Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background

Spectrum scarcity, spectrum efficiency, power constraints, and jamming attacks are core challenges that face wireless networks. While cognitive radio networks (CRNs) enable the sharing of licensed bands when they are unoccupied, the spectrum should be used efficiently by the secondary user (SU) to ensure a high data rate transmission. In addition, the mobility of the SUs makes power consumption a matter of concern in wireless networks. Because of the open environment, the jamming attack can easily deteriorate the performance and disrupt the connections.

Objectives

We aim to enhance the performance of CRN and establish more reliable connections for the SU in the presence of smart jammer by ensuring efficient spectrum utilization and extending the network lifetime.

Methods

To achieve our objectives, we propose an anti-jamming approach that adopts frequency hopping. Our approach assumes that SUs observe spectrum availability and channel gain. Then, SU learns the jammer behaviour and goes for the appropriate policy in terms of the number of data and control channels that optimize jointly spectrum efficiency and power consumption. Within, the interaction between the SU and the jammer is modelled as a zero-sum stochastic game, and we employ reinforcement learning (RL) to address this game.

Results

SUs learn the optimal policy that maximizes the spectrum efficiency and minimizes the power consumption in the presence of a smart jammer. Simulation results show that the low channel gain leads the SU to select a high number of data channels. However, when the channel gain is high, the SU increases the number of control channels to guarantee a more reliable connection. Taking into account the spectrum efficiency, SUs save their energy by decreasing the number of used channels. The proposed strategy achieves better performance in comparison with myopic learning and the random strategy.

Conclusion

Under a jamming attack, considering the gain of utilized channels, SUs select the appropriate number of control and data channels to ensure a reliable, efficient, and long-term connection.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279291431240216061325
2024-03-01
2025-01-19
Loading full text...

Full text loading...

References

  1. AkyildizI.F. LeeW.Y. VuranM.C. MohantyS. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey.Comput. Netw.200650132127215910.1016/j.comnet.2006.05.001
    [Google Scholar]
  2. MitolaJ. Cognitive radio an integrated agent architecture for software defined radio.Comput. Sci. Eng.2000
    [Google Scholar]
  3. CordeiroC. ChallapaliK. BirruD. Sai ShankarN. IEEE 802.22: the first worldwide wireless standard based on cognitive radios. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks2005 DySPAN 2005, Baltimore, MD, USA200532833710.1109/DYSPAN.2005.1542649
    [Google Scholar]
  4. ArefM.A. JayaweeraS.K. YepezE. Survey on cognitive anti‐jamming communications.IET Commun.202014183110312710.1049/iet‑com.2020.0024
    [Google Scholar]
  5. Di PietroR. OligeriG. Jamming mitigation in cognitive radio networks.IEEE Netw.2013273101510.1109/MNET.2013.6523802
    [Google Scholar]
  6. AmuruS. TekinC. der SchaarM. BuehrerR.M. Jamming bandits—a novel learning method for optimal jamming.IEEE Trans. Wirel. Commun.20161542792280810.1109/TWC.2015.2510643
    [Google Scholar]
  7. YangD. XueG. ZhangJ. RichaA. FangX. Coping with a smart jammer in wireless networks: A stackelberg game approach.IEEE Trans. Wirel. Commun.20131284038404710.1109/TWC.2013.071913121570
    [Google Scholar]
  8. MartiG. Kölle T, Studer C. Mitigating smart jammers in multi-user MIMO.IEEE Trans. Signal Process.20237175677110.1109/TSP.2023.3246226
    [Google Scholar]
  9. SlimeniF. ScheersB. Le NirV. ChtourouZ. AttiaR. Learning multi-channel power allocation against smart jammer in cognitive radio networks.2016 International Conference on Military Communications and Information Systems (ICMCIS)Brussels, Belgium20161710.1109/ICMCIS.2016.7496544
    [Google Scholar]
  10. LetafatiM. KuhestaniA. NgD.W.K. BehrooziH. A new frequency hopping-aided secure communication in the presence of an adversary jammer and an untrusted relay.2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings.Dublin, Ireland,20201710.1109/ICCWorkshops49005.2020.9145441
    [Google Scholar]
  11. ChenK.W. ChaoC.M. LinC.Y. YehC.C. Anti-jamming channel hopping protocol design based on channel occupancy probability for cognitive radio networks.Comput. Netw.202221410912510.1016/j.comnet.2022.109125
    [Google Scholar]
  12. QuanH. ZhaoH. CuiP. Anti-jamming frequency hopping system using multiple hopping patterns.Wirel. Pers. Commun.20158131159117610.1007/s11277‑014‑2177‑1
    [Google Scholar]
  13. ArjouneY. FaruqueS. Smart jamming attacks in 5G new radio: A review. 2020 10th Annual Computing and Communication Workshop and ConferenceCCWC 2020, Las Vegas, NV, USA,20201010101510.1109/CCWC47524.2020.9031175
    [Google Scholar]
  14. LiuY. NingP. DaiH. LiuA. Randomized differential DSSS: Jamming-resistant wireless broadcast communication.Proc. IEEE INFOCOM20101910.1109/INFCOM.2010.5462156
    [Google Scholar]
  15. AlagilA. LiuY. Random allocation seed-DSSS broadcast communication against jamming attacks.In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications EngineeringLNICST20193044728910.1007/978‑3‑030‑37228‑6_23
    [Google Scholar]
  16. YanQ. ZengH. JiangT. LiM. LouW. HouY.T. MIMO-based jamming resilient communication in wireless networks.Proc. IEEE INFOCOM20142697270610.1109/INFOCOM.2014.6848218
    [Google Scholar]
  17. AkhlaghpasandH. BjornsonE. RazavizadehS.M. Jamming Suppression in Massive MIMO Systems.IEEE Trans. Circuits Syst. II Express Briefs202067118218610.1109/TCSII.2019.2902074
    [Google Scholar]
  18. YanQ. ZengH. JiangT. LiM. LouW. HouY.T. Jamming resilient communication using mimo interference cancellation.IEEE Trans. Inf. Forensics Security20161171486149910.1109/TIFS.2016.2535906
    [Google Scholar]
  19. OkyereB. MusavianL. OzbekB. BusariS.A. GonzalezJ. The resilience of massive MIMO PNC to jamming attacks in vehicular networks.IEEE Trans. Intell. Transp. Syst.20212274110411710.1109/TITS.2020.3016907
    [Google Scholar]
  20. ShenW. NingP. HeX. DaiH. LiuY. MCR Decoding: A MIMO approach for defending against wireless jamming attacks.2014 IEEE Conference on Communications and Network Security, CNS 2014San Francisco, CA, USA201413313810.1109/CNS.2014.6997478
    [Google Scholar]
  21. GuosenY. XiaodongW. MadihianM. Design of anti-jamming coding for cognitive radio.GLOBECOM - IEEE Global Telecommunications ConferenceWashington, DC, USA20074190419410.1109/GLOCOM.2007.797
    [Google Scholar]
  22. YueG. WangX. Anti-jamming coding techniques with application to cognitive radio.IEEE Trans. Wirel. Commun.20098125996600710.1109/TWC.2009.12.081627
    [Google Scholar]
  23. PirayeshH. ZengH. Jamming attacks and anti-jamming strategies in wireless networks: A comprehensive survey.IEEE Commun. Surv. Tutor.202224276780910.1109/COMST.2022.3159185
    [Google Scholar]
  24. NoubirG. LinG. Low-power DoS attacks in data wireless LANs and countermeasures.Mob. Comput. Commun. Rev.200373293010.1145/961268.961277
    [Google Scholar]
  25. LinG. NoubirG. On link layer denial of service in data wireless LANs.Wirel. Commun. Mob. Comput.20055327328410.1002/wcm.221
    [Google Scholar]
  26. StrasserM. PöpperC. ČapkunS. Efficient uncoordinated fhss anti-jamming communication.Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc)2009New Orleans, LA, USA, May 18-2120721810.1145/1530748.1530778
    [Google Scholar]
  27. ShiY. LuX. AnK. LiY. ZhengG. Efficient index modulation based FHSS: A unified anti-jamming perspective.IEEE Internet Things J.20231123458347210.1109/JIOT.2023.3296605
    [Google Scholar]
  28. ShiY. AnK. LuX. LiY. Enhanced index modulation-based frequency hopping: Resist power-correlated reactive jammer.IEEE Wirel. Commun. Lett.202211475175510.1109/LWC.2022.3142253
    [Google Scholar]
  29. XuJ. LouH. ZhangW. SangG. An intelligent anti-jamming scheme for cognitive radio based on deep reinforcement learning.In: IEEE Access2020820256320257210.1109/ACCESS.2020.3036027
    [Google Scholar]
  30. KrayaniA. AlamA.S. MarcenaroL. NallanathanA. RegazzoniC. A novel resource allocation for anti-jamming in cognitive-UAVs: An active inference approach.IEEE Commun. Lett.202226102272227610.1109/LCOMM.2022.3190971
    [Google Scholar]
  31. MachuzakS. JayaweeraS.K. Reinforcement learning based anti-jamming with wideband autonomous cognitive radios.2016 IEEE/CIC International Conference on Communications in China (ICCC)Chengdu, China20161510.1109/ICCChina.2016.7636793
    [Google Scholar]
  32. SlimeniF. ChtourouZ. Ben AmorA. Reinforcement learning based anti-jamming cognitive radio channel selection.Proceedings of the International Conference on Advanced Systems and Emergent TechnologiesIC_ASET, Hammamet, Tunisia202043143510.1109/IC_ASET49463.2020.9318287
    [Google Scholar]
  33. JiangW. RenY. WangY. Improving anti-jamming decision-making strategies for cognitive radar via multi-agent deep reinforcement learning.Digit. Signal Process.202313510395210.1016/j.dsp.2023.103952
    [Google Scholar]
  34. ZhouQ. LiY. NiuY. Intelligent anti-jamming communication for wireless sensor networks: A multi-agent reinforcement learning approach.IEEE Open J. Commun. Soc.2021277578410.1109/OJCOMS.2021.3056113
    [Google Scholar]
  35. ZhouW. ZhouZ. NiuY. ZhouQ. DingH. A fast anti-jamming algorithm based on imitation learning for WSN.Sensors202323924010.3390/s23229240
    [Google Scholar]
  36. SkokowskiP. KelnerJ.M. MalonK. Jamming and jamming mitigation for selected 5G military scenarios.Procedia Comput. Sci.202220525826710.1016/j.procs.2022.09.027
    [Google Scholar]
  37. ZhangY. JiaL. QiN. XuY. WangM. Anti-jamming channel access in 5G ultra-dense networks: A game-theoretic learning approach.Digit Commun Netw20239252353310.1016/j.dcan.2022.04.031
    [Google Scholar]
  38. LuX. XiaoL. DaiC. DaiH. UAV-aided cellular communications with deep reinforcement learning against jamming.IEEE Wirel. Commun.2020274485310.1109/MWC.001.1900207
    [Google Scholar]
  39. KrayaniA. BaydounM. MarcenaroL. GaoY. RegazzoniC.S. Smart jammer detection for self-aware cognitive UAV radios.IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC31 August 2020 - 03 September 2020London, UK1710.1109/PIMRC48278.2020.9217331
    [Google Scholar]
  40. WuQ. WangH. LiX. ZhangB. PengJ. Reinforcement learning-based anti-jamming in networked UAV radar systems.Appl. Sci. 20199517310.3390/app9235173
    [Google Scholar]
  41. XiaoL. DingY. HuangJ. LiuS. TangY. DaiH. UAV anti-jamming video transmissions with QoE guarantee: A reinforcement learning-based approach.IEEE Trans. Commun.20216995933594710.1109/TCOMM.2021.3087787
    [Google Scholar]
  42. KhanA.U. AbbasG. AbbasZ.H. WaqasM. HassanA.K. Spectrum utilization efficiency in the cognitive radio enabled 5G-based IoT.J. Netw. Comput. Appl.202016410268610.1016/j.jnca.2020.102686
    [Google Scholar]
  43. KhalafOI OgudoKA SinghM A fuzzy-based optimization technique for the energy and spectrum efficiencies trade-off in cognitive radio-enabled 5G network.Symmetry 2021 2020134710.3390/sym13010047
    [Google Scholar]
  44. ChatterjeeS. MaityS.P. AcharyaT. Energy-spectrum efficiency trade-off in energy harvesting cooperative cognitive radio networks.IEEE Trans. Cogn. Commun. Netw.20195229530310.1109/TCCN.2019.2903503
    [Google Scholar]
  45. MughalD.M. ShahS.T. ChungM.Y. An efficient spectrum utilization scheme for energy-constrained IoT devices in cellular networks.IEEE Internet Things J.2021817134141342410.1109/JIOT.2021.3064330
    [Google Scholar]
  46. JainP. GuptaA. KumarN. GuizaniM. Dynamic and efficient spectrum utilization for 6G with THz, mmWave, and RF band.IEEE Trans. Vehicular Technol.20237233264327310.1109/TVT.2022.3215487
    [Google Scholar]
  47. PaulA. BanerjeeA. MaityS.P. Throughput maximisation in cognitive radio networks with residual bandwidth.IET Commun.201913101327133510.1049/iet‑com.2018.5928
    [Google Scholar]
  48. ZhengK. LiuX. ZhuY. ChiK. LiuK. Total throughput maximization of cooperative cognitive radio networks with energy harvesting.IEEE Trans. Wirel. Commun.202019153354610.1109/TWC.2019.2946813
    [Google Scholar]
  49. LiuX. XuB. ZhengK. ZhengH. Throughput maximization of wireless-powered communication network with mobile access points.IEEE Trans. Wirel. Commun.20232274401441510.1109/TWC.2022.3225085
    [Google Scholar]
  50. ZhengK. LuoR. WangZ. LiuX. YaoY. Short-term and long-term throughput maximization in mobile wireless-powered internet of things.IEEE Internet Things J.202310.1109/JIOT.2023.3326440
    [Google Scholar]
  51. ChiaraviglioL. D’AndreagiovanniF. LiuW. Multi-area throughput and energy optimization of UAV-aided cellular networks powered by solar panels and grid.IEEE Trans. Mobile Comput.20212072427244410.1109/TMC.2020.2980834
    [Google Scholar]
  52. XieL. XuJ. ZengY. Common throughput maximization for UAV-enabled interference channel with wireless powered communications.IEEE Trans. Commun.20206853197321210.1109/TCOMM.2020.2971488
    [Google Scholar]
  53. ZhengK. LiuX. WangB. ZhengH. ChiK. YaoY. Throughput maximization of wireless-powered communication networks: An energy threshold approach.IEEE Trans. Vehicular Technol.20217021292130610.1109/TVT.2021.3050412
    [Google Scholar]
  54. HuB. WangL. ChenS. CuiJ. ChenL. An uplink throughput optimization scheme for UAV-enabled urban emergency communications.IEEE Internet Things J.2022964291430210.1109/JIOT.2021.3103892
    [Google Scholar]
  55. ZhengK. JiaX. ChiK. LiuX. DDPG-based joint time and energy management in ambient backscatter-assisted hybrid underlay CRNs.IEEE Trans. Commun.202371144145610.1109/TCOMM.2022.3221422
    [Google Scholar]
  56. TianJ. XiaoH. SunY. HouD. LiX. Energy efficiency optimization-based resource allocation for underlay RF-CRN with residual energy and QoS guarantee.EURASIP J. Wirel. Commun. Netw.20202020121610.1186/s13638‑020‑01824‑z
    [Google Scholar]
  57. BabuT.S. RaoS.N. SatyanarayanaP. A design of minimizing interference and maximizing throughput in cognitive radio network by joint optimization of the channel allocation and power control.Int. J. Wirel. Inf. Netw.202330221122510.1007/s10776‑023‑00592‑z
    [Google Scholar]
  58. NandanN. MajhiS. WuH.C. Beamforming and power optimization for physical layer security of mimo-noma based crn over imperfect csi.IEEE Trans. Vehicular Technol.20217065990600110.1109/TVT.2021.3079136
    [Google Scholar]
  59. AslaniR. RastiM. A distributed power control algorithm for energy efficiency maximization in wireless cellular networks.IEEE Wirel. Commun. Lett.20209111975197910.1109/LWC.2020.3010156
    [Google Scholar]
  60. ErpekT. SagduyuY.E. ShiY. Deep learning for launching and mitigating wireless jamming attacks.IEEE Trans. Cogn. Commun. Netw.20195121410.1109/TCCN.2018.2884910
    [Google Scholar]
  61. GwonY. DastangooS. FossaC. KungH.T. Competing mobile network game: Embracing antijamming and jamming strategies with reinforcement learning.2013 IEEE Conference on Communications and Network Security, CNS, National Harbor MD, USA,2013283610.1109/CNS.2013.6682689
    [Google Scholar]
  62. IbrahimK NgSX QureshiIM MalikAN MuhaidatS Anti-jamming game to combat intelligent jamming for cognitive radio networks.IEEE Access202191379415610.1109/ACCESS.2021.3117563
    [Google Scholar]
  63. MaY. LiuK. LuoX. Game theory based multi-agent cooperative anti-jamming for mobile ad hoc networks.2022 IEEE 8th International Conference on Computer and Communications (ICCC)Chengdu, China,202290190510.1109/ICCC56324.2022.10065839
    [Google Scholar]
  64. HanawalM.K. Abdel-RahmanM.J. KrunzM. Game theoretic antijamming dynamic frequency hopping and rate adaptation in wireless systems. 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt).Hammamet, Tunisia201424725410.1109/WIOPT.2014.6850306
    [Google Scholar]
  65. GouissemA. AbualsaudK. YaacoubE. KhattabT. GuizaniM. IoT anti-jamming strategy using game theory and neural network. 2020 International Wireless Communications and Mobile Computing.IWCMC Limassol, Cyprus202077077610.1109/IWCMC48107.2020.9148376
    [Google Scholar]
  66. JiaL. QiN. ChuF. Game-theoretic learning anti-jamming approaches in wireless networks.IEEE Commun. Mag.2022605606610.1109/MCOM.001.00496
    [Google Scholar]
  67. NooriH. Sadeghi VilniS. Jamming and anti-jamming in interference channels: A stochastic game approach.IET Commun.202014468269210.1049/iet‑com.2019.0637
    [Google Scholar]
  68. Van HuynhN. NguyenD.N. HoangD.T. DutkiewiczE. “Jam Me If You Can:” Defeating jammer with deep dueling neural network architecture and ambient backscattering augmented communications.IEEE J. Sel. Areas Comm.201937112603262010.1109/JSAC.2019.2933889
    [Google Scholar]
  69. HanG. XiaoL. PoorH.V. Two-dimensional anti-jamming communication based on deep reinforcement learning.2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)New Orleans, LA, USA20172087209110.1109/ICASSP.2017.7952524
    [Google Scholar]
  70. WuY. WangB. LiuK.J.R. ClancyT.C. Anti-jamming games in multi-channel cognitive radio networks.IEEE J. Sel. Areas Comm.201230141510.1109/JSAC.2012.120102
    [Google Scholar]
  71. SlimeniF. ScheersB. ChtourouZ. Le NirV. Jamming mitigation in cognitive radio networks using a modified Q-learning algorithm.2015 International Conference on Military Communications and Information Systems (ICMCIS)Cracow, Poland20151710.1109/ICMCIS.2015.7158697
    [Google Scholar]
  72. XiaoL. LiY. LiuJ. ZhaoY. Power control with reinforcement learning in cooperative cognitive radio networks against jamming.J. Supercomput.20157193237325710.1007/s11227‑015‑1420‑1
    [Google Scholar]
  73. WangB. YongleWu LiuK.J.R. ClancyT.C. An anti-jamming stochastic game for cognitive radio networks.IEEE J. Sel. Areas Comm.201129487788910.1109/JSAC.2011.110418
    [Google Scholar]
  74. XiaoL. XieC. MinM. ZhuangW. User-centric view of unmanned aerial vehicle transmission against smart attacks.IEEE Trans. Vehicular Technol.20186743420343010.1109/TVT.2017.2785414
    [Google Scholar]
  75. SharmaH. KumarN. TekchandaniR. Mitigating jamming attack in 5g heterogeneous networks: A federated deep reinforcement learning approach.IEEE Trans. Vehicular Technol.20237222439245210.1109/TVT.2022.3212966
    [Google Scholar]
  76. YaoF. JiaL. A collaborative multi-agent reinforcement learning anti-jamming algorithm in wireless networks.IEEE Wirel. Commun. Lett.2019841024102710.1109/LWC.2019.2904486
    [Google Scholar]
  77. YangH. XiongZ. ZhaoJ. Intelligent reflecting surface assisted anti-jamming communications: A fast reinforcement learning approach.IEEE Trans. Wirel. Commun.20212031963197410.1109/TWC.2020.3037767
    [Google Scholar]
  78. ChenM. LiuW. ZhangN. GPDS: A multi-agent deep reinforcement learning game for anti-jamming secure computing in MEC network.Expert Syst. Appl.202221011839410.1016/j.eswa.2022.118394
    [Google Scholar]
  79. PourranjbarA. KaddoumG. FerdowsiA. SaadW. Reinforcement learning for deceiving reactive jammers in wireless networks.IEEE Trans. Commun.20216963682369710.1109/TCOMM.2021.3062854
    [Google Scholar]
  80. LiuX. XuY. JiaL. WuQ. AnpalaganA. Anti-jamming communications using spectrum waterfall: A deep reinforcement learning approach.IEEE Commun. Lett.2018225998100110.1109/LCOMM.2018.2815018
    [Google Scholar]
  81. BiY. WuY. HuaC. Deep reinforcement learning based multi-user anti-jamming strategy.ICC 2019 - 2019 IEEE International Conference on Communications (ICC).Shanghai, China20191610.1109/ICC.2019.8761848
    [Google Scholar]
  82. LittmanM.L. Markov games as a framework for multi-agent reinforcement learning. roceedings of the Eleventh International Conference.Rutgers University New Brunswick, NJ, July 10-13,199415716310.1016/B978‑1‑55860‑335‑6.50027‑1
    [Google Scholar]
  83. SinghRS PrasadA MovenRM Deva SarmaHK Denial of service attack in wireless data network: A survey.2017 Devices for Integrated Circuit (DevIC)Kalyani, India,201735435910.1109/DEVIC.2017.8073968
    [Google Scholar]
  84. ChanA. LiuX. NoubirG. ThapaB. Broadcast control channel jamming: Resilience and identification of traitors.2007 IEEE International Symposium on Information TheoryNice, France20072496250010.1109/ISIT.2007.4557594
    [Google Scholar]
  85. ShapleyL.S. Stochastic games.Proc. Natl. Acad. Sci. USA195339101095110010.1073/pnas.39.10.1095 16589380
    [Google Scholar]
  86. SolanE. VieilleN. Stochastic games.Proc. Natl. Acad. Sci. USA201511245137431374610.1073/pnas.1513508112 26556883
    [Google Scholar]
  87. CadeauW. LiX. XiongC. Markov model based jamming and anti-jamming performance analysis for cognitive radio networks.Commun Netw201462768510.4236/cn.2014.62010
    [Google Scholar]
  88. QinqingZhang KassamS.A. Finite-state markov model for rayleigh fading channels.IEEE Trans. Commun.199947111688169210.1109/26.803503
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279291431240216061325
Loading
/content/journals/swcc/10.2174/0122103279291431240216061325
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test