Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Hepatocellular Carcinoma (HCC) is a highly prevalent cancer worldwide, necessitating effective treatment options. However, current treatments do not provide satisfactory results. Quinacrine, a synthetic drug belonging to the 9-aminoacridine family, has demonstrated promising antitumor effects.

Objective

The objective of the current study is to evaluate the anti-HCC effect of Quinacrine and explore whether quinacrine can improve the anti-HCC response of lenvatinib and .

Methods

The HepG2 and MHCC-97H cells were treated with Quinacrine. Cell proliferation and cell apoptosis were assessed using the Cell Counting Kit-8 (CCK8) Assay, Colony Formation Assay, and Annexin V/7-AAD staining method. The invasion and migratory ability of HepG2 and MHCC-97H cells were assessed by Transwell Assay. The level of ROS of HCC cells was measured using a ROS-kit by Flow cytometric analysis. Besides, an study was performed in the Balb/c nude mice bearing MHCC-97H tumors to analyze the function of Quinacrine in tumor growth.

Results

Quinacrine can decrease cell viability in HepG2 and MHCC-97H cells, but not affect LO2 cells. Quinacrine impaired the colony formation, invasion and migratory ability in half-maximal inhibitory concentration (IC). Quinacrine also significantly induced apoptosis in HepG2 and MHCC-97H cells in a concentration-dependent manner. On the one hand, ROS was significantly up-regulated in HCC cells after quinacrine treatment. On the other hand, We found quinacrine blocked autophagy flux in HepG2 and MHCC-97H cells. Moreover, Quinacrine significantly enhances the anti-HCC efficacy of lenvatinib . In the mouse MHCC-97H model, We found that combination therapy with Quinacrine and lenvatinib resulted in a smaller tumor volume and weight than inoculated with lenvatinib alone.

Conclusion

Our findings demonstrated that quinacrine exerts anti-HCC effects and sensitizes hepatocellular carcinoma to lenvatinib. Collectively, our study provides novel therapeutic insights for managing HCC and offers a valuable strategy for future clinical interventions in this field.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206304652241105063112
2025-01-22
2025-06-26
Loading full text...

Full text loading...

References

  1. TohM.R. WongE.Y.T. WongS.H. NgA.W.T. LooL.H. ChowP.K.H. NgeowJ. Global epidemiology and genetics of hepatocellular carcinoma.Gastroenterology2023164576678210.1053/j.gastro.2023.01.033 36738977
    [Google Scholar]
  2. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  3. ChenS. CaoQ. WenW. WangH. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities.Cancer Lett.20194601910.1016/j.canlet.2019.114428 31207320
    [Google Scholar]
  4. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  5. CucarullB. TutusausA. RiderP. Hernáez-AlsinaT. CuñoC. García de FrutosP. ColellA. MaríM. MoralesA. Hepatocellular carcinoma: Molecular pathogenesis and therapeutic advances.Cancers (Basel)202214362110.3390/cancers14030621 35158892
    [Google Scholar]
  6. FornariF. GiovanniniC. PiscagliaF. GramantieriL. Elucidating the molecular basis of sorafenib resistance in HCC: Current findings and future directions.J. Hepatocell. Carcinoma2021874175710.2147/JHC.S285726 34239844
    [Google Scholar]
  7. OienD.B. PathoulasC.L. RayU. ThirusanguP. KalogeraE. ShridharV. Repurposing quinacrine for treatment-refractory cancer.Semin. Cancer Biol.202168213010.1016/j.semcancer.2019.09.021 31562955
    [Google Scholar]
  8. WangY. BiQ. DongL. LiX. GeX. ZhangX. FuJ. WuD. LiS. Quinacrine enhances cisplatin-induced cytotoxicity in four cancer cell lines.Chemotherapy201056212713410.1159/000313525 20407239
    [Google Scholar]
  9. YangC. ZhangH. ZhangL. ZhuA.X. BernardsR. QinW. WangC. Evolving therapeutic landscape of advanced hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202320420322210.1038/s41575‑022‑00704‑9 36369487
    [Google Scholar]
  10. SongM. MaL. ShenC. LiuW. ZhangP. BiR. ZhaoC. FGD5-AS1/miR-5590-3p/PINK1 induces Lenvatinib resistance in hepatocellular carcinoma.Cell. Signal.202311111082810.1016/j.cellsig.2023.110828 37517671
    [Google Scholar]
  11. ChenY. HuH. YuanX. FanX. ZhangC. Advances in immune checkpoint inhibitors for advanced hepatocellular carcinoma.Front. Immunol.20221389675210.3389/fimmu.2022.896752 35757756
    [Google Scholar]
  12. JinH. ShiY. LvY. YuanS. RamirezC.F.A. LieftinkC. WangL. WangS. WangC. DiasM.H. JochemsF. YangY. BosmaA. HijmansE.M. de GrootM.H.P. VegnaS. CuiD. ZhouY. LingJ. WangH. GuoY. ZhengX. IsimaN. WuH. SunC. BeijersbergenR.L. AkkariL. ZhouW. ZhaiB. QinW. BernardsR. EGFR activation limits the response of liver cancer to lenvatinib.Nature2021595786973073410.1038/s41586‑021‑03741‑7 34290403
    [Google Scholar]
  13. ZipperJ. DabancensA. GuerreroA. TrujilloV. Quinacrine revised.Hum. Reprod. Update19951432434210.1093/humupd/1.4.324 9080211
    [Google Scholar]
  14. EtmanS.M. MehannaR.A. BaryA.A. ElnaggarY.S.R. AbdallahO.Y. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer.Int. J. Biol. Macromol.202117028429710.1016/j.ijbiomac.2020.12.109 33340624
    [Google Scholar]
  15. LoboM.R. GreenS.C. SchabelM.C. GillespieG.Y. WoltjerR.L. PikeM.M. Quinacrine synergistically enhances the antivascular and antitumor efficacy of cediranib in intracranial mouse glioma.Neuro-oncol.201315121673168310.1093/neuonc/not119 24092859
    [Google Scholar]
  16. AbdulghaniJ. GokareP. GallantJ.N. DickerD. WhitcombT. CooperT. LiaoJ. DerrJ. LiuJ. GoldenbergD. FinnbergN.K. El-DeiryW.S. Sorafenib and quinacrine target anti-apoptotic protein MCL1: A poor prognostic marker in Anaplastic Thyroid Cancer (ATC).Clin. Cancer Res.201622246192620310.1158/1078‑0432.CCR‑15‑2792 27307592
    [Google Scholar]
  17. DuD. LiuC. QinM. ZhangX. XiT. YuanS. HaoH. XiongJ. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma.Acta Pharm. Sin. B202212255858010.1016/j.apsb.2021.09.019 35256934
    [Google Scholar]
  18. KudoM. FinnR.S. QinS. HanK.H. IkedaK. PiscagliaF. BaronA. ParkJ.W. HanG. JassemJ. BlancJ.F. VogelA. KomovD. EvansT.R.J. LopezC. DutcusC. GuoM. SaitoK. KraljevicS. TamaiT. RenM. ChengA.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial.Lancet2018391101261163117310.1016/S0140‑6736(18)30207‑1 29433850
    [Google Scholar]
  19. ZhuX.D. SunH.C. Emerging agents and regimens for hepatocellular carcinoma.J. Hematol. Oncol.201912111010.1186/s13045‑019‑0794‑6 31655607
    [Google Scholar]
  20. ZhengY. HuangC. LuL. YuK. ZhaoJ. ChenM. LiuL. SunQ. LinZ. ZhengJ. ChenJ. ZhangJ. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib.J. Hematol. Oncol.20211411610.1186/s13045‑020‑01029‑3 33446239
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206304652241105063112
Loading
/content/journals/acamc/10.2174/0118715206304652241105063112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test