriptional repression of PIK3CA gene. J. Cell. Mol. Med. 2020 24 19 11177 11187 10.1111/jcmm.15660 32860347
    [Google Scholar]
  22. Geng Y. Wu W. Zhou L. Li J. Geng Y. Yang Y. Synergistic effects of LY294002 and ABT199 on the cell cycle in K562, HL60 and KG1a cells. Oncol. Rep. 2021 45 6 97 10.3892/or.2021.8048 33846811
    [Google Scholar]
  23. Xu R. Zhang Y. Li A. Ma Y. Cai W. Song L. Xie Y. Zhou S. Cao W. Tang X. LY‑294002 enhances the chemosensitivity of liver cancer to oxaliplatin by blocking the PI3K/AKT/HIF‑1α pathway. Mol. Med. Rep. 2021 24 1 508 10.3892/mmr.2021.12147 33982772
    [Google Scholar]
  24. Jiang T. Changes in the content of four alkaloids in the processing of Aconitum Ungernii. Zhongchengyao 2016 38 2641 2646
    [Google Scholar]
  25. Wang X. Lin Y. Zheng Y. Antitumor effects of aconitine in A2780 cells via estrogen receptor β‑mediated apoptosis, DNA damage and migration. Mol. Med. Rep. 2020 22 3 2318 2328 10.3892/mmr.2020.11322 32705198
    [Google Scholar]
  26. Zhang H. Dong R. Zhang P. Wang Y. Songorine suppresses cell growth and metastasis in epithelial ovarian cancer via the Bcl‑2/Bax and GSK3β/β‑catenin signaling pathways. Oncol. Rep. 2019 41 5 3069 3079 10.3892/or.2019.7070 30896826
    [Google Scholar]
  27. Tao H. Liu X. Tian R. Liu Y. Zeng Y. Meng X. Zhang Y. A review: Pharmacokinetics and pharmacology of aminoalcohol-diterpenoid alkaloids from Aconitum species. J. Ethnopharmacol. 2023 301 115726 10.1016/j.jep.2022.115726 36183950
    [Google Scholar]
  28. Vahedian-Movahed H. Saberi M.R. Chamani J. Comparison of binding interactions of lomefloxacin to serum albumin and serum transferrin by resonance light scattering and fluorescence quenching methods. J. Biomol. Struct. Dyn. 2011 28 4 483 502 10.1080/07391102.2011.10508590 21142219
    [Google Scholar]
  29. Azzalini E. Barbazza R. Stanta G. Giorda G. Bortot L. Bartoletti M. Puglisi F. Canzonieri V. Bonin S. Histological patterns and intra-tumor heterogeneity as prognostication tools in high grade serous ovarian cancers. Gynecol. Oncol. 2021 163 3 498 505 10.1016/j.ygyno.2021.09.012 34602289
    [Google Scholar]
  30. Rong C. Shi Y. Huang J. Wang X. Shimizu R. Mori Y. Murai A. Liang J. The effect of metadherin on NF-κB activation and downstream genes in ovarian cancer. Cell Transplant. 2020 29 10.1177/0963689720905506 32207338
    [Google Scholar]
  31. Sommerfeld L. Finkernagel F. Jansen J.M. Wagner U. Nist A. Stiewe T. Müller-Brüsselbach S. Sokol A.M. Graumann J. Reinartz S. Müller R. The multicellular signalling network of ovarian cancer metastases. Clin. Transl. Med. 2021 11 11 e633 10.1002/ctm2.633 34841720
    [Google Scholar]
  32. Shi J. Huo R. Li N. Li H. Zhai T. Li H. Shen B. Ye J. Fu R. Di W. CYR61, a potential biomarker of tumor inflammatory response in epithelial ovarian cancer microenvironment of tumor progress. BMC Cancer 2019 19 1 1140 10.1186/s12885‑019‑6321‑x 31766991
    [Google Scholar]
  33. Liu J. Li L. Luo N. Liu Q. Liu L. Chen D. Cheng Z. Xi X. Inflammatory signals induce MUC16 expression in ovarian cancer cells via NF‑κB activation. Exp. Ther. Med. 2020 21 2 163 10.3892/etm.2020.9594 33456530
    [Google Scholar]
  34. Jo E. Jang H.J. Yang K.E. Jang M.S. Huh Y.H. Yoo H.S. Park J.S. Jang I.S. Park S.J. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement. Med. Ther. 2020 20 1 1 10.1186/s12906‑019‑2780‑5 32020859
    [Google Scholar]
  35. Liu C. Huang X. Su H. The role of the inflammasome and its related pathways in ovarian cancer. Clin. Transl. Oncol. 2022 24 8 1470 1477 10.1007/s12094‑022‑02805‑y 35288840
    [Google Scholar]
  36. Gening S.O. Abakumova T.V. Antoneeva I.I. Rizvanov A.A. Gening T.P. Gafurbaeva D.U. Stem-like tumor cells and proinflammatory cytokines in the ascitic fluid of ovarian cancer patients. Russ. Clin. Lab. Diagn. 2021 66 5 297 303 10.51620/0869‑2084‑2021‑66‑5‑297‑303 34047516
    [Google Scholar]
  37. Mao T.L. Fan M.H. Dlamini N. Liu C.L. LncRNA MALAT1 facilitates ovarian cancer progression through promoting chemoresistance and invasiveness in the tumor microenvironment. Int. J. Mol. Sci. 2021 22 19 10201 10.3390/ijms221910201 34638541
    [Google Scholar]
  38. Wang D. Zhang L. Hu A. Wang Y. Liu Y. Yang J. Du N. An X. Wu C. Liu C. Loss of 4.1N in epithelial ovarian cancer results in EMT and matrix-detached cell death resistance. Protein Cell 2021 12 2 107 127 10.1007/s13238‑020‑00723‑9 32448967
    [Google Scholar]
  39. Fan L. Lei H. Zhang S. Peng Y. Fu C. Shu G. Yin G. Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10. Theranostics 2020 10 13 5895 5913 10.7150/thno.43198 32483426
    [Google Scholar]
  40. Augustine D. Khan W. Rao R. Patil S. Awan K. Sowmya S. Haragannavar V. Prasad K. Lipid metabolism in cancer: A systematic review. J. Carcinog. 2021 20 1 4 10.4103/jcar.JCar_15_20 34321955
    [Google Scholar]
  41. Cai L. He Y. Huang H. The role and mechanism of lycopene in regulating the PI3K/AKT pathway to inhibit epithelial-mesenchymal transition in ovarian cancer cells. Chin. Tradit. Herbal Drugs 2022 08 1943 1948
    [Google Scholar]
  42. Yao Z. Gao G. Yang J. Long Y. Wang Z. Hu W. Liu Y. Prognostic role of the activated p-AKT molecule in various hematologic malignancies and solid tumors: A meta-analysis. Front. Oncol. 2020 10 588200 10.3389/fonc.2020.588200 33363017
    [Google Scholar]
  43. Deng S. Leong H.C. Datta A. Gopal V. Kumar A.P. Yap C.T. PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression. Cancers 2022 14 7 1652 10.3390/cancers14071652 35406424
    [Google Scholar]
  44. Malek-Esfandiari Z. Rezvani-Noghani A. Sohrabi T. Mokaberi P. Amiri-Tehranizadeh Z. Chamani J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J. Fluoresc. 2023 33 4 1537 1557 10.1007/s10895‑023‑03169‑4 36787038
    [Google Scholar]
  45. Wang Y. Huang Z. Li B. Liu L. Huang C. The emerging roles and therapeutic implications of epigenetic modifications in ovarian cancer. Front. Endocrinol. 2022 13 863541 10.3389/fendo.2022.863541 35620395
    [Google Scholar]
  46. Ratovitski E. Anticancer natural compounds as epigenetic modulators of gene expression. Curr. Genomics 2017 18 2 175 205 10.2174/1389202917666160803165229 28367075
    [Google Scholar]
  47. To K.K.W. Cho W.C.S. Flavonoids overcome drug resistance to cancer chemotherapy by epigenetically modulating multiple mechanisms. Curr. Cancer Drug Targets 2021 21 4 289 305 10.2174/1568009621666210203111220 33535954
    [Google Scholar]
  48. A Z. J S.W. A M. e L. i W. W R. J J.G. LY294002 and sorafenib as inhibitors of intracellular survival pathways in the elimination of human glioma cells by programmed cell death. Cell Tissue Res. 2021 386 1 17 28 10.1007/s00441‑021‑03481‑0 34236519
    [Google Scholar]
  49. Andreidesz K. Koszegi B. Kovacs D. Bagone Vantus V. Gallyas F. Kovacs K. Effect of oxaliplatin, olaparib and LY294002 in combination on triple-negative breast cancer cells. Int. J. Mol. Sci. 2021 22 4 2056 10.3390/ijms22042056 33669671
    [Google Scholar]
  50. Bai J. Xu Y. Dieo Y. Sun G. Combined low-dose LiCl and LY294002 for the treatment of osteoporosis in ovariectomized rats. J. Orthop. Surg. Res. 2019 14 1 177 10.1186/s13018‑019‑1210‑1 31196133
    [Google Scholar]
  51. Yang H. Li H. Lu S. Shan S. Guo Y. Fuzheng jiedu decoction induces apoptosis and enhances cisplatin efficacy in ovarian cancer cells in vitro and in vivo through inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway. BioMed Res. Int. 2022 2022 1 18 10.1155/2022/5739909 35281608
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206344374241219065154
Loading
/content/journals/acamc/10.2174/0118715206344374241219065154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test