Skip to content
2000
image of PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes

Abstract

Background

PC is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide can improve treatment outcomes and increase the effectiveness of anticancer drugs.

Objective

This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the prostate cancer (PC) cell line by attaching them to pegylated titanium dioxide nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.

Methods

Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated titanium dioxide system were applied to DU-145 cells, a PC cell line, under conditions, and MTT analysis was performed. Additionally, the IC values of these compounds were analyzed. In addition, the expression levels of , , , , and genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.

Results

The cytotoxic activity of PTX compound bound to PEGylated TiO was found to be higher than that of DOX compound bound to PEGylated TiO. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.

Conclusion

Accordingly, it was predicted that the pegylated titanium dioxide nano-based carrier could be effective in PC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206330115241015092548
2024-10-25
2025-01-18
Loading full text...

Full text loading...

References

  1. Barsouk A. Padala S.A. Vakiti A. Mohammed A. Sagi-nala K. Thandra K.C. Rawla P. Barsouk A. Epidemiology, staging and management of prostate cancer. Med. Sci. (Basel) 2020 8 3 28 10.3390/medsci8030028 32698438
    [Google Scholar]
  2. Sekhoacha M. Riet K. Motloung P. Gumenku L. Adegoke A. Mashele S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules 2022 27 17 5730 10.3390/molecules27175730 36080493
    [Google Scholar]
  3. Amjad M.T. Chidharla A. Kasi A. Cancer Chemotherapy. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  4. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  5. Sundararajan S. Vogelzang N. Chemotherapy in the Treat-ment of Prostate Cancer-The Past, the Present, and the Future. Am. J. Hematol. Oncol. 2014 10 6 14 21
    [Google Scholar]
  6. Kim J.J. Yin B. Christudass C.S. Terada N. Rajagopalan K. Fabry B. Lee D.Y. Shiraishi T. Getzenberg R.H. Veltri R.W. An S.S. Mooney S.M. Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. J. Cell. Biochem. 2013 114 6 1286 1293 10.1002/jcb.24464 23192682
    [Google Scholar]
  7. Mattioli R. Ilari A. Colotti B. Mosca L. Fazi F. Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol. Aspects Med. 2023 93 101205 10.1016/j.mam.2023.101205 37515939
    [Google Scholar]
  8. van der Zanden S.Y. Qiao X. Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxoru-bicin. FEBS J. 2021 288 21 6095 6111 10.1111/febs.15583 33022843
    [Google Scholar]
  9. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  10. Ahmed B. El-Sherbini E.S. El-sayed G. Eladl M. Akiyo-shi Taniguchi, A. Applications of titanium dioxide nanoparti-cles in nanomedicine. Mansoura Veter. Med. J. 2021 22 3 111 116 10.21608/mvmj.2021.196036
    [Google Scholar]
  11. Jafari S. Mahyad B. Hashemzadeh H. Janfaza S. Gholikhani T. Tayebi L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int. J. Nanomedicine 2020 15 3447 3470 10.2147/IJN.S249441 32523343
    [Google Scholar]
  12. Suk J.S. Xu Q. Kim N. Hanes J. Ensign L.M. PEGyla-tion as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  13. Cohen P. The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci. 2000 25 12 596 601 10.1016/S0968‑0004(00)01712‑6 11116185
    [Google Scholar]
  14. Cheng H.C. Qi R.Z. Paudel H. Zhu H.J. Regulation and function of protein kinases and phosphatases. Enzyme Res. 2011 2011 1 3 10.4061/2011/794089 22195276
    [Google Scholar]
  15. Martellucci S. Clementi L. Sabetta S. Mattei V. Botta L. Angelucci A. Src family kinases as therapeutic targets in ad-vanced solid tumors: What we have learned so far. Cancers (Basel) 2020 12 6 1448 10.3390/cancers12061448 32498343
    [Google Scholar]
  16. Turdo A. D’Accardo C. Glaviano A. Porcelli G. Colaros-si C. Colarossi L. Mare M. Faldetta N. Modica C. Pis-tone G. Bongiorno M.R. Todaro M. Stassi G. Targeting phosphatases and kinases: How to checkmate cancer. Front. Cell Dev. Biol. 2021 9 690306 10.3389/fcell.2021.690306 34778245
    [Google Scholar]
  17. Ventura J.J. Nebreda Á.R. Protein kinases and phosphatases as therapeutic targets in cancer. Clin. Transl. Oncol. 2006 8 3 153 160 10.1007/s12094‑006‑0005‑0 16648114
    [Google Scholar]
  18. Alonso A. Pulido R. The extended human PTP ome: A growing tyrosine phosphatase family. FEBS J. 2016 283 8 1404 1429 10.1111/febs.13600 26573778
    [Google Scholar]
  19. Bhore N. Wang B.J. Chen Y.W. Liao Y.F. Critical roles of dual-specificity phosphatases in neuronal proteostasis and neurological diseases. Int. J. Mol. Sci. 2017 18 9 1963 10.3390/ijms18091963 28902166
    [Google Scholar]
  20. Patterson K.I. Brummer T. O’brien P.M. Daly R.J. Dual-specificity phosphatases: Critical regulators with diverse cel-lular targets. Biochem. J. 2009 418 3 475 489 10.1042/BJ20082234 19228121
    [Google Scholar]
  21. Subbannayya Y. Pinto S.M. Bösl K. Prasad T.S.K. Kan-dasamy R.K. Dynamics of dual specificity phosphatases and their interplay with protein kinases in immune signaling. Int. J. Mol. Sci. 2019 20 9 2086 10.3390/ijms20092086 31035605
    [Google Scholar]
  22. Chen H.F. Chuang H.C. Tan T.H. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. Int. J. Mol. Sci. 2019 20 11 2668 10.3390/ijms20112668 31151270
    [Google Scholar]
  23. Cargnello M. Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein ki-nases. Microbiol. Mol. Biol. Rev. 2011 75 1 50 83 10.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  24. Rodríguez-Berriguete G. Fraile B. Martínez-Onsurbe P. Olmedilla G. Paniagua R. Royuela M. MAP Kinases and Prostate Cancer. J. Signal Transduct. 2012 2012 1 169170 22046506
    [Google Scholar]
  25. Arnoldussen Y.J. Saatcioglu F. Dual specificity phosphatas-es in prostate cancer. Mol. Cell. Endocrinol. 2009 309 1-2 1 7 10.1016/j.mce.2009.05.019 19501628
    [Google Scholar]
  26. Low H.B. Zhang Y. Regulatory Roles of MAPK Phospha-tases in Cancer. Immune Netw. 2016 16 2 85 98 10.4110/in.2016.16.2.85 27162525
    [Google Scholar]
  27. Bolukbasi SS Cakmak NK Tas A Ozmen E Cevik E Gumus E Silig Y The cytotoxic effects of titanium oxide nanoparticle on MDA-MB–231 AND MCF–7 cells. Int. J. Sci. Technol. Res. 2018 4 8 44476
    [Google Scholar]
  28. Tas A. Cakmak N. Gumus E. Atabey M. Silig Y. Chemotherapeutic effects of doxorubicin loaded Peg coated Tio2 nanocarriers on breast cancer cell lines. Annals of Medi-cal Research 2019 26 0 1 10.5455/annalsmedres.2019.02.078
    [Google Scholar]
  29. Du Y. Ren W. Li Y. Zhang Q. Zeng L. Chi C. Wu A. Tian J. The enhanced chemotherapeutic effects of doxorubi-cin loaded PEG coated TiO 2 nanocarriers in an orthotopic breast tumor bearing mouse model. J. Mater. Chem. B Mater. Biol. Med. 2015 3 8 1518 1528 10.1039/C4TB01781A 32262424
    [Google Scholar]
  30. Chandrashekar D.S. Karthikeyan S.K. Korla P.K. Patel H. Shovon A.R. Athar M. Netto G.J. Qin Z.S. Kumar S. Manne U. Creighton C.J. Varambally S. UALCAN: An up-date to the integrated cancer data analysis platform. Neoplasia 2022 25 18 27 10.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  31. Tas A. Çakmak N.K. Silig Y. Development of TiO2-PEG-PTX nanoparticle based drug systems and investigation of an-ticancer activity on SH-SY5Y. Asian J. Sci. Technol. 2018 9 12 9079 9082
    [Google Scholar]
  32. Li J. Fu A. Zhang L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci. 2019 11 2 320 328 10.1007/s12539‑019‑00327‑w 30877639
    [Google Scholar]
  33. Guedes I.A. de Magalhães C.S. Dardenne L.E. Receptor–ligand molecular docking. Biophys. Rev. 2014 6 1 75 87 10.1007/s12551‑013‑0130‑2 28509958
    [Google Scholar]
  34. Uniyal A. Mahapatra M.K. Tiwari V. Sandhir R. Kumar R. Targeting SARS-CoV-2 main protease: Structure based vir-tual screening, in silico ADMET studies and molecular dy-namics simulation for identification of potential inhibitors. J. Biomol. Struct. Dyn. 2022 40 8 3609 3625 10.1080/07391102.2020.1848636 33226303
    [Google Scholar]
  35. Seven D. Yavuz E. Kilic E. Baltaci E. Karaman E. Ulutin T. Buyru N. DLEC1 is not silenced solely by pro-moter methylation in head and neck squamous cell carcino-ma. Gene 2015 563 1 83 86 10.1016/j.gene.2015.03.004 25746324
    [Google Scholar]
  36. Li S. Tollefsbol T.O. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2021 187 28 43 10.1016/j.ymeth.2020.10.002 33039572
    [Google Scholar]
  37. Shen J. Zhang Y. Yu H. Shen B. Liang Y. Jin R. Liu X. Shi L. Cai X. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med. 2016 5 8 2061 2068 10.1002/cam4.772 27227569
    [Google Scholar]
  38. Seternes O.M. Kidger A.M. Keyse S.M. Dual-specificity MAP kinase phosphatases in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 2019 1866 1 124 143 10.1016/j.bbamcr.2018.09.002 30401534
    [Google Scholar]
  39. Kang Y.S. Seok H.J. Jeong E.J. Kim Y. Yun S.J. Min J.K. Kim S.J. Kim J.S. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells. Biochem. Biophys. Res. Commun. 2016 478 1 403 409 10.1016/j.bbrc.2016.07.035 27422607
    [Google Scholar]
  40. Fang J. Ye Z. Gu F. Yan M. Lin Q. Lin J. Wang Z. Xu Y. Wang Y. DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncol. Lett. 2018 16 2 1869 1875 10.3892/ol.2018.8822 30008878
    [Google Scholar]
  41. Small G.W. Shi Y.Y. Higgins L.S. Orlowski R.Z. Mito-gen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res. 2007 67 9 4459 4466 10.1158/0008‑5472.CAN‑06‑2644 17483361
    [Google Scholar]
  42. Lin S.C. Chien C.W. Lee J.C. Yeh Y.C. Hsu K.F. Lai Y.Y. Lin S.C. Tsai S.J. Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells. J. Clin. Invest. 2011 121 5 1905 1916 10.1172/JCI44362 21490398
    [Google Scholar]
  43. Dong W. Li N. Pei X. Wu X. Differential expression of DUSP2 in left- and right-sided colon cancer is associated with poor prognosis in colorectal cancer. Oncol. Lett. 2018 15 4 4207 4214 10.3892/ol.2018.7881 29541187
    [Google Scholar]
  44. Wu J. Jin Y.J. Calaf G.M. Huang W-L. Yin Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene 2007 26 45 6526 6535 10.1038/sj.onc.1210484 17471234
    [Google Scholar]
  45. Lawan A. Al-Harthi S. Cadalbert L. McCluskey A.G. Shweash M. Grassia G. Grant A. Boyd M. Currie S. Plevin R. Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP ki-nase phosphatase-2 (MKP-2) in proliferation and cell surviv-al. J. Biol. Chem. 2011 286 15 12933 12943 10.1074/jbc.M110.181370 21317287
    [Google Scholar]
  46. Yip-Schneider M.T. Lin A. Marshall M.S. Pancreatic tu-mor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochem. Biophys. Res. Commun. 2001 280 4 992 997 10.1006/bbrc.2001.4243 11162624
    [Google Scholar]
  47. Yokoyama A. Karasaki H. Urushibara N. Nomoto K. Imai Y. Nakamura K. Mizuno Y. Ogawa K. Kikuchi K. The characteristic gene expressions of MAPK phosphatases 1 and 2 in hepatocarcinogenesis, rat ascites hepatoma cells, and regenerating rat liver. Biochem. Biophys. Res. Commun. 1997 239 3 746 751 10.1006/bbrc.1997.7547 9367840
    [Google Scholar]
  48. Hasegawa T. Enomoto A. Kato T. Kawai K. Miyamoto R. Jijiwa M. Ichihara M. Ishida M. Asai N. Murakumo Y. Ohara K. Niwa Y. Goto H. Takahashi M. Roles of in-duced expression of MAPK phosphatase-2 in tumor devel-opment in RET-MEN2A transgenic mice. Oncogene 2008 27 43 5684 5695 10.1038/onc.2008.182 18542059
    [Google Scholar]
  49. Keyse S.M. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008 27 2 253 261 10.1007/s10555‑008‑9123‑1 18330678
    [Google Scholar]
  50. Gröschl B. Bettstetter M. Giedl C. Woenckhaus M. Ed-monston T. Hofstädter F. Dietmaier W. Expression of the MAP kinase phosphatase DUSP4 is associated with microsat-ellite instability in colorectal cancer (CRC) and causes in-creased cell proliferation. Int. J. Cancer 2013 132 7 1537 1546 10.1002/ijc.27834 22965873
    [Google Scholar]
  51. Balko J.M. Cook R.S. Vaught D.B. Kuba M.G. Miller T.W. Bhola N.E. Sanders M.E. Granja-Ingram N.M. Smith J.J. Meszoely I.M. Salter J. Dowsett M. Stemke-Hale K. González-Angulo A.M. Mills G.B. Pinto J.A. Gómez H.L. Arteaga C.L. Profiling of residual breast can-cers after neoadjuvant chemotherapy identifies DUSP4 defi-ciency as a mechanism of drug resistance. Nat. Med. 2012 18 7 1052 1059 10.1038/nm.2795 22683778
    [Google Scholar]
  52. Chen M. Zhang J. Berger A.H. Diolombi M.S. Ng C. Fung J. Bronson R.T. Castillo-Martin M. Thin T.H. Cor-don-Cardo, C.; Plevin, R.; Pandolfi, P.P. Compound haploin-sufficiency of Dok2 and Dusp4 promotes lung tumorigenesis. J. Clin. Invest. 2018 129 1 215 222 10.1172/JCI99699 30475228
    [Google Scholar]
  53. Kim H. Jang S.M. Ahn H. Sim J. Yi K. Chung Y. Han H. Rehman A. Chung M.S. Jang K. Paik S.S. Clinico-pathological significance of dual-specificity protein phospha-tase 4 expression in invasive ductal carcinoma of the breast. J. Breast Cancer 2015 18 1 1 7 10.4048/jbc.2015.18.1.1 25834604
    [Google Scholar]
  54. Gao P.P. Qi X.W. Sun N. Sun Y.Y. Zhang Y. Tan X.N. Ding J. Han F. Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1876 1 188562 10.1016/j.bbcan.2021.188562 33964330
    [Google Scholar]
  55. Hijiya N. Tsukamoto Y. Nakada C. Tung Nguyen L. Kai T. Matsuura K. Shibata K. Inomata M. Uchida T. To-kunaga A. Amada K. Shirao K. Yamada Y. Mori H. Takeuchi I. Seto M. Aoki M. Takekawa M. Moriyama M. Moriyama M. Genomic loss of DUSP4 contributes to the progression of intraepithelial neoplasm of pancreas to inva-sive carcinoma. Cancer Res. 2016 76 9 2612 2625 10.1158/0008‑5472.CAN‑15‑1846 26941286
    [Google Scholar]
  56. Kang X. Li M. Zhu H. Lu X. Miao J. Du S. Xia X. Guan W. DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition. Oncotarget 2017 8 55 94028 94039 10.18632/oncotarget.21522 29212207
    [Google Scholar]
  57. Muhammad K.A. Nur A.A. Nurul H.S. Narazah M.Y. Siti R.A.R. Dual-specificity phosphatase 6 (DUSP6): A re-view of its molecular characteristics and clinical relevance in cancer. Cancer Biol. Med. 2018 15 1 14 28 10.20892/j.issn.2095‑3941.2017.0107 29545965
    [Google Scholar]
  58. Zhang Z. Kobayashi S. Borczuk A.C. Leidner R.S. LaFramboise T. Levine A.D. Halmos B. Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feed-back mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis 2010 31 4 577 586 10.1093/carcin/bgq020 20097731
    [Google Scholar]
  59. Ma J. Yu X. Guo L. Lu S.H. DUSP6, a tumor suppressor, is involved in differentiation and apoptosis in esophageal squamous cell carcinoma. Oncol. Lett. 2013 6 6 1624 1630 10.3892/ol.2013.1605 24260056
    [Google Scholar]
  60. Li W. Melton D.W. Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene 2012 31 19 2412 2422 10.1038/onc.2011.426 21996734
    [Google Scholar]
  61. Zandi Z. Kashani B. Alishahi Z. Pourbagheri-Sigaroodi A. Esmaeili F. Ghaffari S.H. Bashash D. Momeny M. Dual-specificity phosphatases: Therapeutic targets in cancer therapy resistance. J. Cancer Res. Clin. Oncol. 2022 148 1 57 70 10.1007/s00432‑021‑03874‑2 34981193
    [Google Scholar]
  62. Wong V.C.L. Chen H. Ko J.M.Y. Chan K.W. Chan Y.P. Law S. Chua D. Kwong D.L.W. Lung H.L. Srivastava G. Tang J.C.O. Tsao S.W. Zabarovsky E.R. Stanbridge E.J. Lung M.L. Tumor suppressor dual‐specificity phospha-tase 6 (DUSP6) impairs cell invasion and epithelial‐mesenchymal transition (EMT)‐associated phenotype. Int. J. Cancer 2012 130 1 83 95 10.1002/ijc.25970 21387288
    [Google Scholar]
  63. Zhai X. Han Q. Shan Z. Qu X. Guo L. Zhou Y. Dual specificity phosphatase 6 suppresses the growth and metasta-sis of prostate cancer cells. Mol. Med. Rep. 2014 10 6 3052 3058 10.3892/mmr.2014.2575 25241655
    [Google Scholar]
  64. Finch A.R. Caunt C.J. Perrett R.M. Tsaneva-Atanasova K. McArdle C.A. Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: Indi-rect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell. Signal. 2012 24 5 1002 1011 10.1016/j.cellsig.2011.12.021 22245064
    [Google Scholar]
  65. Zhang Y. Blattman J.N. Kennedy N.J. Duong J. Nguyen T. Wang Y. Davis R.J. Greenberg P.D. Flavell R.A. Dong C. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 2004 430 7001 793 797 10.1038/nature02764 15306813
    [Google Scholar]
  66. Jiménez-Martínez M. Stamatakis K. Fresno M. The dual-specificity phosphatase 10 (DUSP10): Its role in cancer, in-flammation, and immunity. Int. J. Mol. Sci. 2019 20 7 1626 10.3390/ijms20071626 30939861
    [Google Scholar]
  67. Goldman M. Craft B. Hastie M. Repečka K. McDade F. Kamath A. Banerjee A. Luo Y. Rogers D. Brooks A.N. Haussler D. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. Biorxiv 2018 10.1101/326470
    [Google Scholar]
  68. Ríos P. Nunes-Xavier C.E. Tabernero L. Köhn M. Pu-lido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid. Redox Signal. 2014 20 14 2251 2273 10.1089/ars.2013.5709 24206177
    [Google Scholar]
  69. Lin H.C. Su S.L. Lin W.C. Lin A.H. Yang Y.C. Lii C.K. Chen H.W. Andrographolide inhibits hypoxia‐induced hypoxia‐inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP‐5 pathways in EA.hy926 cells. Environ. Toxicol. 2018 33 3 269 279 10.1002/tox.22514 29165873
    [Google Scholar]
  70. Agbektas T. Zontul C. Ozturk A. Huseynzada A. Ganba-rova R. Hasanova U. Cinar G. Tas A. Kaya S. Chtita S. Silig Y. Effect of azomethine group containing compounds on gene profiles in Wnt and MAPK signal patterns in lung cancer cell line: In silico and in vitro analyses. J. Mol. Struct. 2023 1275 134619 10.1016/j.molstruc.2022.134619
    [Google Scholar]
  71. Zhou F. Zeng L. Chen X. Zhou F. Zhang Z. Yuan Y. Wang H. Yao H. Tian J. Liu X. Zhao J. Huang X. Pu J. Cho W.C. Cao J. Jiang X. DUSP10 upregulation is a poor prognosticator and promotes cell proliferation and mi-gration in glioma. Front. Oncol. 2023 12 1050756 10.3389/fonc.2022.1050756 36713584
    [Google Scholar]
  72. Png C.W. Weerasooriya M. Guo J. James S.J. Poh H.M. Osato M. Flavell R.A. Dong C. Yang H. Zhang Y. DUSP10 regulates intestinal epithelial cell growth and colorec-tal tumorigenesis. Oncogene 2016 35 2 206 217 10.1038/onc.2015.74 25772234
    [Google Scholar]
  73. Lucci M.A. Orlandi R. Triulzi T. Tagliabue E. Balsari A. Villa-Moruzzi E. Expression profile of tyrosine phospha-tases in HER2 breast cancer cells and tumors. Anal. Cell. Pathol. (Amst.) 2010 32 5-6 361 372 10.1155/2010/386484 20413845
    [Google Scholar]
  74. Arora D. Köthe S. van den Eijnden M. van Huijsduijnen R.H. Heidel F. Fischer T. Scholl S. Tölle B. Böhmer S.A. Lennartsson J. Isken F. Müller-Tidow C. Böhmer F.D. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression. Cell Commun. Signal. 2012 10 1 19 10.1186/1478‑811X‑10‑19 22784513
    [Google Scholar]
  75. Xiao F. Zhu H. Guo Y. Zhang Z. Sun G. Huang K. Guo H. Hu G. DUSP10 is a novel immune-related bi-omarker connected with survival and cellular proliferation in lower-grade glioma. Aging (Albany NY) 2023 15 12 5673 5697 10.18632/aging.204821 37387540
    [Google Scholar]
  76. Wei X. Png C.W. Weerasooriya M. Li H. Zhu C. Chen G. Xu C. Zhang Y. Xu X. Tumor promoting function of DUSP10 in non-small cell lung cancer is associated with tu-mor-promoting cytokines. Immune Netw. 2023 23 4 e34 10.4110/in.2023.23.e34
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206330115241015092548
Loading
/content/journals/acamc/10.2174/0118715206330115241015092548
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test