Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background

The Internet of Things (IoT) devices consist of a microcontroller unit for data processing, a low-power wireless radio module for data transmission, and various sensors for data collection. The sensor nodes and processing devices used in the Internet of Things are resource-constrained, with power consumption and security being the two most critical parameters.

Objectives

This paper addresses the challenges of power consumption and security in IoT scenarios. It presents a low-power and secure heterogeneous multicore sensing architecture designed for low-power IoT and wireless sensor networks. The architecture comprises a sensing and control subsystem, an information processing unit, and a wireless communication module.

Methods

The architecture uses a microcontroller unit based on ARM Cortex M4, a low-power sub-1 GHz RF-compliant communication radio, and a few sensors. The proposed architecture has been implemented and tested using the Contiki Operating System.

Results

The implemented sensor node architecture demonstrated performance efficiency, lower energy consumption, and higher security.

Conclusion

By leveraging efficient power management, data transmission strategies, and cryptographic security, the architecture contributes to developing energy-efficient and secure IoT devices.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279287156240218044819
2024-03-14
2025-01-19
Loading full text...

Full text loading...

References

  1. AdegbijaT. RogacsA. PatelC. Gordon-RossA. Microprocessor optimizations for the internet of things: A survey.IEEE T COMPUT AID D2018371720
    [Google Scholar]
  2. AshaqS. NazishM. AliM. SultanI. Tariq BandayM. FPGA implementation of present block cypher with optimised substitution box.In: 2022 Smart Technologies, Communication and Robotics.Sathyamangalam, India: STCR20221610.1109/STCR55312.2022.10009366
    [Google Scholar]
  3. Jung J, Kim B, Cho J, Lee B. A secure platform model based on arm platform security architecture for iot devices.IEEE Internet Things J.2022975548556010.1109/JIOT.2021.3109299
    [Google Scholar]
  4. XuS. ZhangL. TangY. HanC. WuH. SongA. Channel attention for sensor-based activity recognition: embedding features into all frequencies in dct domain.IEEE Trans. Knowl. Data Eng.20233512124971251210.1109/TKDE.2023.3277839
    [Google Scholar]
  5. HuangW. ZhangL. WuH. MinF. SongA. Channel-equalization-HAR: A light-weight convolutional neural network for wearable sensor based human activity recognition.IEEE Trans. Mobile Comput.2022229110.1109/TMC.2022.3174816
    [Google Scholar]
  6. IsmaelW.M. GaoM. ZaharyA. YemeniZ. IbrahimY. HawbanA. Edge-based anomaly data detection approach for wireless sensor network-based internet of things 2021 International Conference of Technology,Science and Administration (ICTSA)Taiz, Yemen,20211610.1109/ICTSA52017.2021.9406548
    [Google Scholar]
  7. WeqarM MehfuzS GuptaD UroojS Adaptive switching based data-communication model for internet of healthcare things networks.IEEE Access20241110.1109/ACCESS.2024.3354722
    [Google Scholar]
  8. BuC. ZhangL. CuiH. YangG. WuH. Dynamic inference via localizing semantic intervals in sensor data for budget-tunable activity recognition.IEEE Trans. Industr. Inform.202311310.1109/TII.2023.3315773
    [Google Scholar]
  9. ChengD. ZhangL. BuC. WuH. SongA. Learning hierarchical time series data augmentation invariances via contrastive supervision for human activity recognition.Knowl. Base. Syst.202327611078910.1016/j.knosys.2023.110789
    [Google Scholar]
  10. NagajayanthiB. Decades of internet of things towards twenty-first century: A research-based introspective.Wirel. Pers. Commun.202212343661369710.1007/s11277‑021‑09308‑z 34812221
    [Google Scholar]
  11. ConnerM. Sensors empower the internet of things. EDN.2010Available from: https://www.edn.com/sensors-empower-the-internet-of-things/
  12. AlmajaliS. SalamehH.B. AyyashM. ElgalaH. A framework for efficient and secured mobility of IoT devices in mobile edge computing.Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)Barcelona, Spain 23– 26 April2018586210.1109/FMEC.2018.8364045
    [Google Scholar]
  13. SamuelA. SipesC. Making internet of things real.IEEE Internet Things Mag201921101210.1109/IOTM.2019.1907777
    [Google Scholar]
  14. OliveiraD. CostaM. PintoS. GomesT. The future of low-end motes in the internet of things: A prospective paper.Electronics20209111110.3390/electronics9010111
    [Google Scholar]
  15. LinJ. YuW. ZhangN. YangX. ZhangH. ZhaoW. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications.IEEE Internet Things J.2017451125114210.1109/JIOT.2017.2683200
    [Google Scholar]
  16. RazaM. AslamN. Le-MinhH. HussainS. CaoY. KhanN.M. A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks.IEEE Commun. Surv. Tutor.2018201399510.1109/COMST.2017.2759725
    [Google Scholar]
  17. ShengZ. YangS. YuY. VasilakosA. MccannJ. LeungK. A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities.IEEE Wirel. Commun.2013206919810.1109/MWC.2013.6704479
    [Google Scholar]
  18. ElnourM. HimeurY. FadliF. Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities.Appl. Energy202231811915310.1016/j.apenergy.2022.119153
    [Google Scholar]
  19. KaurK. GargS. AujlaG.S. KumarN. RodriguesJ.J.P.C. GuizaniM. Edge computing in the industrial internet of things environment: Software-defined-networks-based edge-cloud interplay.IEEE Commun. Mag.2018562445110.1109/MCOM.2018.1700622
    [Google Scholar]
  20. HimeurY SayedAN AlsalemiA BensaaliF AmiraA Edge AI for internet of energy: Challenges and perspectives Internet of Things20242510103510.1016/j.iot.2023.101035
    [Google Scholar]
  21. PintoS. GarlatiC. User Mode Interrupts—A Must for Securing Embedded Systems.Proceedings of the Embedded World Conference 2019Nuremberg, Germany 26–28 February2019
    [Google Scholar]
  22. ShaikhF.K. ZeadallyS. ExpositoE. Enabling technologies for green internet of things.IEEE Syst. J.201711298399410.1109/JSYST.2015.2415194
    [Google Scholar]
  23. HamdanS. AyyashM. AlmajaliS. Edge-computing architectures for internet of things applications: A survey.Sensors20202022644110.3390/s20226441 33187267
    [Google Scholar]
  24. BottaA. de DonatoW. PersicoV. PescapéA. Integration of cloud computing and Internet of things: A survey.Future Gener. Comput. Syst.20165668470010.1016/j.future.2015.09.021
    [Google Scholar]
  25. BabuS.M. LakshmiA.J. RaoB.T. A study on cloud based Internet of Things: CloudIoT.Proceedings of the 2015 Global Conference on Communication Technologies (GCCT)Thuckalay, India 23–24 April2015606510.1109/GCCT.2015.7342624
    [Google Scholar]
  26. ZanellaA. BuiN. CastellaniA. VangelistaL. ZorziM. Internet of things for smart cities.IEEE Internet Things J.201411223210.1109/JIOT.2014.2306328
    [Google Scholar]
  27. KuoY.W. LiC.L. JhangJ.H. LinS. Design of a wireless sensor network-based iot platform for wide area and heterogeneous applications.IEEE Sens. J.201818125187519710.1109/JSEN.2018.2832664
    [Google Scholar]
  28. EngelA. KochA. Heterogeneous wireless sensor nodes that target the internet of things.IEEE Micro201636681510.1109/MM.2016.100
    [Google Scholar]
  29. NyländenT. BoutellierJ. NikunenK. HannukselaJ. SilvénO. Reconfigurable miniature sensor nodes for condition monitoring.2012 International Conference on Embedded Computer SystemsSamos, Greece201211311910.1109/SAMOS.2012.6404164
    [Google Scholar]
  30. de la PiedraA. BraekenA. TouhafiA. Sensor systems based on fpgas and their applications: A survey.Sensors2012129122351226410.3390/s120912235
    [Google Scholar]
  31. SultanI. BandayM.T. Ultra-low power microcontroller architectures for the internet of things (IoT) devices. 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT).Tirunelveli, India202348248810.1109/ICSSIT55814.2023.10060949
    [Google Scholar]
  32. SultanI. BandayM.T. A study of the design architectures of configurable processors for the internet of things.2018 3rd International Conference on Contemporary Computing and Informatics (IC3I)Gurgaon, India201832032510.1109/IC3I44769.2018.9007256
    [Google Scholar]
  33. AlsharifM.H. KimS. KuruoğluN. Energy harvesting techniques for wireless sensor networks/radio-frequency identification: A review.Symmetry201911786510.3390/sym11070865
    [Google Scholar]
  34. MagnoM AoudiaFA GautierM BerderO BeniniL WULoRa:An energy efficient IoT end-node for energy harvesting and heterogeneous communication. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017Lausanne, Switzerland,20171528153310.23919/DATE.2017.7927233
    [Google Scholar]
  35. IqbalW. AbbasH. DaneshmandM. RaufB. BangashY.A. An in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined security.IEEE Internet Things J.2020710102501027610.1109/JIOT.2020.2997651
    [Google Scholar]
  36. MeneghelloF. CaloreM. ZucchettoD. PoleseM. ZanellaA. IoT: Internet of threats? A survey of practical security vulnerabilities in real iot devices.IEEE Internet Things J.2019658182820110.1109/JIOT.2019.2935189
    [Google Scholar]
  37. ZhouW. CaoC. HuoD. Reviewing IoT security via logic bugs in IoT platforms and systems.IEEE Internet Things J.2021814116211163910.1109/JIOT.2021.3059457
    [Google Scholar]
  38. ChengD. ZhangL. BuC. WangX. WuH. SongA. ProtoHAR: Prototype guided personalized federated learning for human activity recognition.IEEE J. Biomed. Health Inform.20232783900391110.1109/JBHI.2023.3275438 37167056
    [Google Scholar]
  39. MohantyS. GangulyM. PattnaikP.K. CIA triad for achieving accountability in cloud computing environment.Int J Comput Sci Mob Appl2018
    [Google Scholar]
  40. GhadeerH. Cybersecurity issues in internet of things and countermeasures.2018 IEEE International Conference on Industrial Internet (ICII)Seattle, WA, USA201819520110.1109/ICII.2018.00037
    [Google Scholar]
  41. KaurJ. Mozaffari KermaniM. AzarderakhshR. Hardware constructions for error detection in lightweight authenticated cipher ASCON benchmarked on FPGA.IEEE Trans. Circuits Syst. II Express Briefs20226942276228010.1109/TCSII.2021.3136463
    [Google Scholar]
  42. ScripcariuL. MatasaruP.D. DiaconuF. Extended DES algorithm to galois fields.2017 International Symposium on Signals, Circuits and Systems (ISSCS)Iasi, Romania20171410.1109/ISSCS.2017.8034875
    [Google Scholar]
  43. FengJ. WeiY. ZhangF. PasalicE. ZhouY. Novel optimized implementations of lightweight cryptographic S-boxes via SAT solvers.IEEE Trans. Circuits Syst. I Regul. Pap.202471133434710.1109/TCSI.2023.3325559
    [Google Scholar]
  44. Riahi SfarA. ChallalY. MoyalP. NatalizioE. A game theoretic approach for privacy preserving model in iot-based transportation.IEEE Trans. Intell. Transp. Syst.201920124405441410.1109/TITS.2018.2885054
    [Google Scholar]
  45. KarieNM SahriNM YangW ValliC KebandeVR A review of security standards and frameworks for IoT-based smart environments.IEEE Access2021912197512199510.1109/ACCESS.2021.3109886
    [Google Scholar]
  46. KumarJ. RameshP.R. Low cost energy efficient smart security system with information stamping for IoT networks.2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU)Bhimtal, India20181510.1109/IoT‑SIU.2018.8519875
    [Google Scholar]
  47. WuF. RüdigerC. RedoutéJ-M. YuceM.R. WE-Safe: A wearable IoT sensor node for safety applications via LoRa.2018 IEEE 4th World Forum on Internet of Things (WF-IoT)Singapore201814414810.1109/WF‑IoT.2018.8355234
    [Google Scholar]
  48. MeliM. GattE. CashaO. GrechI. MicallefJ. A novel low power and low cost iot wireless sensor node for air quality monitoring.2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)Glasgow, UK20201410.1109/ICECS49266.2020.9294927
    [Google Scholar]
  49. JorisL. DupontF. LaurentP. BellierP. StoukatchS. RedoutéJ-M. An autonomous sigfox wireless sensor node for environmental monitoring.IEEE Sens. Lett.2019371410.1109/LSENS.2019.2924058
    [Google Scholar]
  50. ZhengK ZhaoS YangZ XiongX XiangW Design and implementation of LPWA-based air quality monitoring system.IEEE Access2016432384510.1109/ACCESS.2016.2582153
    [Google Scholar]
  51. SaravananM. DasA. IyerV. Smart water grid management using LPWAN IoT technology.Proc. Global Internet Things Summit20171610.1109/GIOTS.2017.8016224
    [Google Scholar]
  52. AhmedS.T. AnnamalaiA. On private server implementations and data visualization for LoRaWAN. 2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE).Penang, Malaysia,202334234710.1109/ISCAIE57739.2023.10165109
    [Google Scholar]
  53. Valdes PenaM.D. Rodriguez-AndinaJ.J. ManicM. The internet of things: The role of reconfigurable platforms.IEEE Ind. Electron. Mag.201711361910.1109/MIE.2017.2724579
    [Google Scholar]
  54. GomesT. SalgadoF. TavaresA. CabralJ. CUTE mote, A customizable and trustable end-device for the internet of things.IEEE Sens. J.201717206816682410.1109/JSEN.2017.2743460
    [Google Scholar]
  55. SilvaM. TavaresA. GomesT. PintoS. ChamelIoT: An agnostic operating system framework for reconfigurable IoT devices.IEEE Internet Things J.2019612911292
    [Google Scholar]
  56. KaurN. SoodS.K. An energy-efficient architecture for the internet of things (IoT).IEEE Syst. J.201711279680510.1109/JSYST.2015.2469676
    [Google Scholar]
  57. StelteB. Toward development of high secure sensor network nodes using an FPGA-based architecture.Proceedings of the 6th International Wireless Communications and Mobile Computing ConferenceJune201053954310.1145/1815396.1815521
    [Google Scholar]
  58. BerderO. SentieysO. PowWow: Power optimized hardware/ software framework for wireless motes. 23th International Conference on Architecture of Computing Systems 2010.Hannover, Germany,201015
    [Google Scholar]
  59. GoursaudC. GorceJ-M. Dedicated networks for IoT: PHY/MAC state of the art and challenges.EAI Endorsed Trans Internet Things20151115059710.4108/eai.26‑10‑2015.150597
    [Google Scholar]
  60. RoselloV. PortillaJ. RiesgoT. Ultra low power FPGA-based architecture for wake-up radio in wireless sensor networks.IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics SocietyMelbourne, VIC, Australia,20113826383110.1109/IECON.2011.6119933
    [Google Scholar]
  61. QinH. ZhangW. Zigbee-assisted power saving management for mobile devices.IEEE Trans. Mobile Comput.201413122933294710.1109/TMC.2013.67
    [Google Scholar]
  62. ZhouR. XiongY. XingG. SunL. MaJ. ZiFi: Wireless LAN discovery via ZigBee interference signatures.Annual International Conference on Mobile Computing and NetworkingSeptember2010496010.1145/1859995.1860002
    [Google Scholar]
  63. PeringT. RaghunathanV. WantR. Exploiting radio hierarchies for power-efficient wireless device discovery and connection setup.18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design.Kolkata, India200577477910.1109/ICVD.2005.97
    [Google Scholar]
  64. Tuset-Peir’oP. VilajosanaX. WatteyneT. OpenMote+: A range- agile multi-radio mote.Proceedings of the International Conference on Embedded Wireless Systems and NetworksFebruary 2016333334
    [Google Scholar]
  65. MagnoM. MarinkovicS. BrunelliD. PopoviciE. O’FlynnB. BeniniL. Smart power unit with ultra low power radio trigger capabilities for wireless sensor networks. 2012 Design.Automation & Test in Europe Conference & Exhibition, . Dresden, Germany2012758010.1109/DATE.2012.6176436
    [Google Scholar]
  66. Vera-SalasL.A. Moreno-TapiaS.V. Osornio-RiosR.A. Reconfigurable node processing unit for a low-power wireless sensor network.2010 International Conference on Reconfigurable Computing and FPGAsCancun, Mexico2010173178
    [Google Scholar]
  67. LoRaWAN™, Specification v1.0, LoRa Alliance, Inc. 2400 Camino Ramon, Suite 375 San Ramon, CA 94583 (2015).LoRa Alliance, Tech Rep2015
    [Google Scholar]
  68. Nucleo-F401RE. STMicroelectronics.Available from: https://www.st.com/en/evaluation-tools/nucleo-f401re.html [Accessed: 17-Jan-2023].
  69. X-NUCLEO-IDS01A5 STMicroelectronics.Available from: https://www.st.com/en/ecosystems/x-nucleo-ids01a5.html [Accessed: 17-Jan-2023].
  70. X-NUCLEO-IKS01A2 STMicroelectronics.Available from: https://www.st.com/en/ecosystems/x-nucleo-iks01a2.html [Accessed: 17-Jan-2023]
  71. BuiD.H. PuschiniD. Bacles-MinS. BeigneE. TranX.T. Ultra lowpower and low-energy 32-bit datapath AES architecture for IoT applications.2016 International Conference on IC Design and Technology (ICICDT)Ho Chi Minh City, Vietnam20161410.1109/ICICDT.2016.7542076
    [Google Scholar]
  72. YuW. KoseS. A lightweight masked AES implementation for securing IoT against CPA attacks.IEEE Trans. Circuits Syst. I Regul. Pap.201764112934294410.1109/TCSI.2017.2702098
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279287156240218044819
Loading
/content/journals/swcc/10.2174/0122103279287156240218044819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test