Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Prostate cancer (PC) is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide (TiO) can improve treatment outcomes and increase the effectiveness of anticancer drugs.

Objective

This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the PC cell line by attaching them to PEGylated TiO nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.

Methods

Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated TiO system were applied to DU-145 cells, a PC cell line, under conditions, and MTT analysis was performed. Additionally, the IC values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.

Results

The cytotoxic activity of PTX compound bound to PEGylated TiO was found to be higher than that of DOX compound bound to PEGylated TiO. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.

Conclusion

Accordingly, it was predicted that the PEGylated TiO nano-based carrier could be effective in PC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206330115241015092548
2024-10-25
2025-03-07
Loading full text...

Full text loading...

References

  1. BarsoukA. PadalaS.A. VakitiA. MohammedA. SaginalaK. ThandraK.C. RawlaP. BarsoukA. Epidemiology, staging and management of prostate cancer.Med. Sci. (Basel)2020832810.3390/medsci8030028 32698438
    [Google Scholar]
  2. SekhoachaM. RietK. MotloungP. GumenkuL. AdegokeA. MasheleS. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules20222717573010.3390/molecules27175730 36080493
    [Google Scholar]
  3. AmjadM.T. ChidharlaA. KasiA. Cancer Chemotherapy.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  4. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  5. SundararajanS. VogelzangN. Chemotherapy in the treatment of prostate cancer-the past, the present, and the future.Am. J. Hematol. Oncol.20141061421
    [Google Scholar]
  6. KimJ.J. YinB. ChristudassC.S. TeradaN. RajagopalanK. FabryB. LeeD.Y. ShiraishiT. GetzenbergR.H. VeltriR.W. AnS.S. MooneyS.M. Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer.J. Cell. Biochem.201311461286129310.1002/jcb.24464 23192682
    [Google Scholar]
  7. MattioliR. IlariA. ColottiB. MoscaL. FaziF. ColottiG. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming.Mol. Aspects Med.20239310120510.1016/j.mam.2023.101205 37515939
    [Google Scholar]
  8. van der ZandenS.Y. QiaoX. NeefjesJ. New insights into the activities and toxicities of the old anticancer drug doxorubicin.FEBS J.2021288216095611110.1111/febs.15583 33022843
    [Google Scholar]
  9. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  10. AhmedB. El-SherbiniE.S. El-sayedG. EladlM. Akiyoshi TaniguchiA. Applications of titanium dioxide nanoparticles in nanomedicine.Mansoura Veter. Med. J.202122311111610.21608/mvmj.2021.196036
    [Google Scholar]
  11. JafariS. MahyadB. HashemzadehH. JanfazaS. GholikhaniT. TayebiL. Biomedical applications of TiO2 nanostructures: Recent advances.Int. J. Nanomedicine2020153447347010.2147/IJN.S249441 32523343
    [Google Scholar]
  12. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.01226456916
    [Google Scholar]
  13. CohenP. The regulation of protein function by multisite phosphorylation – a 25 year update.Trends Biochem. Sci.2000251259660110.1016/S0968‑0004(00)01712‑6 11116185
    [Google Scholar]
  14. ChengH.C. QiR.Z. PaudelH. ZhuH.J. Regulation and function of protein kinases and phosphatases.Enzyme Res.201120111310.4061/2011/794089 22195276
    [Google Scholar]
  15. MartellucciS. ClementiL. SabettaS. MatteiV. BottaL. AngelucciA. Src family kinases as therapeutic targets in advanced solid tumors: What we have learned so far.Cancers (Basel)2020126144810.3390/cancers12061448 32498343
    [Google Scholar]
  16. TurdoA. D’AccardoC. GlavianoA. PorcelliG. ColarossiC. ColarossiL. MareM. FaldettaN. ModicaC. PistoneG. BongiornoM.R. TodaroM. StassiG. Targeting phosphatases and kinases: How to checkmate cancer.Front. Cell Dev. Biol.2021969030610.3389/fcell.2021.690306 34778245
    [Google Scholar]
  17. VenturaJ.J. NebredaÁ.R. Protein kinases and phosphatases as therapeutic targets in cancer.Clin. Transl. Oncol.20068315316010.1007/s12094‑006‑0005‑0 16648114
    [Google Scholar]
  18. AlonsoA. PulidoR. The extended human PTP ome: A growing tyrosine phosphatase family.FEBS J.201628381404142910.1111/febs.13600 26573778
    [Google Scholar]
  19. BhoreN. WangB.J. ChenY.W. LiaoY.F. Critical roles of dual-specificity phosphatases in neuronal proteostasis and neurological diseases.Int. J. Mol. Sci.2017189196310.3390/ijms18091963 28902166
    [Google Scholar]
  20. PattersonK.I. BrummerT. O’brienP.M. DalyR.J. Dual-specificity phosphatases: Critical regulators with diverse cellular targets.Biochem. J.2009418347548910.1042/BJ20082234 19228121
    [Google Scholar]
  21. SubbannayyaY. PintoS.M. BöslK. PrasadT.S.K. KandasamyR.K. Dynamics of dual specificity phosphatases and their interplay with protein kinases in immune signaling.Int. J. Mol. Sci.2019209208610.3390/ijms20092086 31035605
    [Google Scholar]
  22. ChenH.F. ChuangH.C. TanT.H. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability.Int. J. Mol. Sci.20192011266810.3390/ijms20112668 31151270
    [Google Scholar]
  23. CargnelloM. RouxP.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.2011751508310.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  24. Rodríguez-BerrigueteG. FraileB. Martínez-OnsurbeP. OlmedillaG. PaniaguaR. RoyuelaM. MAP Kinases and Prostate Cancer.J. Signal Transduct.201220121169170 22046506
    [Google Scholar]
  25. ArnoldussenY.J. SaatciogluF. Dual specificity phosphatases in prostate cancer.Mol. Cell. Endocrinol.20093091-21710.1016/j.mce.2009.05.019 19501628
    [Google Scholar]
  26. LowH.B. ZhangY. Regulatory Roles of MAPK Phosphatases in Cancer.Immune Netw.2016162859810.4110/in.2016.16.2.85 27162525
    [Google Scholar]
  27. BolukbasiS.S. CakmakN.K. TasA. OzmenE. CevikE. GumusE. SiligY. The cytotoxic effects of titanium oxide nanoparticle on MDA-MB–231 AND MCF–7 cells.Int. J. Sci. Technol. Res.20184844476
    [Google Scholar]
  28. TasA. CakmakN. GumusE. AtabeyM. SiligY. Chemotherapeutic effects of doxorubicin loaded Peg coated TiO2 nanocarriers on breast cancer cell lines.Ann. Med. Res.2019260110.5455/annalsmedres.2019.02.078
    [Google Scholar]
  29. DuY. RenW. LiY. ZhangQ. ZengL. ChiC. WuA. TianJ. The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model.J. Mater. Chem. B Mater. Biol. Med.2015381518152810.1039/C4TB01781A 32262424
    [Google Scholar]
  30. ChandrashekarD.S. KarthikeyanS.K. KorlaP.K. PatelH. ShovonA.R. AtharM. NettoG.J. QinZ.S. KumarS. ManneU. CreightonC.J. VaramballyS. UALCAN: An update to the integrated cancer data analysis platform.Neoplasia202225182710.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  31. TasA. ÇakmakN.K. SiligY. Development of TiO2-PEG-PTX nanoparticle based drug systems and investigation of anticancer activity on SH-SY5Y.Asian J. Sci. Technol.201891290799082
    [Google Scholar]
  32. LiJ. FuA. ZhangL. An overview of scoring functions used for protein–ligand interactions in molecular docking.Interdiscip. Sci.201911232032810.1007/s12539‑019‑00327‑w 30877639
    [Google Scholar]
  33. GuedesI.A. de MagalhãesC.S. DardenneL.E. Receptor–ligand molecular docking.Biophys. Rev.201461758710.1007/s12551‑013‑0130‑2 28509958
    [Google Scholar]
  34. UniyalA. MahapatraM.K. TiwariV. SandhirR. KumarR. Targeting SARS-CoV-2 main protease: Structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors.J. Biomol. Struct. Dyn.20224083609362510.1080/07391102.2020.1848636 33226303
    [Google Scholar]
  35. SevenD. YavuzE. KilicE. BaltaciE. KaramanE. UlutinT. BuyruN. DLEC1 is not silenced solely by promoter methylation in head and neck squamous cell carcinoma.Gene20155631838610.1016/j.gene.2015.03.004 25746324
    [Google Scholar]
  36. LiS. TollefsbolT.O. DNA methylation methods: Global DNA methylation and methylomic analyses.Methods2021187284310.1016/j.ymeth.2020.10.002 33039572
    [Google Scholar]
  37. ShenJ. ZhangY. YuH. ShenB. LiangY. JinR. LiuX. ShiL. CaiX. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy.Cancer Med.2016582061206810.1002/cam4.772 27227569
    [Google Scholar]
  38. SeternesO.M. KidgerA.M. KeyseS.M. Dual-specificity MAP kinase phosphatases in health and disease.Biochim. Biophys. Acta Mol. Cell Res.20191866112414310.1016/j.bbamcr.2018.09.002 30401534
    [Google Scholar]
  39. KangY.S. SeokH.J. JeongE.J. KimY. YunS.J. MinJ.K. KimS.J. KimJ.S. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.Biochem. Biophys. Res. Commun.2016478140340910.1016/j.bbrc.2016.07.035 27422607
    [Google Scholar]
  40. FangJ. YeZ. GuF. YanM. LinQ. LinJ. WangZ. XuY. WangY. DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system.Oncol. Lett.20181621869187510.3892/ol.2018.8822 30008878
    [Google Scholar]
  41. SmallG.W. ShiY.Y. HigginsL.S. OrlowskiR.Z. Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance.Cancer Res.20076794459446610.1158/0008‑5472.CAN‑06‑2644 17483361
    [Google Scholar]
  42. LinS.C. ChienC.W. LeeJ.C. YehY.C. HsuK.F. LaiY.Y. LinS.C. TsaiS.J. Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells.J. Clin. Invest.201112151905191610.1172/JCI44362 21490398
    [Google Scholar]
  43. DongW. LiN. PeiX. WuX. Differential expression of DUSP2 in left- and right-sided colon cancer is associated with poor prognosis in colorectal cancer.Oncol. Lett.20181544207421410.3892/ol.2018.7881 29541187
    [Google Scholar]
  44. WuJ. JinY.J. CalafG.M. HuangW-L. YinY. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling.Oncogene200726456526653510.1038/sj.onc.1210484 17471234
    [Google Scholar]
  45. LawanA. Al-HarthiS. CadalbertL. McCluskeyA.G. ShweashM. GrassiaG. GrantA. BoydM. CurrieS. PlevinR. Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival.J. Biol. Chem.201128615129331294310.1074/jbc.M110.181370 21317287
    [Google Scholar]
  46. Yip-SchneiderM.T. LinA. MarshallM.S. Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2.Biochem. Biophys. Res. Commun.2001280499299710.1006/bbrc.2001.4243 11162624
    [Google Scholar]
  47. YokoyamaA. KarasakiH. UrushibaraN. NomotoK. ImaiY. NakamuraK. MizunoY. OgawaK. KikuchiK. The characteristic gene expressions of MAPK phosphatases 1 and 2 in hepatocarcinogenesis, rat ascites hepatoma cells, and regenerating rat liver.Biochem. Biophys. Res. Commun.1997239374675110.1006/bbrc.1997.7547 9367840
    [Google Scholar]
  48. HasegawaT. EnomotoA. KatoT. KawaiK. MiyamotoR. JijiwaM. IchiharaM. IshidaM. AsaiN. MurakumoY. OharaK. NiwaY. GotoH. TakahashiM. Roles of induced expression of MAPK phosphatase-2 in tumor development in RET-MEN2A transgenic mice.Oncogene200827435684569510.1038/onc.2008.182 18542059
    [Google Scholar]
  49. KeyseS.M. Dual-specificity MAP kinase phosphatases (MKPs) and cancer.Cancer Metastasis Rev.200827225326110.1007/s10555‑008‑9123‑1 18330678
    [Google Scholar]
  50. GröschlB. BettstetterM. GiedlC. WoenckhausM. EdmonstonT. HofstädterF. DietmaierW. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation.Int. J. Cancer201313271537154610.1002/ijc.27834 22965873
    [Google Scholar]
  51. BalkoJ.M. CookR.S. VaughtD.B. KubaM.G. MillerT.W. BholaN.E. SandersM.E. Granja-IngramN.M. SmithJ.J. MeszoelyI.M. SalterJ. DowsettM. Stemke-HaleK. González-AnguloA.M. MillsG.B. PintoJ.A. GómezH.L. ArteagaC.L. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance.Nat. Med.20121871052105910.1038/nm.2795 22683778
    [Google Scholar]
  52. ChenM. ZhangJ. BergerA.H. DiolombiM.S. NgC. FungJ. BronsonR.T. Castillo-MartinM. ThinT.H. Cordon-CardoC. PlevinR. PandolfiP.P. Compound haploinsufficiency of Dok2 and DUSP4 promotes lung tumorigenesis.J. Clin. Invest.2018129121522210.1172/JCI99699 30475228
    [Google Scholar]
  53. KimH. JangS.M. AhnH. SimJ. YiK. ChungY. HanH. RehmanA. ChungM.S. JangK. PaikS.S. Clinicopathological significance of dual-specificity protein phosphatase 4 expression in invasive ductal carcinoma of the breast.J. Breast Cancer20151811710.4048/jbc.2015.18.1.1 25834604
    [Google Scholar]
  54. GaoP.P. QiX.W. SunN. SunY.Y. ZhangY. TanX.N. DingJ. HanF. ZhangY. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer.Biochim. Biophys. Acta Rev. Cancer20211876118856210.1016/j.bbcan.2021.188562 33964330
    [Google Scholar]
  55. HijiyaN. TsukamotoY. NakadaC. Tung NguyenL. KaiT. MatsuuraK. ShibataK. InomataM. UchidaT. TokunagaA. AmadaK. ShiraoK. YamadaY. MoriH. TakeuchiI. SetoM. AokiM. TakekawaM. MoriyamaM. MoriyamaM. Genomic loss of DUSP4 contributes to the progression of intraepithelial neoplasm of pancreas to invasive carcinoma.Cancer Res.20167692612262510.1158/0008‑5472.CAN‑15‑1846 26941286
    [Google Scholar]
  56. KangX. LiM. ZhuH. LuX. MiaoJ. DuS. XiaX. GuanW. DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition.Oncotarget2017855940289403910.18632/oncotarget.21522 29212207
    [Google Scholar]
  57. MuhammadK.A. NurA.A. NurulH.S. NarazahM.Y. SitiR.A.R. Dual-specificity phosphatase 6 (DUSP6): A review of its molecular characteristics and clinical relevance in cancer.Cancer Biol. Med.2018151142810.20892/j.issn.2095‑3941.2017.0107 29545965
    [Google Scholar]
  58. ZhangZ. KobayashiS. BorczukA.C. LeidnerR.S. LaFramboiseT. LevineA.D. HalmosB. Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells.Carcinogenesis201031457758610.1093/carcin/bgq020 20097731
    [Google Scholar]
  59. MaJ. YuX. GuoL. LuS.H. DUSP6, a tumor suppressor, is involved in differentiation and apoptosis in esophageal squamous cell carcinoma.Oncol. Lett.2013661624163010.3892/ol.2013.1605 24260056
    [Google Scholar]
  60. LiW. MeltonD.W. Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance.Oncogene201231192412242210.1038/onc.2011.426 21996734
    [Google Scholar]
  61. ZandiZ. KashaniB. AlishahiZ. Pourbagheri-SigaroodiA. EsmaeiliF. GhaffariS.H. BashashD. MomenyM. Dual-specificity phosphatases: Therapeutic targets in cancer therapy resistance.J. Cancer Res. Clin. Oncol.20221481577010.1007/s00432‑021‑03874‑2 34981193
    [Google Scholar]
  62. WongV.C.L. ChenH. KoJ.M.Y. ChanK.W. ChanY.P. LawS. ChuaD. KwongD.L.W. LungH.L. SrivastavaG. TangJ.C.O. TsaoS.W. ZabarovskyE.R. StanbridgeE.J. LungM.L. Tumor suppressor dual‐specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial‐mesenchymal transition (EMT)‐associated phenotype.Int. J. Cancer20121301839510.1002/ijc.25970 21387288
    [Google Scholar]
  63. ZhaiX. HanQ. ShanZ. QuX. GuoL. ZhouY. Dual specificity phosphatase 6 suppresses the growth and metastasis of prostate cancer cells.Mol. Med. Rep.20141063052305810.3892/mmr.2014.2575 25241655
    [Google Scholar]
  64. FinchA.R. CauntC.J. PerrettR.M. Tsaneva-AtanasovaK. McArdleC.A. Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: Indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases.Cell. Signal.20122451002101110.1016/j.cellsig.2011.12.021 22245064
    [Google Scholar]
  65. ZhangY. BlattmanJ.N. KennedyN.J. DuongJ. NguyenT. WangY. DavisR.J. GreenbergP.D. FlavellR.A. DongC. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5.Nature2004430700179379710.1038/nature02764 15306813
    [Google Scholar]
  66. Jiménez-MartínezM. StamatakisK. FresnoM. The dual-specificity phosphatase 10 (DUSP10): Its role in cancer, inflammation, and immunity.Int. J. Mol. Sci.2019207162610.3390/ijms20071626 30939861
    [Google Scholar]
  67. GoldmanM. CraftB. HastieM. RepečkaK. McDadeF. KamathA. BanerjeeA. LuoY. RogersD. BrooksA.N. HausslerD. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation.Biorxiv201810.1101/326470
    [Google Scholar]
  68. RíosP. Nunes-XavierC.E. TaberneroL. KöhnM. PulidoR. Dual-specificity phosphatases as molecular targets for inhibition in human disease.Antioxid. Redox Signal.201420142251227310.1089/ars.2013.5709 24206177
    [Google Scholar]
  69. LinH.C. SuS.L. LinW.C. LinA.H. YangY.C. LiiC.K. ChenH.W. Andrographolide inhibits hypoxia‐induced hypoxia‐inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP‐5 pathways in EA.hy926 cells.Environ. Toxicol.201833326927910.1002/tox.22514 29165873
    [Google Scholar]
  70. AgbektasT. ZontulC. OzturkA. HuseynzadaA. GanbarovaR. HasanovaU. CinarG. TasA. KayaS. ChtitaS. SiligY. Effect of azomethine group containing compounds on gene profiles in Wnt and MAPK signal patterns in lung cancer cell line: In silico and in vitro analyses.J. Mol. Struct.2023127513461910.1016/j.molstruc.2022.134619
    [Google Scholar]
  71. ZhouF. ZengL. ChenX. ZhouF. ZhangZ. YuanY. WangH. YaoH. TianJ. LiuX. ZhaoJ. HuangX. PuJ. ChoW.C. CaoJ. JiangX. DUSP10 upregulation is a poor prognosticator and promotes cell proliferation and migration in glioma.Front. Oncol.202312105075610.3389/fonc.2022.1050756 36713584
    [Google Scholar]
  72. PngC.W. WeerasooriyaM. GuoJ. JamesS.J. PohH.M. OsatoM. FlavellR.A. DongC. YangH. ZhangY. DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis.Oncogene201635220621710.1038/onc.2015.74 25772234
    [Google Scholar]
  73. LucciM.A. OrlandiR. TriulziT. TagliabueE. BalsariA. Villa-MoruzziE. Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors.Anal. Cell. Pathol. (Amst.)2010325-636137210.1155/2010/386484 20413845
    [Google Scholar]
  74. AroraD. KötheS. van den EijndenM. van HuijsduijnenR.H. HeidelF. FischerT. SchollS. TölleB. BöhmerS.A. LennartssonJ. IskenF. Müller-TidowC. BöhmerF.D. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression.Cell Commun. Signal.20121011910.1186/1478‑811X‑10‑19 22784513
    [Google Scholar]
  75. XiaoF. ZhuH. GuoY. ZhangZ. SunG. HuangK. GuoH. HuG. DUSP10 is a novel immune-related biomarker connected with survival and cellular proliferation in lower-grade glioma.Aging (Albany NY)202315125673569710.18632/aging.204821 37387540
    [Google Scholar]
  76. WeiX. PngC.W. WeerasooriyaM. LiH. ZhuC. ChenG. XuC. ZhangY. XuX. Tumor promoting function of DUSP10 in non-small cell lung cancer is associated with tumor-promoting cytokines.Immune Netw.2023234e3410.4110/in.2023.23.e34
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206330115241015092548
Loading
/content/journals/acamc/10.2174/0118715206330115241015092548
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test