Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objective

Several novel fluorinated chalcone derivatives were synthesized, and their anti-cervical cancer activity and mechanism of action were investigated using the parent nucleus of licorice chalcone as the lead compound backbone and MDM2-p53 as the target.

Methods

In this study, 16 novel chalcone derivatives () were designed and synthesized by molecular docking technology based on the licorice chalcone parent nucleus as the lead compound scaffold and the cancer apoptosis regulatory target MDM2–p53. The structures of these compounds were confirmed by 1H-NMR, 13C-NMR, and HR-ESI-MS. The inhibitory effects of the compounds on the proliferation of three human cervical cancer cell lines (SiHa, HeLa, and C-33A) and two normal cell lines (H8 and HaCaT) were determined by MTT assay, and the initialstructure–activity relationship was analyzed. Transwell and flow cytometry were used to evaluate the effects of target compounds on the inhibition of cancer cell migration and invasion, apoptosis induction, and cell cycle arrest. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to detect the effects of candidate compounds on mRNA, p53, and Murine double minute 2 (MDM2) protein expression. The binding characteristics of the target compounds to the MDM2 protein target in the p53–MDM2 pathway were evaluated by molecular docking technology.

Results

The target compounds had considerable inhibitory activity on the proliferation of three cervical cancer cell lines. Among them, compound (E)-3-(4-(dimethylamino)phenyl)-2-methyl-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one) showed the highest activity against HeLa cells (IC=1.08 μmol/L), which was better than that of the lead compound Licochalcone B, and showed lower toxicity to both normal cells. Compound strongly inhibited the migration and invasion of HeLa cells and induced apoptosis and cell cycle arrest at the G/G phase. Furthermore, compound upregulated the expression of p53 and BAX and downregulated the expression of MDM2, MDMX, and BCL2. Moreover, molecular docking results showed that compound could effectively bind to the MDM2 protein (binding energy: −9.0 kcal/mol). These results suggest that the compounds may activate the p53 signaling pathway by inhibiting MDM2 protein, which prevents cancer cell proliferation, migration, and invasion and induces apoptosis and cell cycle arrest in cancer cells.

Conclusion

This study provides a new effective and low-toxicity drug candidate from licochalcone derivatives for treating cervical cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206274066231220071557
2024-04-01
2025-04-09
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. Drețcanu, G.; Iuhas, C.I.; Diaconeasa, Z. The involvement of natural polyphenols in the chemoprevention of cervical cancer.Int. J. Mol. Sci.20212216881210.3390/ijms2216881234445518
    [Google Scholar]
  4. HeM. XiaL. LiJ. Potential mechanisms of plant-derived natural products in the treatment of cervical cancer.Biomolecules20211110153910.3390/biom1110153934680171
    [Google Scholar]
  5. WangC. ZhuM. LongX. WangQ. WangZ. OuyangG. Design, synthesis and antitumor activity of 1H-indazole-3-amine derivatives.Int. J. Mol. Sci.20232410868610.3390/ijms2410868637240028
    [Google Scholar]
  6. TaghizadehE. JahangiriS. RostamiD. TaheriF. RenaniP.G. TaghizadehH. Gheibi HayatS.M. Roles of E6 and E7 human papilloma virus proteinsin molecular pathogenesis of cervical cancer.Curr. Protein Pept. Sci.201920992693410.2174/138920372066619061810144131244421
    [Google Scholar]
  7. BrissonM. KimJ.J. CanfellK. DroletM. GingrasG. BurgerE.A. MartinD. SimmsK.T. BénardÉ. BoilyM.C. SyS. ReganC. KeaneA. CaruanaM. NguyenD.T.N. SmithM.A. LapriseJ.F. JitM. AlaryM. BrayF. FidarovaE. ElsheikhF. BloemP.J.N. BroutetN. HutubessyR. Impact of HPV vaccination and cervical screening on cervical cancer elimination: A comparative modelling analysis in 78 low-income and lower-middle-income countries.Lancet20203951022457559010.1016/S0140‑6736(20)30068‑432007141
    [Google Scholar]
  8. UdomwanP. PientongC. TongchaiP. BurassakarnA. SunthamalaN. RoytrakulS. SuebsasanaS. EkalaksanananT. Proteomics analysis of andrographolide-Induced apoptosis via the regulation of tumor suppressor p53 proteolysis in cervical cancer-derived human papillomavirus 16-positive cell Lines.Int. J. Mol. Sci.20212213680610.3390/ijms2213680634202736
    [Google Scholar]
  9. NicolòS. AntonelliA. TanturliM. BaccaniI. BonaiutoC. CastronovoG. RossoliniG.M. MattiuzG. TorciaM.G. Bacterial species from vaginal microbiota differently affect the production of the E6 and E7 oncoproteins and of p53 and p-Rb oncosuppressors in HPV16-infected cells.Int. J. Mol. Sci.2023248717310.3390/ijms2408717337108333
    [Google Scholar]
  10. XiongJ. LiG. MeiX. DingJ. ShenH. ZhuD. WangH. Co-delivery of p53 restored and E7 targeted nucleic acids by poly (beta-amino ester) complex nanoparticles for the treatment of HPV related cervical lesions.Front. Pharmacol.20221382677110.3389/fphar.2022.82677135185576
    [Google Scholar]
  11. KootiA. AbueiH. FarhadiA. Behzad-BehbahaniA. ZarrabiM. Activating transcription factor 3 mediates apoptotic functions through a p53-independent pathway in human papillomavirus 18 infected HeLa cells.Virus Genes2022582889710.1007/s11262‑022‑01887‑835129760
    [Google Scholar]
  12. HeijkantsR.C. TeunisseA.F.A.S. de JongD. GlinkinaK. MeiH. KielbasaS.M. SzuhaiK. JochemsenA.G. MDMX regulates transcriptional activity of p53 and FOXO proteins to stimulate proliferation of melanoma cells.Cancers20221418448210.3390/cancers1418448236139642
    [Google Scholar]
  13. ChinnamM. XuC. LamaR. ZhangX. CedenoC.D. WangY. StablewskiA.B. GoodrichD.W. WangX. MDM2 E3 ligase activity is essential for p53 regulation and cell cycle integrity.PLoS Genet.2022185e101017110.1371/journal.pgen.101017135588102
    [Google Scholar]
  14. ZhangJ. YuG. YangY. WangY. GuoM. YinQ. YanC. TianJ. FuF. WangH. A small-molecule inhibitor of MDMX suppresses cervical cancer cells via the inhibition of E6-E6AP-p53 axis.Pharmacol. Res.202217710612810.1016/j.phrs.2022.10612835150860
    [Google Scholar]
  15. EspadinhaM. LopesE.A. MarquesV. AmaralJ.D. dos SantosD.J.V.A. MoriM. DanieleS. PiccarducciR. ZappelliE. MartiniC. RodriguesC.M.P. SantosM.M.M. Discovery of MDM2-p53 and MDM4-p53 protein-protein interactions small molecule dual inhibitors.Eur. J. Med. Chem.202224111463710.1016/j.ejmech.2022.11463735961068
    [Google Scholar]
  16. GrinkevichV.V. VemaA. FawknerK. IssaevaN. AndreottiV. DickinsonE.R. HedströmE. SpinnlerC. IngaA. LarssonL.G. KarlénA. WilhelmM. BarranP.E. OkorokovA.L. SelivanovaG. Zawacka-PankauJ.E. Novel allosteric mechanism of dual p53/MDM2 and p53/MDM4 inhibition by a small molecule.Front. Mol. Biosci.2022982319510.3389/fmolb.2022.82319535720128
    [Google Scholar]
  17. de SouzaP.S. BibáG.C.C. MeloE.D.N. MuzitanoM.F. Chalcones against the hallmarks of cancer: A mini-review.Nat. Prod. Res.202236184803482010.1080/14786419.2021.200098034865580
    [Google Scholar]
  18. ConstantinescuT. LunguC.N. Anticancer activity of natural and synthetic chalcones.Int. J. Mol. Sci.202122211130610.3390/ijms22211130634768736
    [Google Scholar]
  19. ShuklaS. SoodA.K. GoyalK. SinghA. SharmaV. GuliyaN. GulatiS. KumarS. Chalcone scaffolds as anticancer drugs: A review on molecular insight in action of mechanisms and anticancer properties.Anticancer. Agents Med. Chem.202121131650167010.2174/187152062099920112421284033238850
    [Google Scholar]
  20. OuyangY. LiJ. ChenX. FuX. SunS. WuQ. Chalcone derivatives: Role in anticancer therapy.Biomolecules202111689410.3390/biom1106089434208562
    [Google Scholar]
  21. MoreiraJ. AlmeidaJ. SaraivaL. CidadeH. PintoM. Chalcones as promising antitumor agents by targeting the p53 pathway: An overview and new insights in drug-likeness.Molecules20212612373710.3390/molecules2612373734205272
    [Google Scholar]
  22. SiD. LuoH. ZhangX. YangK. WenH. LiW. LiuJ. Design, synthesis and biological evaluation of novel pyrrolidone-based derivatives as potent p53-MDM2 inhibitors.Bioorg. Chem.202111510526810.1016/j.bioorg.2021.10526834426149
    [Google Scholar]
  23. ShabirG. SaeedA. ZahidW. NaseerF. RiazZ. KhalilN. Muneeba; Albericio, F. Chemistry and pharmacology of fluorinated drugs approved by the FDA (2016–2022).Pharmaceuticals2023168116210.3390/ph1608116237631077
    [Google Scholar]
  24. LiuL. WangZ. GaoC. DaiH. SiX. ZhangY. MengY. ZhengJ. KeY. LiuH. ZhangQ. Design, synthesis and antitumor activity evaluation of trifluoromethyl-substituted pyrimidine derivatives.Bioorg. Med. Chem. Lett.20215112826810.1016/j.bmcl.2021.12826834302974
    [Google Scholar]
  25. RenB. AbliseM. YangX. LiaoB. YangZ. Synthesis and biological evaluation of α-methyl-chalcone for anti-cervical cancer activity.Med. Chem. Res.20172691871188310.1007/s00044‑017‑1891‑0
    [Google Scholar]
  26. YangZ. LiuZ.Y. AbliseM. MaimaitiA. MutalipuZ. AlimujiangY. AihaitiA. Design, synthesis, and anti-cervical cancer and reversal of tumor multidrug resistance activity of novel nitrogen-containing heterocyclic chalcone derivatives.Molecules20232811453710.3390/molecules2811453737299013
    [Google Scholar]
  27. JengP.S. Inoue-YamauchiA. HsiehJ.J. ChengE.H. BH3-dependent and independent activation of BAX and BAK in mitochondrial apoptosis.Curr. Opin. Physiol.20183718110.1016/j.cophys.2018.03.00530334018
    [Google Scholar]
  28. AhaitiA. MaimaitiA. AbliseM. Preparation and anticervical cancer activity of a novel α-methylchalcone and its effect on Akt-MDM2-p53 signalling pathway.Zhongguo Yaolixue Tongbao2023390713991400
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206274066231220071557
Loading
/content/journals/acamc/10.2174/0118715206274066231220071557
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test