Skip to content
2000
image of Immune Checkpoint Inhibitors Impact Fertility: A Review

Abstract

Immune checkpoint inhibitor therapy has become the established method of treatment for various types of cancers, consequently introducing a spectrum of side effects referred to as immune-mediated adverse events, affecting almost every organ, including the reproductive system. Moreover, very little clinical data is available that suggests the detrimental effect of immune checkpoint inhibitor therapy on fertility, sexual health, or potential pregnancies. In this manuscript, we reviewed the impact of immunotherapy on male and female fertility and its effect on sexual health. Patients undergoing systemic treatment with immunotherapy often experience sexual dysfunction, decreased sexual drive, erectile dysfunction, and a decline in vaginal lubrication. Fertility-desiring patients who do not receive adequate counseling may ultimately face a higher likelihood of developing anxiety, depression, and a decreased quality of life post-treatment. Therefore, it is crucial to address the reproductive consequences of planned treatment, disseminate knowledge about novel treatments and preventive measures for reproductive side effects, and provide guidance on fertility preservation. Individuals experiencing secondary reproductive dysfunction due to the tumor or its treatment should receive proactive treatment for the underlying condition and be offered hormone replacement therapy.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871340496250130054721
2025-02-04
2025-07-06
Loading full text...

Full text loading...

References

  1. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020 11 1 3801 10.1038/s41467‑020‑17670‑y 32732879
    [Google Scholar]
  2. Kyi C. Postow M.A. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 2014 588 2 368 376 10.1016/j.febslet.2013.10.015 24161671
    [Google Scholar]
  3. Nguyen L.T. Ohashi P.S. Clinical blockade of PD1 and LAG3 — Potential mechanisms of action. Nat. Rev. Immunol. 2015 15 1 45 56 10.1038/nri3790 25534622
    [Google Scholar]
  4. Robert C. Schachter J. Long G.V. Arance A. Grob J.J. Mortier L. Daud A. Carlino M.S. McNeil C. Lotem M. Larkin J. Lorigan P. Neyns B. Blank C.U. Hamid O. Mateus C. Shapira-Frommer R. Kosh M. Zhou H. Ibrahim N. Ebbinghaus S. Ribas A. KEYNOTE-006 investigators Pembrolizumab versus Ipilimumab in advanced melanoma. N. Engl. J. Med. 2015 372 26 2521 2532 10.1056/NEJMoa1503093 25891173
    [Google Scholar]
  5. Freeman G.J. Long A.J. Iwai Y. Bourque K. Chernova T. Nishimura H. Fitz L.J. Malenkovich N. Okazaki T. Byrne M.C. Horton H.F. Fouser L. Carter L. Ling V. Bowman M.R. Carreno B.M. Collins M. Wood C.R. Honjo T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000 192 7 1027 1034 10.1084/jem.192.7.1027 11015443
    [Google Scholar]
  6. Keir M.E. Butte M.J. Freeman G.J. Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008 26 1 677 704 10.1146/annurev.immunol.26.021607.090331 18173375
    [Google Scholar]
  7. Terme M. Ullrich E. Aymeric L. Meinhardt K. Desbois M. Delahaye N. Viaud S. Ryffel B. Yagita H. Kaplanski G. Prévost-Blondel A. Kato M. Schultze J.L. Tartour E. Kroemer G. Chaput N. Zitvogel L. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 2011 71 16 5393 5399 10.1158/0008‑5472.CAN‑11‑0993 21724589
    [Google Scholar]
  8. Fanoni D. Tavecchio S. Recalcati S. Balice Y. Venegoni L. Fiorani R. Crosti C. Berti E. New monoclonal antibodies against B-cell antigens: Possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol. Lett. 2011 134 2 157 160 10.1016/j.imlet.2010.09.022 20951741
    [Google Scholar]
  9. Okazaki T. Honjo T. PD-1 and PD-1 ligands: From discovery to clinical application. Int. Immunol. 2007 19 7 813 824 10.1093/intimm/dxm057 17606980
    [Google Scholar]
  10. Dong H. Strome S.E. Salomao D.R. Tamura H. Hirano F. Flies D.B. Roche P.C. Lu J. Zhu G. Tamada K. Lennon V.A. Celis E. Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002 8 8 793 800 10.1038/nm730 12091876
    [Google Scholar]
  11. Parsa A.T. Waldron J.S. Panner A. Crane C.A. Parney I.F. Barry J.J. Cachola K.E. Murray J.C. Tihan T. Jensen M.C. Mischel P.S. Stokoe D. Pieper R.O. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 2007 13 1 84 88 10.1038/nm1517 17159987
    [Google Scholar]
  12. Chen L. Han X. Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Invest. 2015 125 9 3384 3391 10.1172/JCI80011 26325035
    [Google Scholar]
  13. Merelli B. Massi D. Cattaneo L. Mandalà M. Targeting the PD1/PD-L1 axis in melanoma: Biological rationale, clinical challenges and opportunities. Crit. Rev. Oncol. Hematol. 2014 89 1 140 165 10.1016/j.critrevonc.2013.08.002 24029602
    [Google Scholar]
  14. Gong J. Chehrazi-Raffle A. Reddi S. Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018 6 1 8 10.1186/s40425‑018‑0316‑z 29357948
    [Google Scholar]
  15. Le Tourneau C. Hoimes C. Zarwan C. Wong D.J. Bauer S. Claus R. Wermke M. Hariharan S. von Heydebreck A. Kasturi V. Chand V. Gulley J.L. Avelumab in patients with previously treated metastatic adrenocortical carcinoma: Phase 1b results from the JAVELIN solid tumor trial. J. Immunother. Cancer 2018 6 1 111 10.1186/s40425‑018‑0424‑9 30348224
    [Google Scholar]
  16. Disis M.L. Disis. Mechanism of action of immunotherapy. Semin. Oncol. 2014 41 Suppl. 5 S3 S13 10.1053/j.seminoncol.2014.09.004
    [Google Scholar]
  17. Vaddepally R.K. Kharel P. Pandey R. Garje R. Chandra A.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 2020 12 3 738 10.3390/cancers12030738 32245016
    [Google Scholar]
  18. Zhu S. Zhang T. Zheng L. Liu H. Song W. Liu D. Li Z. Pan C. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 2021 14 1 156 10.1186/s13045‑021‑01164‑5 34579759
    [Google Scholar]
  19. Martins F. Sofiya L. Sykiotis G.P. Lamine F. Maillard M. Fraga M. Shabafrouz K. Ribi C. Cairoli A. Guex-Crosier Y. Kuntzer T. Michielin O. Peters S. Coukos G. Spertini F. Thompson J.A. Obeid M. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019 16 9 563 580 10.1038/s41571‑019‑0218‑0 31092901
    [Google Scholar]
  20. Pedicord V.A. Montalvo W. Leiner I.M. Allison J.P. Single dose of anti–CTLA-4 enhances CD8 + T-cell memory formation, function, and maintenance. Proc. Natl. Acad. Sci. USA 2011 108 1 266 271 10.1073/pnas.1016791108 21173239
    [Google Scholar]
  21. Walter J.R. Xu S. Paller A.S. Choi J.N. Woodruff T.K. Oncofertility considerations in adolescents and young adults given a diagnosis of melanoma: Fertility risk of Food and Drug Administration–approved systemic therapies. J. Am. Acad. Dermatol. 2016 75 3 528 534 10.1016/j.jaad.2016.04.031 27543212
    [Google Scholar]
  22. Herbst R.S. Soria J.C. Kowanetz M. Fine G.D. Hamid O. Gordon M.S. Sosman J.A. McDermott D.F. Powderly J.D. Gettinger S.N. Kohrt H.E.K. Horn L. Lawrence D.P. Rost S. Leabman M. Xiao Y. Mokatrin A. Koeppen H. Hegde P.S. Mellman I. Chen D.S. Hodi F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014 515 7528 563 567 10.1038/nature14011 25428504
    [Google Scholar]
  23. Powles T. Eder J.P. Fine G.D. Braiteh F.S. Loriot Y. Cruz C. Bellmunt J. Burris H.A. Petrylak D.P. Teng S. Shen X. Boyd Z. Hegde P.S. Chen D.S. Vogelzang N.J. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014 515 7528 558 562 10.1038/nature13904 25428503
    [Google Scholar]
  24. Brunet-Possenti F. Opsomer M.A. Gomez L. Ouzaid I. Descamps V. Immune checkpoint inhibitors-related orchitis. Ann. Oncol. 2017 28 4 906 907 10.1093/annonc/mdw696 28039179
    [Google Scholar]
  25. Quach H.T. Robbins C.J. Balko J.M. Chiu C.Y. Miller S. Wilson M.R. Nelson G.E. Johnson D.B. Severe epididymo-orchitis and encephalitis complicating anti-PD-1 therapy. Oncologist 2019 24 7 872 876 10.1634/theoncologist.2018‑0722 30936376
    [Google Scholar]
  26. Türkmen N.B. Çiftçi O. Taşlıdere A. Aydın M. Eke B.C. The effect of aromatase inhibitors against possible testis toxicity in pembrolizumab treated rats. Andrologia 2022 54 10 e14557 10.1111/and.14557 36177829
    [Google Scholar]
  27. Peters M. Pearlman A. Terry W. Mott S.L. Monga V. Testosterone deficiency in men receiving immunotherapy for malignant melanoma. Oncotarget 2021 12 3 199 208 10.18632/oncotarget.27876 33613847
    [Google Scholar]
  28. Ryder M. Callahan M. Postow M.A. Wolchok J. Fagin J.A. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: A comprehensive retrospective review from a single institution. Endocr. Relat. Cancer 2014 21 2 371 381 10.1530/ERC‑13‑0499 24610577
    [Google Scholar]
  29. Scovell J.M. Benz K. Samarska I. Kohn T.P. Hooper J.E. Matoso A. Herati A.S. Association of impaired spermatogenesis with the use of immune checkpoint inhibitors in patients with metastatic melanoma. JAMA Oncol. 2020 6 8 1297 1299 10.1001/jamaoncol.2020.1641 32556068
    [Google Scholar]
  30. Salzmann M. Tosev G. Heck M. Schadendorf D. Maatouk I. Enk A.H. Hartmann M. Hassel J.C. Male fertility during and after immune checkpoint inhibitor therapy: A cross-sectional pilot study. Eur. J. Cancer 2021 152 41 48 10.1016/j.ejca.2021.04.031 34062486
    [Google Scholar]
  31. Rabinowitz M.J. Kohn T.P. Peña V.N. Samarska I.V. Matoso A. Herati A.S. Onset of azoospermia in man treated with ipilimumab/nivolumab for BRAF negative metastatic melanoma. Urol. Case Rep. 2021 34 101488 10.1016/j.eucr.2020.101488 33299797
    [Google Scholar]
  32. Himpe J. Lammerant S. Van den Bergh L. Lapeire L. De Roo C. The impact of systemic oncological treatments on the fertility of adolescents and young adults—a systematic review. Life 2023 13 5 1209 10.3390/life13051209 37240854
    [Google Scholar]
  33. Chen A.P. Sharon E. O’Sullivan-Coyne G. Moore N. Foster J.C. Hu J.S. Van Tine B.A. Conley A.P. Read W.L. Riedel R.F. Burgess M.A. Glod J. Davis E.J. Merriam P. Naqash A.R. Fino K.K. Miller B.L. Wilsker D.F. Begum A. Ferry-Galow K.V. Deshpande H.A. Schwartz G.K. Ladle B.H. Okuno S.H. Beck J.C. Chen J.L. Takebe N. Fogli L.K. Rosenberger C.L. Parchment R.E. Doroshow J.H. Atezolizumab for advanced alveolar soft part sarcoma. N. Engl. J. Med. 2023 389 10 911 921 10.1056/NEJMoa2303383 37672694
    [Google Scholar]
  34. Xu P.C. Luan Y. Yu S.Y. Xu J. Coulter D.W. Kim S.Y. Effects of PD-1 blockade on ovarian follicles in a prepubertal female mouse. J. Endocrinol. 2022 252 1 15 30 10.1530/JOE‑21‑0209 34647523
    [Google Scholar]
  35. Duma N. Lambertini M. It is time to talk about fertility and immunotherapy. Oncologist 2020 25 4 277 278 10.1634/theoncologist.2019‑0837 32091651
    [Google Scholar]
  36. Alesi L.R. Winship A.L. Hutt K.J. Evaluating the impacts of emerging cancer therapies on ovarian function. Curr. Opin. Endocr. Metab. Res. 2021 18 15 28 10.1016/j.coemr.2020.12.004
    [Google Scholar]
  37. England C.G. Ehlerding E.B. Hernandez R. Rekoske B.T. Graves S.A. Sun H. Liu G. McNeel D.G. Barnhart T.E. Cai W. Preclinical pharmacokinetics and biodistribution studies of 89 Zr-labeled pembrolizumab. J. Nucl. Med. 2017 58 1 162 168 10.2967/jnumed.116.177857 27493273
    [Google Scholar]
  38. Traila A. Dima D. Achimas-Cadariu P. Micu R. Fertility preservation in Hodgkin’s lymphoma patients that undergo targeted molecular therapies: An important step forward from the chemotherapy era. Cancer Manag. Res. 2018 10 1517 1526 10.2147/CMAR.S154819 29942153
    [Google Scholar]
  39. Quandt Z. Kim S. Villanueva-Meyer J. Coupe C. Young A. Kang J.H. Yazdany J. Schmajuk G. Rush S. Ziv E. Perdigoto A.L. Herold K. Lechner M.G. Su M.A. Tyrrell J.B. Bluestone J. Anderson M. Masharani U. Spectrum of Clinical Presentations, Imaging Findings, and HLA Types in Immune Checkpoint Inhibitor–Induced Hypophysitis Spectrum of clinical presentations, imaging findings, and HLA types in immune checkpoint inhibitor–induced hypophysitis. J. Endocr. Soc. 2023 7 4 bvad012 10.1210/jendso/bvad012
    [Google Scholar]
  40. Barroso-Sousa R. Barry W.T. Garrido-Castro A.C. Hodi F.S. Min L. Krop I.E. Tolaney S.M. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens. JAMA Oncol. 2018 4 2 173 182 10.1001/jamaoncol.2017.3064 28973656
    [Google Scholar]
  41. Faje A. Reynolds K. Zubiri L. Lawrence D. Cohen J.V. Sullivan R.J. Nachtigall L. Tritos N. Hypophysitis secondary to nivolumab and pembrolizumab is a clinical entity distinct from ipilimumab-associated hypophysitis. Eur. J. Endocrinol. 2019 181 3 211 219 10.1530/EJE‑19‑0238 31176301
    [Google Scholar]
  42. Briet C. Albarel F. Kuhn E. Merlen E. Chanson P. Cortet C. Expert opinion on pituitary complications in immunotherapy. Ann. Endocrinol. 2018 79 5 562 568 10.1016/j.ando.2018.07.008 30126625
    [Google Scholar]
  43. Husebye E.S. Castinetti F. Criseno S. Curigliano G. Decallonne B. Fleseriu M. Higham C.E. Lupi I. Paschou S.A. Toth M. van der Kooij M. Dekkers O.M. Endocrine-related adverse conditions in patients receiving immune checkpoint inhibition: An ESE clinical practice guideline. Eur. J. Endocrinol. 2022 187 6 G1 G21 10.1530/EJE‑22‑0689 36149449
    [Google Scholar]
  44. Tulchiner G. Pichler R. Ulmer H. Staudacher N. Lindner A.K. Brunner A. Zelger B. Steinkohl F. Aigner F. Horninger W. Thurnher M. Sex-specific hormone changes during immunotherapy and its influence on survival in metastatic renal cell carcinoma. Cancer Immunol. Immunother. 2021 70 10 2805 2817 10.1007/s00262‑021‑02882‑y 33646368
    [Google Scholar]
  45. Di Dalmazi G. Ippolito S. Lupi I. Caturegli P. Hypophysitis induced by immune checkpoint inhibitors: A 10-year assessment. Expert Rev. Endocrinol. Metab. 2019 14 6 381 398 10.1080/17446651.2019.1701434 31842671
    [Google Scholar]
  46. Garon-Czmil J. Petitpain N. Rouby F. Sassier M. Babai S. Yéléhé-Okouma M. Weryha G. Klein M. Gillet P. Immune check point inhibitors-induced hypophysitis: A retrospective analysis of the French Pharmacovigilance database. Sci. Rep. 2019 9 1 19419 10.1038/s41598‑019‑56026‑5 31857638
    [Google Scholar]
  47. Faje A.T. Sullivan R. Lawrence D. Tritos N.A. Fadden R. Klibanski A. Nachtigall L. Ipilimumab-induced hypophysitis: A detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J. Clin. Endocrinol. Metab. 2014 99 11 4078 4085 10.1210/jc.2014‑2306 25078147
    [Google Scholar]
  48. Priviero F. Webb C. Biology of iatrogenic sexual dysfunction in men and women survivors of cancer. Urol. Oncol. 2022 40 8 366 371 10.1016/j.urolonc.2021.01.017 33563538
    [Google Scholar]
  49. Sood A. Cole D. Abdollah F. Eilender B. Roumayah Z. Deebajah M. Dabaja A. Alanee S. Endocrine, sexual function, and infertility side effects of immune checkpoint inhibitor therapy for genitourinary cancers. Curr. Urol. Rep. 2018 19 9 68 10.1007/s11934‑018‑0819‑7 29971696
    [Google Scholar]
  50. Yumura Y. Takeshima T. Komeya M. Kuroda S. Saito T. Karibe J. Fertility and sexual dysfunction in young male cancer survivors. Reprod. Med. Biol. 2022 21 1 e12481 10.1002/rmb2.12481 35949642
    [Google Scholar]
  51. Baettig F. Vlajnic T. Vetter M. Glatz K. Hench J. Frank S. Bihl M. Lopez R. Dobbie M. Heinzelmann-Schwarz V. Montavon C. Nivolumab in chemotherapy-resistant cervical cancer: Report of a vulvitis as a novel immune-related adverse event and molecular analysis of a persistent complete response. J. Immunother. Cancer 2019 7 1 281 10.1186/s40425‑019‑0742‑6 31672171
    [Google Scholar]
  52. Logan S. Perz J. Ussher J.M. Peate M. Anazodo A. Systematic review of fertility‐related psychological distress in cancer patients: Informing on an improved model of care. Psychooncology 2019 28 1 22 30 10.1002/pon.4927 30460732
    [Google Scholar]
  53. Kowalkowski M.A. Chandrashekar A. Amiel G.E. Lerner S.P. Wittmann D.A. Latini D.M. Goltz H.H. Examining sexual dysfunction in non-muscle-invasive bladder cancer: results of cross-sectional mixed-methods research. Sex. Med. 2014 2 3 141 151 10.1002/sm2.24 25356311
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871340496250130054721
Loading

  • Article Type:
    Review Article
Keywords: nivolumab ; clinical trials ; gonads ; Immune checkpoint inhibitors ; infertility ; ipilimumab
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test