Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The efficacy of chemotherapy continues to be limited due to associated toxicity and chemoresistance. Thus, synthesizing and investigating novel agents for cancer treatment that could potentially eliminate such limitations is imperative.

Objective

The current study aims to explore the anticancer potency of cryptolepine (CPE) analog on Ehrlich ascites carcinoma cells (EACs) in mice.

Methods

The effect of a CPE analog on EAC cell viability and ascites volume, as well as malonaldehyde, total antioxidant capacity, and catalase, were estimated. The concentration of caspase-8 and mTOR in EACs was also measured, and the expression levels of PTEN and Akt were determined.

Results

Results revealed that CPE analog exerts a cytotoxic effect on EAC cell viability and reduces the ascites volume. Moreover, this analog induces oxidative stress in EACs by increasing the level of malonaldehyde and decreasing the level of total antioxidant capacity and catalase activity. It also induces apoptosis by elevating the concentration of caspase-8 in EACs. Furthermore, it decreases the concentration of mTOR in EACs. Moreover, it upregulates the expression of PTEN and downregulates the expression of Akt in EACs.

Conclusion

Our findings showed the anticancer activity of CPE analog against EACs in mice mediated by regulation of the PTEN/Akt/mTOR signaling pathway.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206274318231128072821
2024-04-01
2025-04-22
Loading full text...

Full text loading...

References

  1. ZhouL. LiM. ChaiZ. ZhangJ. CaoK. DengL. LiuY. JiaoC. ZouG-M. WuJ. HanF. Anticancer effects and mechanisms of astragaloside-IV (Review).Oncol. Rep.202349111536367181
    [Google Scholar]
  2. OsafoN. MensahK. B. YeboahO. K. Phytochemical and pharmacological review of Cryptolepis sanguinolenta (Lindl.)Schlechter. Adv. Pharmacol. Sci.20172017
    [Google Scholar]
  3. OlajideO.A. AjayiA.M. WrightC.W. Anti-inflammatory properties of cryptolepine.Phytother. Res.200923101421142510.1002/ptr.279419288476
    [Google Scholar]
  4. OlajideO.A. BhatiaH.S. de OliveiraA.C.P. WrightC.W. FiebichB.L. Anti-neuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: Possible involvement of NF-κB and p38 MAPK inhibition.Eur. J. Med. Chem.20136333333910.1016/j.ejmech.2013.02.00423507189
    [Google Scholar]
  5. BugyeiK.A. BoyeG.L. AddyM.E. Clinical efficacy of a teabag formulation of Cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria.Ghana Med. J.20104413921326984
    [Google Scholar]
  6. TuduC.K. BandyopadhyayA. KumarM.; Radha,; Das, T.; Nandy, S.; Ghorai, M.; Gopalakrishnan, A.V.; Proćków, J.; Dey, A. Unravelling the pharmacological properties of cryptolepine and its derivatives: A mini-review insight.Naunyn Schmiedebergs Arch. Pharmacol.2023396222923810.1007/s00210‑022‑02302‑736251044
    [Google Scholar]
  7. PalH. KatiyarS. Cryptolepine, a plant alkaloid, inhibits the growth of non-melanoma skin cancer cells through inhibition of topoisomerase and induction of DNA damage.Molecules20162112175810.3390/molecules2112175828009843
    [Google Scholar]
  8. PalH.C. PrasadR. KatiyarS.K. Cryptolepine inhibits melanoma cell growth through coordinated changes in mitochondrial biogenesis, dynamics and metabolic tumor suppressor AMPKα1/2-LKB1.Sci. Rep.201771149810.1038/s41598‑017‑01659‑728473727
    [Google Scholar]
  9. ZhuH. GooderhamN.J. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells.Toxicol. Sci.200691113213910.1093/toxsci/kfj14616510557
    [Google Scholar]
  10. LisgartenJ.N. CollM. PortugalJ. WrightC.W. AymamiJ. The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites.Nat. Struct. Biol.200291576010.1038/nsb72911731803
    [Google Scholar]
  11. (a NagyE.T. AhmedA.A.S. ElmongyE.I. ; EL-Gendy, S.M.; Elmadbouh, I.; El Sayed, I.E.T.; Abd Eldaim, M.A.; El-Gokha, A.A. Design and cytotoxic evaluation via apoptotic and antiproliferative activity for novel 11(4-aminophenylamino)neocryptolepine on hepatocellular and colorectal cancer cells.Apoptosis2023283-4653668653-668.10.1007/s10495‑023‑01810‑y36719468
    [Google Scholar]
  12. (b WangN. ŚwitalskaM. WangL. ShabanE. HossainM.I. El SayedI.E.T. WietrzykJ. InokuchiT. Structural modifications of nature-inspired indoloquinolines: A mini review of their potential antiproliferative activity.Molecules20192411212110.3390/molecules2411212131195640
    [Google Scholar]
  13. (c LuW.J. ŚwitalskaM. WangL. YonezawaM. El-SayedI.E.T. WietrzykJ. InokuchiT. In vitro antiproliferative activity of 11-aminoalkylamino-substituted 5H-indolo[2,3-b]quinolines; improving activity of neocryptolepines by installation of ester substituent.Med. Chem. Res.20132294492450410.1007/s00044‑012‑0443‑x
    [Google Scholar]
  14. (d SebekaA.H. OsmanA.M. El SayedI.E. El-BahanasawyM. TantawyM.A. Synthesis and antiproliferative activity of novel neocryptolepine-hydrazides hybrids.J. Appl. Pharm. Sci.20177915
    [Google Scholar]
  15. BeckJ.T. IsmailA. TolomeoC. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: An emerging treatment strategy for squamous cell lung carcinoma.Cancer Treat. Rev.201440898098910.1016/j.ctrv.2014.06.00625037117
    [Google Scholar]
  16. SzwedA. KimE. JacintoE. Regulation and metabolic functions of mTORC1 and mTORC2.Physiol. Rev.202110131371142610.1152/physrev.00026.202033599151
    [Google Scholar]
  17. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑132175074
    [Google Scholar]
  18. MafiS. MansooriB. TaebS. SadeghiH. AbbasiR. ChoW.C. RostamzadehD. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment.Front. Immunol.20221277410310.3389/fimmu.2021.77410335250965
    [Google Scholar]
  19. HuaH. ZhangH. ChenJ. WangJ. LiuJ. JiangY. Targeting Akt in cancer for precision therapy.J. Hematol. Oncol.202114112810.1186/s13045‑021‑01137‑834419139
    [Google Scholar]
  20. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑534916492
    [Google Scholar]
  21. RaithF. O’DonovanD.H. LemosC. PolitzO. HaendlerB. Addressing the reciprocal crosstalk between the AR and the PI3K/AKT/mTOR Signaling pathways for prostate cancer treatment.Int. J. Mol. Sci.2023243228910.3390/ijms2403228936768610
    [Google Scholar]
  22. HeT. ZhangX. HaoJ. DingS. Phosphatase and tensin homolog in non-neoplastic digestive disease: More than just tumor suppressor.Front. Physiol.20211268452910.3389/fphys.2021.68452934140896
    [Google Scholar]
  23. KoitaM. SosseS.A. AbumsimirB. MahasnehI.A. MrabtiM. LaraquiA. EnnajiM.M. Dramatic impact of partial loss of PTEN function on tumorigenesis and progression of prostate cancer.Immunological Implications and Molecular Diagnostics of Genitourinary Cancer.Academic Press202333910.1016/B978‑0‑323‑85496‑2.00015‑4
    [Google Scholar]
  24. TummersB. GreenD.R. Caspase‐8: Regulating life and death.Immunol. Rev.20172771768910.1111/imr.1254128462525
    [Google Scholar]
  25. FiancoG. ContadiniC. FerriA. CirottiC. StagniV. BarilàD. Caspase-8: A novel target to overcome resistance to chemotherapy in glioblastoma.Int. J. Mol. Sci.20181912379810.3390/ijms1912379830501030
    [Google Scholar]
  26. GuirgisA.A. ZahranM.A.H. MohamedA.S. TalaatR.M. AbdouB.Y. AgwaH.S. Effect of thalidomide dithiocarbamate analogs on the intercellular adhesion molecule-1 expression.Int. Immunopharmacol.201010780681110.1016/j.intimp.2010.04.02320438868
    [Google Scholar]
  27. El-AaragB.Y.A. KasaiT. ZahranM.A.H. ZakharyN.I. ShigehiroT. SekharS.C. AgwaH.S. MizutaniA. MurakamiH. KakutaH. SenoM. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.Int. Immunopharmacol.201421228329210.1016/j.intimp.2014.05.00724859059
    [Google Scholar]
  28. El-AaragB. KasaiT. MasudaJ. AgwaH. ZahranM. SenoM. Anticancer effects of novel thalidomide analogs in A549 cells through inhibition of vascular endothelial growth factor and matrix metalloproteinase-2.Biomed. Pharmacother.20178554955510.1016/j.biopha.2016.11.06327889230
    [Google Scholar]
  29. ZahranM.A.H. El-AaragB. MehanyA.B.M. BelalA. YounesA.S. Design, synthesis, biological evaluations, molecular docking, and in vivo studies of novel phthalimide analogs.Arch. Pharm.20183515170036310.1002/ardp.20170036329611624
    [Google Scholar]
  30. El-SaiedF. El-AaragB. SalemT. SaidG. KhalifaS.A.M. El-SeediH.R. Synthesis, characterization, and in vivo anti-cancer activity of new metal complexes derived from isatin-N (4) antipyrinethiosemicarbazone ligand against ehrlich ascites carcinoma cells.Molecules20192418331310.3390/molecules2418331331514445
    [Google Scholar]
  31. El-AaragB. El-SaiedF. SalemT. KhedrN. KhalifaS.A.M. El-SeediH.R. New metal complexes derived from diacetylmonoxime-n(4)antipyrinylthiosemicarbazone: Synthesis, characterization and evaluation of antitumor activity against Ehrlich solid tumors induced in mice.Arab. J. Chem.202114310299310.1016/j.arabjc.2021.102993
    [Google Scholar]
  32. El-AaragB. AttiaA. ZahranM. YounesA. ToussonE. New phthalimide analog ameliorates CCl4 induced hepatic injury in mice via reducing ROS formation, inflammation, and apoptosis.Saudi J. Biol. Sci.202128116384639510.1016/j.sjbs.2021.07.01434764756
    [Google Scholar]
  33. El-AaragB. El-TahanE. ZahranM. New thalidomide derivative with an anti-migrative and anti-proliferative effects on lewis lung carcinoma cell.Egypt. J. Chem.202265830931610.21608/ejchem.2022.109507.4997
    [Google Scholar]
  34. ManteP.K. AdomakoN.O. AntwiP. Kusi-BoadumN.K. Chronic administration of cryptolepine nanoparticle formulation alleviates seizures in a neurocysticercosis model.Curr. Res. Pharmacol. Drug Discover.2021210004010.1016/j.crphar.2021.10004034909669
    [Google Scholar]
  35. AstonW.J. HopeD.E. NowakA.K. RobinsonB.W. LakeR.A. LesterhuisW.J. A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice.BMC Cancer201717168410.1186/s12885‑017‑3677‑729037232
    [Google Scholar]
  36. LahouelM. BoulkourS. SegueniN. FillastreJ.P. Protective effect of flavonoides against the toxicity of vinblastine, cyclophoshamide and paracetamol by inhibition of lipidperoxydation and increase of liver glutathione.Haema200475967
    [Google Scholar]
  37. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.02928660627
    [Google Scholar]
  38. XuJ. YuanX. LangP. Determination of catalase activity and catalase inhibition by ultraviolet spectrophotometry.Chin. Environ. Chem199716e76
    [Google Scholar]
  39. ForkuoA.D. AnsahC. BoaduK.M. BoampongJ.N. AmeyawE.O. GyanB.A. ArkuA.T. OforiM.F. Synergistic anti-malarial action of cryptolepine and artemisinins.Malar. J.201615112
    [Google Scholar]
  40. AbachaY.Z. ForkuoA.D. GbedemaS.Y. MittalN. OttilieS. RocamoraF. WinzelerE.A. van SchalkwykD.A. KellyJ.M. TaylorM.C. ReaderJ. BirkholtzL.M. LisgartenD.R. CockcroftJ.K. LisgartenJ.N. PalmerR.A. TalbertR.C. ShnyderS.D. WrightC.W. Semi-synthetic analogues of cryptolepine as a potential source of sustainable drugs for the treatment of malaria, human african trypanosomiasis, and cancer.Front. Pharmacol.20221387564710.3389/fphar.2022.87564735600849
    [Google Scholar]
  41. DomfehS.A. NarkwaP.W. QuayeO. KusiK.A. AwandareG.A. AnsahC. SalamA. MutocheluhM. Cryptolepine inhibits hepatocellular carcinoma growth through inhibiting interleukin-6/STAT3 signalling.BMC Complemen. Med. Therap.202121161
    [Google Scholar]
  42. RašićI. RašićA. AkšamijaG. RadovićS. The relationship between serum level of malondialdehyde and progression of colorectal cancer.Acta Clin. Croat.201857341141631168172
    [Google Scholar]
  43. LorenzoE. Ruiz-RuizC. QuesadaA.J. HernándezG. RodríguezA. López-RivasA. RedondoJ.M. Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism.J. Biol. Chem.200227713108831089210.1074/jbc.M10744220011779855
    [Google Scholar]
  44. KleszczyńskiK. ErnstI.M.A. WagnerA.E. KruseN. ZillikensD. RimbachG. FischerT.W. Sulforaphane and phenylethyl isothiocyanate protect human skin against UVR-induced oxidative stress and apoptosis: Role of Nrf2-dependent gene expression and antioxidant enzymes.Pharmacol. Res.201378284010.1016/j.phrs.2013.09.00924121007
    [Google Scholar]
  45. GalluzziL. López-SotoA. KumarS. KroemerG. Caspases connect cell-death signaling to organismal homeostasis.Immunity201644222123110.1016/j.immuni.2016.01.02026885855
    [Google Scholar]
  46. RussoM. GuidaF. PaparoL. TrincheseG. AitoroR. AvaglianoC. FiordelisiA. NapolitanoF. MercurioV. SalaV. LiM. SorrientoD. CiccarelliM. GhigoA. HirschE. BiancoR. IaccarinoG. AbeteP. BonaduceD. CalignanoA. Berni CananiR. TocchettiC.G. The novel butyrate derivative phenylalanine‐butyramide protects from doxorubicin‐induced cardiotoxicity.Eur. J. Heart Fail.201921451952810.1002/ejhf.143930843309
    [Google Scholar]
  47. JiaM. ChenX. LiuJ. ChenJ. PTEN promotes apoptosis of H2O2-injured rat nasal epithelial cells through PI3K/Akt and other pathways.Mol. Med. Rep.201817157157929115519
    [Google Scholar]
  48. RascioF. SpadaccinoF. RocchettiM.T. CastellanoG. StalloneG. NettiG.S. RanieriE. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review.Cancers20211316394910.3390/cancers1316394934439105
    [Google Scholar]
  49. YangJ. NieJ. MaX. WeiY. PengY. WeiX. Targeting PI3K in cancer: Mechanisms and advances in clinical trials.Mol. Cancer20191812610.1186/s12943‑019‑0954‑x30782187
    [Google Scholar]
  50. GengH. FengC. SunZ. FanX. XieY. GuJ. FanL. LiuG. LiC. ThorneR.F. ZhangX.D. LiX. LiuX. Chloride intracellular channel 1 promotes esophageal squamous cell carcinoma proliferation via mTOR signalling.Transl. Oncol.20232710156010.1016/j.tranon.2022.10156036252281
    [Google Scholar]
  51. LiuR. ChenY. LiuG. LiC. SongY. CaoZ. LiW. HuJ. LuC. LiuY. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers.Cell Death Dis.202011979710.1038/s41419‑020‑02998‑632973135
    [Google Scholar]
  52. DanH.C. EbbsA. PasparakisM. Van DykeT. BasseresD.S. BaldwinA.S. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα).J. Biol. Chem.201428936252272524010.1074/jbc.M114.55488124990947
    [Google Scholar]
  53. CermaK. PiacentiniF. MoscettiL. BarboliniM. CaninoF. TornincasaA. CaggiaF. CerriS. MolinaroA. DominiciM. OmariniC. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges.Biomedicines202311110910.3390/biomedicines1101010936672617
    [Google Scholar]
  54. LiuT. WangY. WangY. ChanA.M. Multifaceted regulation of PTEN subcellular distributions and biological functions.Cancers2019119124710.3390/cancers1109124731454965
    [Google Scholar]
  55. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.02928802037
    [Google Scholar]
  56. WenC. WangH. WuX. HeL. ZhouQ. WangF. ChenS. HuangL. ChenJ. WangH. YeW. LiW. YangX. LiuH. PengJ. ROS-mediated inactivation of the PI3K/AKT pathway is involved in the antigastric cancer effects of thioredoxin reductase-1 inhibitor chaetocin.Cell Death Dis.2019101180910.1038/s41419‑019‑2035‑x31649256
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206274318231128072821
Loading
/content/journals/acamc/10.2174/0118715206274318231128072821
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): Akt; caspase 8; cryptolepine; Ehrlich carcinoma cells; mTOR; PTEN
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test