Skip to content
2000
image of Irisquinone's Anti-cancer Potential: Targeting TrxR to Trigger ROS-mediated Apoptosis and Pyroptosis

Abstract

Background

Irisquinone, an important compound extracted from Semen Irisis, has been used clinically as a radiotherapy sensitizer for lung, oesophageal, head and neck, breast and leukemia cancers. However, the mechanism by which it acts against cancer is still unclear.

Objective

The present study aims to investigate the anti-tumor activity and mechanism of Irisquinone.

Methods

The effect of Irisquinone on cell viability and proliferation was evaluated using the CCK-8 assay. Fluorescence probe (Fast-TRFS) and DTNB assay were used to observe the inhibitory effect of Irisquinone on both intracellular and extracellular thioredoxin reductase (TrxR). The level of reactive oxygen species (ROS) in tumour cells was assessed using the DCFH-DA probe. Annexin V-FITC/PI, staining and microscopy experiments, were used to examine the apoptosis and pyroptosis. Western blotting analyses confirmed that Irisquinone induced apoptosis and pyroptosis in cancer cells by inhibiting TrxR to increase ROS generation.

Results

Our research has shown that Irisquinone has anti-proliferative effects on several cancer cell lines while having low toxicity to normal cells. The amount of ROS induced by inhibition of TrxR activated the BAX (pro-apoptotic protein) and caspase-1(the pro-pyroptotic protein) to induce apoptosis and pyroptosis.

Conclusion

Irisquinone showed anticancer activity through inhibiting TrxR. These results suggested that Irisquinone will be developed to be an anti-tumor drug possibility.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206339230241202062826
2025-01-15
2025-03-29
Loading full text...

Full text loading...

References

  1. Nordberg J. Arnér E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001 31 11 1287 1312 10.1016/S0891‑5849(01)00724‑9 11728801
    [Google Scholar]
  2. Cortassa S. O’Rourke B. Aon M.A. Redox-Optimized ROS Balance and the relationship between mitochondrial respiration and ROS. Biochim. Biophys. Acta Bioenerg. 2014 1837 2 287 295 10.1016/j.bbabio.2013.11.007 24269780
    [Google Scholar]
  3. Mohammadi F. Soltani A. Ghahremanloo A. Javid H. Hashemy S.I. The thioredoxin system and cancer therapy: A review. Cancer Chemother. Pharmacol. 2019 84 5 925 935 10.1007/s00280‑019‑03912‑4 31367788
    [Google Scholar]
  4. Peng S. Yu S. Zhang J. Zhang J. 6-Shogaol as a Novel Thioredoxin Reductase Inhibitor Induces Oxidative-Stress-Mediated Apoptosis in HeLa Cells. Int. J. Mol. Sci. 2023 24 5 4966 10.3390/ijms24054966 36902397
    [Google Scholar]
  5. Zhang J. Li Y. Duan D. Yao J. Gao K. Fang J. Inhibition of thioredoxin reductase by alantolactone prompts oxidative stress-mediated apoptosis of HeLa cells. Biochem. Pharmacol. 2016 102 34 44 10.1016/j.bcp.2015.12.004 26686580
    [Google Scholar]
  6. Arnér E.S.J. Focus on mammalian thioredoxin reductases — Important selenoproteins with versatile functions. Biochim. Biophys. Acta, Gen. Subj. 2009 1790 6 495 526 10.1016/j.bbagen.2009.01.014 19364476
    [Google Scholar]
  7. Zhang J. Zhang B. Li X. Han X. Liu R. Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med. Res. Rev. 2019 39 1 5 39 10.1002/med.21507 29727025
    [Google Scholar]
  8. Johnson S.S. Liu D. Ewald J.T. Robles-Planells C. Pulliam C. Christensen K.A. Bayanbold K. Wels B.R. Solst S.R. O’Dorisio M.S. Menda Y. Spitz D.R. Fath M.A. Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth. Cancer Biol. Ther. 2024 25 1 2382524 10.1080/15384047.2024.2382524 39054566
    [Google Scholar]
  9. Jia J. Xu G. Zhu D. Liu H. Zeng X. Li L. Advances in the functions of thioredoxin system in central nervous system diseases. Antioxid. Redox Signal. 2022 38 4-6 ars.2022.0079 10.1089/ars.2022.0079 35761787
    [Google Scholar]
  10. Söderberg A. Sahaf B. Rosén A. Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res. 2000 60 8 2281 2289 10786696
    [Google Scholar]
  11. Hellfritsch J. Kirsch J. Schneider M. Fluege T. Wortmann M. Frijhoff J. Dagnell M. Fey T. Esposito I. Kölle P. Pogoda K. Angeli J.P.F. Ingold I. Kuhlencordt P. Östman A. Pohl U. Conrad M. Beck H. Knockout of mitochondrial thioredoxin reductase stabilizes prolyl hydroxylase 2 and inhibits tumor growth and tumor-derived angiogenesis. Antioxid. Redox Signal. 2015 22 11 938 950 10.1089/ars.2014.5889 25647640
    [Google Scholar]
  12. Welsh S.J. Bellamy W.T. Briehl M.M. Powis G. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 2002 62 17 5089 5095 12208766
    [Google Scholar]
  13. Chen Y. Cai J. Jones D.P. Mitochondrial thioredoxin in regulation of oxidant‐induced cell death. FEBS Lett. 2006 580 28-29 6596 6602 10.1016/j.febslet.2006.11.007 17113580
    [Google Scholar]
  14. Duan D. Guo X. Tian J. Li M. Jin X. Wang Z. Wang L. Yan Y. Xiao J. Song P. Wang X. Targeting thioredoxin reductase by eupalinilide B promotes apoptosis of colorectal cancer cells in vitro and in vivo. Chem. Biol. Interact. 2024 399 111137 10.1016/j.cbi.2024.111137 38977166
    [Google Scholar]
  15. Wang X. Li X. Zhang X. Wang X. Yang J. Liu G. Design, synthesis and biological evaluation of novel curcumin-fluorouracil hybrids as potential anti-cancer agents. Biochem. Pharmacol. 2024 230 Pt 1 116559 10.1016/j.bcp.2024.116559 39326677
    [Google Scholar]
  16. Seitz R. Tümen D. Kunst C. Heumann P. Schmid S. Kandulski A. Müller M. Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants 2024 13 9 1078 10.3390/antiox13091078 39334737
    [Google Scholar]
  17. Chen Y. Yin H. Sun J. Zhang G. Zhang Y. Zeng H. TrxR/Trx inhibitor butaselen ameliorates pulmonary fibrosis by suppressing NF-κB/TGF-β1/Smads signaling. Biomed. Pharmacother. 2023 169 115822 10.1016/j.biopha.2023.115822 37944440
    [Google Scholar]
  18. Bjørklund G. Zou L. Wang J. Chasapis C.T. Peana M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res. 2021 174 105854 10.1016/j.phrs.2021.105854 34455077
    [Google Scholar]
  19. Lei H. Wang G. Zhang J. Han Q. Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol. Rep. 2018 40 6 3447 3457 10.3892/or.2018.6740 30272318
    [Google Scholar]
  20. Mukherjee A. Martin S.G. The thioredoxin system: A key target in tumour and endothelial cells. Br. J. Radiol. 2008 81 special_issue_1 S57 S68 10.1259/bjr/34180435 18819999
    [Google Scholar]
  21. Kim S.J. Miyoshi Y. Taguchi T. Tamaki Y. Nakamura H. Yodoi J. Kato K. Noguchi S. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin. Cancer Res. 2005 11 23 8425 8430 10.1158/1078‑0432.CCR‑05‑0449 16322305
    [Google Scholar]
  22. Tonissen K.F. Di Trapani G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol. Nutr. Food Res. 2009 53 1 87 103 10.1002/mnfr.200700492 18979503
    [Google Scholar]
  23. Javvadi P. Hertan L. Kosoff R. Datta T. Kolev J. Mick R. Tuttle S.W. Koumenis C. Thioredoxin reductase-1 mediates curcumin-induced radiosensitization of squamous carcinoma cells. Cancer Res. 2010 70 5 1941 1950 10.1158/0008‑5472.CAN‑09‑3025 20160040
    [Google Scholar]
  24. Zhang B. Zhang J. Peng S. Liu R. Li X. Hou Y. Han X. Fang J. Thioredoxin reductase inhibitors: A patent review. Expert Opin. Ther. Pat. 2017 27 5 547 556 10.1080/13543776.2017.1272576 27977313
    [Google Scholar]
  25. Chinese Medicine Chinese Matea Medica. Shanghai, China Shanghai Science and Technology Press 1999
    [Google Scholar]
  26. Luobusan Mongolian Pharmacy. Hohhot Inner Mongolia People's Publishing House 2006
    [Google Scholar]
  27. Zhai R.X. Fu X.J. Ren X. Malinzi, a traditional medicinal plants: Comprehensive review of botany, medical application, chemical composition, and pharmacology. Heliyon 2024 10 3 e24986 https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e24986 10.1016/j.heliyon.2024.e24986 38333853
    [Google Scholar]
  28. Li Dongyue H.L. Progress on the pharmacological activity of Irisquinone. Heilongjiang Science and Technology Information 2017 18
    [Google Scholar]
  29. Lin B. Wang G. Wang Q. Ge C. Qin M. A new belamcandaquinone from the seeds of Iris bungei Maxim. Fitoterapia 2011 82 7 1137 1139 10.1016/j.fitote.2011.07.016 21820495
    [Google Scholar]
  30. Xu H. Sun G. Wang H. Yue Q. Tang H. Wu Q. Dynamic observation of the radiosensitive effect of irisquinone on rabbit VX2 lung transplant tumors by using fluorine-18-deoxyglucose positron emission tomography/computed tomography. Nucl. Med. Commun. 2013 34 3 220 228 10.1097/MNM.0b013e32835d3730 23276827
    [Google Scholar]
  31. Hong Y. Sengupta S. Hur W. Sim T. Identification of Novel ROS Inducers: Quinone Derivatives Tethered to Long Hydrocarbon Chains. J. Med. Chem. 2015 58 9 3739 3750 10.1021/jm501846y 25826398
    [Google Scholar]
  32. D’Autréaux B. Toledano M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007 8 10 813 824 10.1038/nrm2256 17848967
    [Google Scholar]
  33. Bedard K. Krause K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007 87 1 245 313 10.1152/physrev.00044.2005 17237347
    [Google Scholar]
  34. Gasmi A. Peana M. Arshad M. Butnariu M. Menzel A. Bjørklund G. Krebs cycle: Activators, inhibitors and their roles in the modulation of carcinogenesis. Arch. Toxicol. 2021 95 4 1161 1178 10.1007/s00204‑021‑02974‑9 33649975
    [Google Scholar]
  35. Gorrini C. Harris I.S. Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013 12 12 931 947 10.1038/nrd4002 24287781
    [Google Scholar]
  36. Xu Q. Zhang J. Zhao Z. Chu Y. Fang J. Revealing PACMA 31 as a new chemical type TrxR inhibitor to promote cancer cell apoptosis. Biochimica. Biophys. Acta. 2022 1869 119323 10.1016/j.bbamcr.2022.119323
    [Google Scholar]
  37. Zheng K. Zhang Q. Ga L. Ma Y. Liang G. Zhao Y. Development of an Efficient Synthetic Process for Irisquinone. Synlett 2024 35 15 1795 1798 10.1055/s‑0042‑1751560
    [Google Scholar]
  38. Zhu P. Qian J. Xu Z. Meng C. Liu J. Shan W. Zhu W. Wang Y. Yang Y. Zhang W. Zhang Y. Ling Y. Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling. J. Nat. Prod. 2020 83 10 3041 3049 10.1021/acs.jnatprod.0c00599 33026807
    [Google Scholar]
  39. Cai L. Qin X. Xu Z. Song Y. Jiang H. Wu Y. Ruan H. Chen J. Comparison of Cytotoxicity Evaluation of Anticancer Drugs between Real-Time Cell Analysis and CCK-8 Method. ACS Omega 2019 4 7 12036 12042 10.1021/acsomega.9b01142 31460316
    [Google Scholar]
  40. Wang X. Qian J. Zhu P. Hua R. Liu J. Hang J. Meng C. Shan W. Miao J. Ling Y. Novel Phenylmethylenecyclohexenone Derivatives as Potent TrxR Inhibitors Display High Antiproliferative Activity and Induce ROS, Apoptosis, and DNA Damage. ChemMedChem 2021 16 4 702 712 10.1002/cmdc.202000660 33085980
    [Google Scholar]
  41. Zhou M. Ma W. Zhang Y. Wang W. Xiao G. Ye S. Chen X. Zeng H. Yang N. Plasma thioredoxin reductase activity, a diagnostic biomarker, is up-regulated in resectable non-small cell lung cancers. Transl. Cancer Res. 2017 6 2 383 392 10.21037/tcr.2017.03.39
    [Google Scholar]
  42. Duan D. Zhang B. Yao J. Liu Y. Sun J. Ge C. Peng S. Fang J. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic. Biol. Med. 2014 69 15 25 10.1016/j.freeradbiomed.2013.12.027 24407164
    [Google Scholar]
  43. Duan D. Zhang B. Yao J. Liu Y. Fang J. Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic. Biol. Med. 2014 70 182 193 10.1016/j.freeradbiomed.2014.02.016 24583460
    [Google Scholar]
  44. Zhao Y. Zuo X. Liu S. Qian W. Tang X. Lu J. A Fluorescent Probe to Detect Quick Disulfide Reductase Activity in Bacteria. Antioxidants 2022 11 2 377 10.3390/antiox11020377 35204259
    [Google Scholar]
  45. Li X. Zhang B. Yan C. Li J. Wang S. Wei X. Jiang X. Zhou P. Fang J. A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nat. Commun. 2019 10 1 2745 10.1038/s41467‑019‑10807‑8 31227705
    [Google Scholar]
  46. Guo Y. Zhang Q. Zhu Q. Gao J. Zhu X. Yu H. Li Y. Zhang C. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Sci. Adv. 2022 8 16 eabn2941 10.1126/sciadv.abn2941 35442728
    [Google Scholar]
  47. Xiong J. He J. Zhu J. Pan J. Liao W. Ye H. Wang H. Song Y. Du Y. Cui B. Xue M. Zheng W. Kong X. Jiang K. Ding K. Lai L. Wang Q. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 2022 82 1660 1677 10.1016/j.molcel.2022.02.033
    [Google Scholar]
  48. Wang Z. Chen G. Li H. Liu J. Yang Y. Zhao C. Li Y. Shi J. Chen H. Chen G. Zotarolimus alleviates post-trabeculectomy fibrosis via dual functions of anti-inflammation and regulating AMPK/mTOR axis. Int. Immunopharmacol. 2024 142 Pt B 113176 10.1016/j.intimp.2024.113176 39303539
    [Google Scholar]
  49. Wang W. Yang J. Liao Y.Y. Cheng G. Chen J. Mo S. Yuan L. Cheng X.D. Qin J.J. Shao Z. Aspeterreurone A. Aspeterreurone A, a Cytotoxic Dihydrobenzofuran–Phenyl Acrylate Hybrid from the Deep-Sea-Derived Fungus Aspergillus terreus CC-S06-18. J. Nat. Prod. 2020 83 6 1998 2003 10.1021/acs.jnatprod.0c00189 32489099
    [Google Scholar]
  50. Chen C. Chen B. Lin Y. He Q. Yang J. Xiao J. Pan Z. Li S. Li M. Wang F. Zhang H. Wang X. Zeng J. Chi W. Meng K. Wang H. Chen P. Cardamonin attenuates iron overload-induced osteoblast oxidative stress through the HIF-1α/ROS pathway. Int. Immunopharmacol. 2024 142 Pt A 112893 10.1016/j.intimp.2024.112893 39217878
    [Google Scholar]
  51. Zhang Y. Jia Q. Li J. Wang J. Liang K. Xue X. Chen T. Kong L. Ren H. Liu W. Wang P. Ge J. Copper‐Bacteriochlorin Nanosheet as a Specific Pyroptosis Inducer for Robust Tumor Immunotherapy. Adv. Mater. 2023 35 44 2305073 10.1002/adma.202305073 37421648
    [Google Scholar]
  52. Zhuang J. Wen X. Zhang Y. Shan Q. Zhang Z. Zheng G. Fan S. Li M. Wu D. Hu B. Lu J. Zheng Y. TDP-43 upregulation mediated by the NLRP3 inflammasome induces cognitive impairment in 2 2′,4,4′-tetrabromodiphenyl ether (BDE-47)-treated mice. Brain Behav. Immun. 2017 65 99 110 10.1016/j.bbi.2017.05.014 28532818
    [Google Scholar]
  53. Bian M. Sun Y. Liu Y. Xu Z. Fan R. Liu Z. Liu W. Gold A. A Gold(I) Complex Containing an Oleanolic Acid Derivative as a Potential Anti‐Ovarian‐Cancer Agent by Inhibiting TrxR and Activating ROS‐Mediated ERS. Chemistry 2020 26 31 7092 7108 10.1002/chem.202000045 32037581
    [Google Scholar]
  54. Pillai-Kastoori L. Schutz-Geschwender A.R. Harford J.A. A systematic approach to quantitative Western blot analysis. Anal. Biochem. 2020 593 113608 10.1016/j.ab.2020.113608 32007473
    [Google Scholar]
  55. Qian J. Xu Z. Meng C. Liu J. Hsu P.L. Li Y. Zhu W. Yang Y. Morris-Natschke S.L. Lee K.H. Zhang Y. Ling Y. Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur. J. Med. Chem. 2020 204 112610 10.1016/j.ejmech.2020.112610 32736231
    [Google Scholar]
  56. Lu J. Holmgren A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014 66 75 87 10.1016/j.freeradbiomed.2013.07.036 23899494
    [Google Scholar]
  57. Mittler R. ROS Are Good. Trends Plant Sci. 2017 22 1 11 19 10.1016/j.tplants.2016.08.002 27666517
    [Google Scholar]
  58. Yang S. Lian G. ROS and diseases: role in metabolism and energy supply. Mol. Cell. Biochem. 2020 467 1-2 1 12 10.1007/s11010‑019‑03667‑9 31813106
    [Google Scholar]
  59. D’Arcy M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019 43 6 582 592 10.1002/cbin.11137 30958602
    [Google Scholar]
  60. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  61. Pistritto G. Trisciuoglio D. Ceci C. Garufi A. D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016 8 4 603 619 10.18632/aging.100934 27019364
    [Google Scholar]
  62. Mortezaee K. Salehi E. Mirtavoos-mahyari H. Motevaseli E. Najafi M. Farhood B. Rosengren R.J. Sahebkar A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol. 2019 234 8 12537 12550 10.1002/jcp.28122 30623450
    [Google Scholar]
  63. Morana O. Wood W. Gregory C.D. The Apoptosis Paradox in Cancer. Int. J. Mol. Sci. 2022 23 3 1328 10.3390/ijms23031328 35163253
    [Google Scholar]
  64. Jiang H. Niu C. Guo Y. Liu Z. Jiang Y. Wedelolactone induces apoptosis and pyroptosis in retinoblastoma through promoting ROS generation. Int. Immunopharmacol. 2022 111 108855 10.1016/j.intimp.2022.108855 35905560
    [Google Scholar]
  65. Alam M. Alam S. Shamsi A. Adnan M. Elasbali A.M. Al-Soud W.A. Alreshidi M. Hawsawi Y.M. Tippana A. Pasupuleti V.R. Hassan M.I. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front. Oncol. 2022 12 869672 10.3389/fonc.2022.869672 35402265
    [Google Scholar]
  66. Wang Y. Zhang R. Huang X. He X. Geng S. Pan S. Guo W. Liu X. Dang Y. Qu J. Ma H. Zhao X. CD39 inhibitor (POM-1) enhances radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells by promoting apoptosis through the Bax/Bcl-2/Caspase 9/Caspase 3 pathway. Int. Immunopharmacol. 2024 142 Pt B 113242 10.1016/j.intimp.2024.113242 39321701
    [Google Scholar]
  67. Li D. Yang C. Sun L. Zhao Z. Liu J. Zhang C. Sun D. Zhang Q. High fluoride aggravates cadmium-mediated nephrotoxicity of renal tubular epithelial cells through ROS-PINK1/Parkin pathway. Sci. Total Environ. 2024 953 175927 10.1016/j.scitotenv.2024.175927 39236818
    [Google Scholar]
  68. Fang Y. Tian S. Pan Y. Li W. Wang Q. Tang Y. Yu T. Wu X. Shi Y. Ma P. Shu Y. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother. 2020 121 109595 10.1016/j.biopha.2019.109595 31710896
    [Google Scholar]
  69. Kovacs S.B. Miao E.A. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 2017 27 9 673 684 10.1016/j.tcb.2017.05.005 28619472
    [Google Scholar]
  70. Tan Y. Chen Q. Li X. Zeng Z. Xiong W. Li G. Li X. Yang J. Xiang B. Yi M. Pyroptosis: A new paradigm of cell death for fighting against cancer. J. Exp. Clin. Cancer Res. 2021 40 1 153 10.1186/s13046‑021‑01959‑x 33941231
    [Google Scholar]
  71. Yang F. Bettadapura S.N. Smeltzer M.S. Zhu H. Wang S. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol. Sin. 2022 43 10 2462 2473 10.1038/s41401‑022‑00887‑6 35288674
    [Google Scholar]
  72. Du T. Gao J. Li P. Wang Y. Qi Q. Liu X. Li J. Wang C. Du L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med. 2021 11 8 e492 10.1002/ctm2.492 34459122
    [Google Scholar]
  73. Loveless R. Bloomquist R. Teng Y. Pyroptosis at the forefront of anticancer immunity. J. Exp. Clin. Cancer Res. 2021 40 1 264 10.1186/s13046‑021‑02065‑8 34429144
    [Google Scholar]
  74. Yang Z. Chen Z. Wang Y. Wang Z. Zhang D. Yue X. Zheng Y. Li L. Bian E. Zhao B. A novel defined pyroptosis-related gene signature for predicting prognosis and treatment of glioma. Front. Oncol. 2022 12 717926 10.3389/fonc.2022.717926 35433410
    [Google Scholar]
  75. Muendlein H.I. Jetton D. Connolly W.M. Eidell K.P. Magri Z. Smirnova I. Poltorak A. cFLIP L protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science 2020 367 6484 1379 1384 10.1126/science.aay3878 32193329
    [Google Scholar]
  76. Wang J. Wu Z. Zhu M. Zhao Y. Xie J. ROS induced pyroptosis in inflammatory disease and cancer. Front. Immunol. 2024 15 1378990 10.3389/fimmu.2024.1378990 39011036
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206339230241202062826
Loading
/content/journals/acamc/10.2174/0118715206339230241202062826
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: apoptosis ; reactive oxygen species ; pyroptosis ; thioredoxin reductase ; Irisquinone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test