Skip to content
2000
image of Navigating Dry Eye Research: A Comprehensive Review of Etiology, Clinical Trials, Patents, and Recent Advancements

Abstract

Background

Millions of people worldwide suffer from dry eye disease. Dry eye, a multifunctional condition of the ocular surface, typically occurs in conjunction with an unbalanced tear film. With increasing age, the dry eye problem becomes worse. Aqueous-deficit dry eye and evaporative dry eye are the two traditional classifications for dry eye. Various examination tools are used to diagnose dry eye. Clinical trials are conducted in four phases to check the safety and efficacy of drugs. The quick clearance from the precorneal space is ensured by the eye's advanced defense mechanism. It restricts the integrated medicine's entry into the eyes, resulting in a usually low bioavailability for topical eyedrops. In this study, we focus on recently developed formulations for curing dry eye.

Objective

This review's goal was to outline the etiology, clinical discovery and development, patents, and recent advancements for dry eye disease.

Results

The current study has described the widespread incidence of dry eye, which was found to be more common as people aged and recently developed formulations are treating dry eyes. According to research, novel formulations are enhancing ocular drug delivery.

Conclusion

In this review, etiology, clinical data, dry eye formulation patents, and recent advancements are all included.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871310261240929163138
2024-10-09
2024-11-26
Loading full text...

Full text loading...

References

  1. Prata A.I. Coimbra P. Pina M.E. Preparation of dexamethasone ophthalmic implants: A comparative study of in vitro release profiles. Pharm. Dev. Technol. 2018 23 3 218 224 10.1080/10837450.2017.1306560
    [Google Scholar]
  2. Mohammad Garg V. Nirmal J. Warsi M.H. Pandita D. Kesharwani P. Jain G.K. Topical tacrolimus progylcosomes nano-vesicles as a potential therapy for experimental dry eye syndrome. J. Pharm. Sci. 2022 111 2 479 484 10.1016/j.xphs.2021.09.038
    [Google Scholar]
  3. Nassiri N. Rodriguez Torres Y. Meyer Z. Beyer M.A. Vellaichamy G. Dhaliwal A.S. Chungfat N. Hwang F.S. Current and emerging therapy of dry eye disease. Part A: Pharmacological modalities. Expert Rev. Ophthalmol. 2017 12 4 269 297 10.1080/17469899.2017.1327350
    [Google Scholar]
  4. Nebbioso M. Fameli V. Gharbiya M. Sacchetti M. Zicari A.M. Lambiase A. Investigational drugs in dry eye disease. Expert Opin. Investig. Drugs 2016 25 12 1437 1446 10.1080/13543784.2016.1249564
    [Google Scholar]
  5. Jurišić Dukovski B. Juretić M. Bračko D. Randjelović D. Savić S. Crespo Moral M. Diebold Y. Filipović-Grčić J. Pepić I. Lovrić J. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. Int. J. Pharm. 2020 576 118979 10.1016/j.ijpharm.2019.118979
    [Google Scholar]
  6. Stapleton F. Alves M. Bunya V.Y. Jalbert I. Lekhanont K. Malet F. Na K.S. Schaumberg D. Uchino M. Vehof J. Viso E. Vitale S. Jones L. Tfos dews ii epidemiology report. Ocul. Surf. 2017 15 3 334 365 10.1016/j.jtos.2017.05.003
    [Google Scholar]
  7. Al-Mohtaseb Z. Schachter S. Shen Lee B. Garlich J. Trattler W. The relationship between dry eye disease and digital screen use. Clin. Ophthalmol. 2021 15 3811 3820 10.2147/OPTH.S321591
    [Google Scholar]
  8. Nagai N. Otake H. Novel drug delivery systems for the management of dry eye. Adv. Drug Deliv. Rev. 2022 191 114582 10.1016/j.addr.2022.114582
    [Google Scholar]
  9. Cetinkaya S. Mestan E. Acir N.O. Cetinkaya Y.F. Dadaci Z. Yener H.I. The course of dry eye after phacoemulsification surgery. BMC Ophthalmol. 2015 15 1 68 10.1186/s12886‑015‑0058‑3
    [Google Scholar]
  10. Zeev M.S. Miller D.D. Latkany R. Diagnosis of dry eye disease and emerging technologies. Clin. Ophthalmol. 2014 581 590 10.2147/OPTH.S45444.
    [Google Scholar]
  11. LeBlanc A.G. Gunnell K.E. Prince S.A. Saunders T.J. Barnes J.D. Chaput J.P. The ubiquity of the screen: an overview of the risks and benefits of screen time in our modern world. Transl. J. Am. Coll. Sports Med. 2017 2 17 104 113 10.1249/TJX.0000000000000039
    [Google Scholar]
  12. Courtin R. Pereira B. Naughton G. Chamoux A. Chiambaretta F. Lanhers C. Dutheil F. Prevalence of dry eye disease in visual display terminal workers: A systematic review and meta-analysis. BMJ Open 2016 6 1 e009675 10.1136/bmjopen‑2015‑009675
    [Google Scholar]
  13. Sheppard A.L. Wolffsohn J.S. Digital eye strain: Prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018 3 1 e000146 10.1136/bmjophth‑2018‑000146
    [Google Scholar]
  14. Vanderloo L.M. Carsley S. Aglipay M. Cost K.T. Maguire J. Birken C.S. Applying harm reduction principles to address screen time in young children amidst the COVID-19 pandemic. J. Dev. Behav. Pediatr. 2020 41 5 335 336 10.1097/DBP.0000000000000825
    [Google Scholar]
  15. Phadatare SP. Momin M. Nighojkar P. Askarkar S. Singh KK. A comprehensive review on dry eye disease: Diagnosis, medical management, recent developments, and future challenges. Adv Pharm 2015 1 12 10.1155/2015/704946
    [Google Scholar]
  16. Barabino S. Is dry eye disease the same in young and old patients? A narrative review of the literature. BMC Ophthalmol. 2022 22 1 85 10.1186/s12886‑022‑02269‑2
    [Google Scholar]
  17. Sharma A. Hindman H.B. Aging: A predisposition to dry eyes. J. Ophthalmol. 2014 2014
    [Google Scholar]
  18. Lollett I.V. Galor A. Dry eye syndrome: Developments and lifitegrast in perspective. Clin. Ophthalmol. 2018 12 125 139 10.2147/OPTH.S126668
    [Google Scholar]
  19. Lin H. Yiu S.C. Dry eye disease: A review of diagnostic approaches and treatments. Saudi J. Ophthalmol. 2014 28 3 173 181 10.1016/j.sjopt.2014.06.002
    [Google Scholar]
  20. Hwang H.S. Mikula E. Xie Y. Brown D.J. Jester J.V. A novel transillumination meibography device for in vivo imaging of mouse meibomian glands. Ocul. Surf. 2021 19 201 209 10.1016/j.jtos.2020.08.012
    [Google Scholar]
  21. Shoari A. Kanavi M.R. Rasaee M.J. Inhibition of matrix metalloproteinase-9 for the treatment of dry eye syndrome; A review study. Exp. Eye Res. 2021 205 108523 10.1016/j.exer.2021.108523
    [Google Scholar]
  22. de Oliveira I.F. Barbosa E.J. Peters M.C.C. Henostroza M.A.B. Yukuyama M.N. dos Santos Neto E. Löbenberg R. Bou-Chacra N. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm. 2020 589 119831 10.1016/j.ijpharm.2020.119831
    [Google Scholar]
  23. Mohamed H.B. Abd El-Hamid B.N. Fathalla D. Fouad E.A. Current trends in pharmaceutical treatment of dry eye disease: A review. Eur. J. Pharm. Sci. 2022 175 106206 10.1016/j.ejps.2022.106206
    [Google Scholar]
  24. Deng Y. Wang Q. Luo Z. Li S. Wang B. Zhong J. Peng L. Xiao P. Yuan J. Quantitative analysis of morphological and functional features in meibography for meibomian gland dysfunction: Diagnosis and grading. EClinicalMedicine 2021 40 101132 10.1016/j.eclinm.2021.101132
    [Google Scholar]
  25. Li N. Deng X.G. He M.F. Comparison of the Schirmer I test with and without topical anesthesia for diagnosing dry eye. Int. J. Ophthalmol. 2012 5 4 478
    [Google Scholar]
  26. Limón D. Vásquez C. Czaplewski R. Measurement of tear production using Schirmer tear test and standardized endodontic absorbent paper points in ferrets (Mustela putorius furo). J. Exot. Pet Med. 2019 29 10 14 10.1053/j.jepm.2018.09.015
    [Google Scholar]
  27. Wu Y. Wang C. Wang X. Mou Y. Yuan K. Huang X. Jin X. Advances in dry eye disease examination techniques. Front. Med. (Lausanne) 2022 8 826530 10.3389/fmed.2021.826530
    [Google Scholar]
  28. Karaca E.E. Özek D. Evren Kemer Ö. Comparison study of two different topical lubricants on tear meniscus and tear osmolarity in dry eye. Cont. Lens Anterior Eye 2020 43 4 373 377 10.1016/j.clae.2019.10.001
    [Google Scholar]
  29. Connor C.G. Haine C.L. Treatment for dry eye. US 2021/0008079 2021
  30. Vicnesh J. Oh S.L. Wei J.K.E. Ciaccio E.J. Chua K.C. Tong L. Rajendra Acharya U. Thoughts concerning the application of thermogram images for automated diagnosis of dry eye – A review. Infrared Phys. Technol. 2020 106 103271 10.1016/j.infrared.2020.103271
    [Google Scholar]
  31. Pondelis N. Dieckmann G.M. Jamali A. Kataguiri P. Senchyna M. Hamrah P. Infrared meibography allows detection of dimensional changes in meibomian glands following intranasal neurostimulation. Ocul. Surf. 2020 18 3 511 516 10.1016/j.jtos.2020.03.003
    [Google Scholar]
  32. Shirakawa R. Arita R. Amano S. Meibomian gland morphology in Japanese infants, children, and adults observed using a mobile pen-shaped infrared meibography device. Am. J. Ophthalmol. 2013 155 6 1099 1103.e1 10.1016/j.ajo.2013.01.017
    [Google Scholar]
  33. Ban Y. Shimazaki-Den S. Tsubota K. Shimazaki J. Morphological evaluation of meibomian glands using noncontact infrared Meibography. Ocul. Surf. 2013 11 1 47 53 10.1016/j.jtos.2012.09.005
    [Google Scholar]
  34. Hamrah P. Alipour F. Jiang S. Sohn J-H. Foulks G.N. Optimizing evaluation of Lissamine Green parameters for ocular surface staining. Eye (Lond.) 2011 25 11 1429 1434 10.1038/eye.2011.184
    [Google Scholar]
  35. Eom Y. Lee J.S. Keun Lee H. Myung Kim H. Suk Song J. Comparison of conjunctival staining between lissamine green and yellow filtered fluorescein sodium. Can. J. Ophthalmol. 2015 50 4 273 277 10.1016/j.jcjo.2015.05.007
    [Google Scholar]
  36. Doughty M.J. Rose bengal staining as an assessment of ocular surface damage and recovery in dry eye disease—A review. Cont. Lens Anterior Eye 2013 36 6 272 280 10.1016/j.clae.2013.07.008
    [Google Scholar]
  37. Hamrah P. Qazi Y. Meibomian gland dysfunction. US 9,931,031 2018
  38. Aggarwal S. Kheirkhah A. Cavalcanti B.M. Cruzat A. Jamali A. Hamrah P. Correlation of corneal immune cell changes with clinical severity in dry eye disease: An in vivo confocal microscopy study. Ocul. Surf. 2021 19 183 189 10.1016/j.jtos.2020.05.012
    [Google Scholar]
  39. Goffin J. Clinical Trials Handbook. Wiley 2009 1 22
    [Google Scholar]
  40. Phase 3 study of OTX-101 in the treatment of Keratoconjunctivitis sicca (Emerald). NCT02688556
  41. Dry eye disease study with brimonidine. NCT03418727
  42. Study of SY-201 ophthalmic solution in subjects with dry eye disease. NCT05370495
  43. Intense regulated pulse light therapy in dry eye disease. NCT05553561
  44. Effect of traditional chinese medicine on basic tear secretion and tear cytokines in patients with dry eye disease. NCT04785261
  45. Study of brimonidine tartrate nanoemulsion eye drop solution in the treatment of dry eye disease (DED). NCT03785340
  46. Effect of cequa treatment on accuracy of pre-operative biometry & higher order aberrations in dry eye patients undergoing cataract surgery. NCT04342988
  47. Ocular tolerability of voclosporin ophthalmic solution versus restasis® in subjects with dry eye disease. NCT03597139
  48. Effect of Cequa™ in subjects with dry eye disease. NCT04357795
  49. Evaluating HA 0.15% compared with cyclosporine 0.05%, and efficacy of combination therapy in dry eye disease patients. NCT04127851
  50. Liposomal sirolimus in dry eye disease. NCT04115800
  51. Effect of UMSCs derived exosomes on dry eye in patients with cGVHD. NCT04213248
  52. Study of VVN001 ophthalmic solution in dry eye disease. NCT04556838
  53. Phase II study of SHJ002 sterile ophthalmic solution compared with vehicle in participants with dry eye disease. NCT05486728
  54. A study evaluating the efficacy of SAR 1118 (0.1%, 1.0%, 5.0%) Ophthalmic solution in subjects with dry eye conducted in a controlled adverse environment (CAE). NCT00926185
  55. Safety and efficacy study of SAR 1118 to treat dry eye conducted in a controlled adverse environment (CAE) (OPUS-1) (OPUS-1). NCT01421498
  56. A phase 3 study to evaluate the efficacy of Lifitegrast in subjects with dry eye. NCT01743729
  57. A study to evaluate efficacy and safety of lifitegrast in subjects with dry eye (OPUS-3) (OPUS-3). NCT02284516
  58. Effect of lifitegrast on dry eye disease signs and symptoms (Lifitegrast). NCT03451396
  59. OTX-DED for the short-term treatment of the symptoms of dry eye disease (DED). NCT05814757
  60. A study of TL-925 as a treatment for dry eye disease. NCT05745064
  61. Clinical trial to evaluate the efficacy and safety of OC-01 (Varenicline) nasal spray on signs and symptoms of dry eye disease. NCT05378945
  62. Malhotra R. Devries D.K. Luchs J. Kabat A. Schechter B.A. Shen Lee B. Shettle L. Smyth-Medina R. Ogundele A. Darby C. Bacharach J. Karpecki P. Effect of OTX-101, a novel nanomicellar formulation of cyclosporine A, on corneal staining in patients with keratoconjunctivitis sicca: a pooled analysis of phase 2b/3 and phase 3 studies. Cornea 2019 38 10 1259 1265 10.1097/ICO.0000000000001989
    [Google Scholar]
  63. Mandal A. Gote V. Pal D. Ogundele A. Mitra A.K. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease. Pharm. Res. 2019 36 2 36 10.1007/s11095‑018‑2556‑5
    [Google Scholar]
  64. Di Marino M. Conigliaro P. Aiello F. Valeri C. Giannini C. Mancino R. Modica S. Nucci C. Perricone R. Cesareo M. Combined low-level light therapy and intense pulsed light therapy for the treatment of dry eye in patients with Sjögren’s Syndrome. J. Ophthalmol. 2021 2021 1 1 6 10.1155/2021/2023246
    [Google Scholar]
  65. Kumar G. Virmani T. Pathank K. Non-Aqueous-Nanoemulsions -An-Innovative-Lipid-Based-Drug-Carrier IGI Global publisher 2022 10.4018/978‑1‑7998‑8908‑3.ch006.
    [Google Scholar]
  66. Marshall L.L. Hayslett R.L. Dry eye disease: Focus on prescription therapy. Sr. Care Pharm. 2023 38 6 239 251 10.4140/TCP.n.2023.239
    [Google Scholar]
  67. Colligris B. Alkozi H.A. Pintor J. Recent developments on dry eye disease treatment compounds. Saudi J. Ophthalmol. 2014 28 1 19 30 10.1016/j.sjopt.2013.12.003
    [Google Scholar]
  68. Alam J. de Souza R.G. Yu Z. Stern M.E. de Paiva C.S. Pflugfelder S.C. Calcineurin inhibitor voclosporin preserves corneal barrier and conjunctival goblet cells in experimental dry eye. J. Ocul. Pharmacol. Ther. 2020 36 9 679 685 10.1089/jop.2020.0005
    [Google Scholar]
  69. Lee J.E. Kim S. Lee H.K. Chung T.Y. Kim J.Y. Choi C.Y. Chung S.H. Kim D.H. Kim K.W. Chung J.K. Hwang K.Y. Hwang H.S. Kim J.H. Hyon J.Y. A randomized multicenter evaluation of the efficacy of 0.15% hyaluronic acid versus 0.05% cyclosporine A in dry eye syndrome. Sci. Rep. 2022 12 1 18737 10.1038/s41598‑022‑21330‑0
    [Google Scholar]
  70. Navas A. Córdoba A. Barrón N.C. Graue-Hernandez E.O. Morales N. Garfias Y. García-Sánchez G.A. Linares-Alba M.A. García-Santisteban R. Subconjunctival sirolimus-loaded liposomes for the treatment of moderate to severe dry eye disease. Invest. Ophthalmol. Vis. Sci. 2021 62 8 1330 Available from: https://produccion.siia.unam.mx/Publicaciones/ProdCientif/PublicacionFrw.aspx?scopus=0&id=599683
    [Google Scholar]
  71. Salcedo-Ledesma A. Córdoba A. Zatarain-Barrón N.C. Graue-Hernández E.O. Garfias Y. Morales Flores N. García-Sánchez G.A. García-Santisteban D. Linares-Alba M.A. García-Santisteban R. Navas A. Subconjunctival sirolimus-loaded liposomes for the treatment of moderate-to-severe dry eye disease. Clin. Ophthalmol. 2023 17 1295 1305 10.2147/OPTH.S405841
    [Google Scholar]
  72. Tauber J. Evans D. Segal B. Li X.Y. Shen W. Lu C. Novack G.D. Tauber J. Abrams M. Smyth-Medina R. Majmudar P. Holland E. Alpern L. Martel J. Clay E. Korenfeld M. Segal B. Goosey J. Evans D. Goldberg D. El-Harazi S. A phase 2a, double-masked, randomized, vehicle-controlled trial of VVN001 in subjects with dry eye disease. Ocul. Surf. 2023 28 18 24 10.1016/j.jtos.2022.12.007
    [Google Scholar]
  73. Holland E.J. Whitley W.O. Sall K. Lane S.S. Raychaudhuri A. Zhang S.Y. Shojaei A. Lifitegrast clinical efficacy for treatment of signs and symptoms of dry eye disease across three randomized controlled trials. Curr. Med. Res. Opin. 2016 32 10 1759 1765 10.1080/03007995.2016.1210107
    [Google Scholar]
  74. Donnenfeld E.D. Perry H.D. Nattis A.S. Rosenberg E.D. Lifitegrast for the treatment of dry eye disease in adults. Expert Opin. Pharmacother. 2017 18 14 1517 1524 10.1080/14656566.2017.1372748
    [Google Scholar]
  75. Tauber J. Karpecki P. Latkany R. Luchs J. Martel J. Sall K. Raychaudhuri A. Smith V. Semba C.P. OPUS-2 Investigators. Lifitegrast ophthalmic solution 5.0% versus placebo for treatment of dry eye disease: results of the randomized phase III OPUS-2 study. Ophthalmology 2015 122 12 2423 2431 10.1016/j.ophtha.2015.08.001
    [Google Scholar]
  76. Holland E.J. Luchs J. Karpecki P.M. Nichols K.K. Jackson M.A. Sall K. Tauber J. Roy M. Raychaudhuri A. Shojaei A. Lifitegrast for the treatment of dry eye disease: Results of a phase III, randomized, double-masked, placebo-controlled trial (OPUS-3). Ophthalmology 2017 124 1 53 60 10.1016/j.ophtha.2016.09.025
    [Google Scholar]
  77. Chang J.N. Olejnik O. Firestone B.A. Cyclosporin compositions. US Patent 2013/0059796 2013
  78. Hou H. Wang J. Timolol maleate (TM) eye gel and preparation method thereof. CN102178644 2013
  79. Chang J.N. Olejnik O. Firestone B.A. Cyclosporin compositions. US Patent 8,969,306 2015
  80. Gore A.V. Jordan R.S. Krock K. Pujara C. Artificial tears and therapeutic uses. AU 2020256652 2015
  81. Loudin J.D. Franke M. Hamilton D.N. Doraiswamy A. Ackermann D.M. Contact lens for increasing tear production. CA 2,965,514 2016
  82. Graham RS. Tien WL. Attar M. Cyclosporin compositions. US Patent 9,561,178 2017
  83. Gunther B. Scherer D. Xu H. Compositions comprising Tacrolimus for the treatment of intraocular inflammatory eye diseases. WO 2018/114557 2018
  84. Rigas B. Walls T.H. Compositions and methods for treating ophthalmic conditions. WO 2018/064354 2018
  85. Kim M.J. Pharmaceutical composition for preventing and treating dry eye diseases, containing Imatinib as active ingredient. US 10,231,971 2019
  86. Wu C. Li Y. Li Y. Pan X. Huang Y. Lhen H.P. Timolol maleate cubic liquid crystal nano eye drop and preparation method thereof. CN 106619573 2019
  87. Likitlersuang S. Parashar A. Pujara C.P. Kelly W.F. Preservative free brimonidine and timolol solutions. US 10,792,288 2020
  88. Liang B. Peng H. Zhu J. Yuan X. In-situ gel containing cyclosporin micelles as sustained ophthalmic drug delivery system. WO 2021/032073 2021
  89. Hollander D.A. Villanueva L. Farnes E.Q. Attar M. Schiffman R.M. Chang C.M. Graham R.S. Welty D.F. Ketorolac compositions for corneal wound healing. US 2021/0315805 2021
  90. Leo C.S. Krösser S. Schlüter T. Meides A. Ophthalmic composition for treatment of dry eye disease. US 11,413,323 2022
  91. Jóhannsdóttir S. Kristinsson J.K. Fülöp Z. Ásgrímsdóttir G. Stefánsson E. Loftsson T. Formulations and toxicologic in vivo studies of aqueous cyclosporin A eye drops with cyclodextrin nanoparticles. Int. J. Pharm. 2017 529 1-2 486 490 10.1016/j.ijpharm.2017.07.044
    [Google Scholar]
  92. Di Tommaso C. Torriglia A. Furrer P. Behar-Cohen F. Gurny R. Möller M. Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int. J. Pharm. 2011 416 2 515 524 10.1016/j.ijpharm.2011.01.004
    [Google Scholar]
  93. Rodriguez-Aller M. Kaufmann B. Guillarme D. Stella C. Furrer P. Rudaz S. El Zaoui I. Valamanesh F. Di Tommaso C. Behar-Cohen F. Veuthey J.L. Gurny R. In vivo characterisation of a novel water-soluble Cyclosporine A prodrug for the treatment of dry eye disease. Eur. J. Pharm. Biopharm. 2012 80 3 544 552 10.1016/j.ejpb.2011.11.017
    [Google Scholar]
  94. Li J.X. Tsai Y.Y. Lai C.T. Li Y.L. Wu Y.H. Chiang C.C. Lifitegrast ophthalmic solution 5% Is a safe and efficient eyedrop for dry eye disease: A systematic review and meta-analysis. J. Clin. Med. 2022 11 17 5014 10.3390/jcm11175014
    [Google Scholar]
  95. Trasi N.S. Purohit H.S. Wen H. Sun D.D. Taylor L.S. Non-sink dissolution behavior and solubility limit of commercial tacrolimus amorphous formulations. J. Pharm. Sci. 2017 106 1 264 272 10.1016/j.xphs.2016.09.016
    [Google Scholar]
  96. Yamanaka M. Yokota S. Iwao Y. Noguchi S. Itai S. Development and evaluation of a tacrolimus cream formulation using a binary solvent system. Int. J. Pharm. 2014 464 1-2 19 26 10.1016/j.ijpharm.2014.01.017
    [Google Scholar]
  97. Sipkova Z. Xue K. Mudhar H.S. Wagner B. Hildebrand G.D. Early and late histological and ultrastructural findings in resected infantile capillary hemangiomas following treatment with topical beta-blocker timolol maleate 0.5%. Ocul. Oncol. Pathol. 2018 4 2 100 106 10.1159/000477411
    [Google Scholar]
  98. Shokry M. Hathout R.M. Mansour S. Exploring gelatin nanoparticles as novel nanocarriers for timolol maleate: Augmented in-vivo efficacy and safe histological profile. Int. J. Pharm. 2018 545 1-2 229 239 10.1016/j.ijpharm.2018.04.059
    [Google Scholar]
  99. Huang W.C. Cheng F. Wang Y.J. Chen C.C. Hu T.L. Yin S.C. Liu C.P. Yu N.C. Huang K.K. Lin M.N. A corneal-penetrating eye drop formulation for enhanced therapeutic efficacy of soft corticosteroids against anterior uveitis. J. Drug Deliv. Sci. Technol. 2019 54 101341 10.1016/j.jddst.2019.101341
    [Google Scholar]
  100. Baek Y.Y. Sung B. Choi J.S. Go H.K. Kim D.H. Hyon J.Y. You J.C. In vivo efficacy of imatinib mesylate, a tyrosine kinase inhibitor, in the treatment of chemically induced dry eye in animal models. Transl. Vis. Sci. Technol. 2021 10 11 14 10.1167/tvst.10.11.14
    [Google Scholar]
  101. Na J.Y. Huh K.Y. Yu K.S. Hyon J.Y. Koo H.C. Lee J.H. You J.C. Chung J.Y. Safety, tolerability, and pharmacokinetics of single and multiple topical ophthalmic administration of imatinib mesylate in healthy subjects. Clin. Transl. Sci. 2022 15 5 1123 1130 10.1111/cts.13226
    [Google Scholar]
  102. Laddha U.D. Kshirsagar S.J. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: In vitro, ex vivo and in vivo evidences. J. Drug Deliv. Sci. Technol. 2021 61 102112 10.1016/j.jddst.2020.102112
    [Google Scholar]
  103. Luo L.J. Nguyen D.D. Lai J.Y. Long-acting mucoadhesive thermogels for improving topical treatments of dry eye disease. Mater. Sci. Eng. C 2020 115 111095 10.1016/j.msec.2020.111095
    [Google Scholar]
  104. Hu L. Hu Z. Yu Y. Ding X. Li K. Gong Q. Lin D. Dai M. Lu F. Li X. Preparation and characterization of a pterostilbene-peptide prodrug nanomedicine for the management of dry eye. Int. J. Pharm. 2020 588 119683 10.1016/j.ijpharm.2020.119683
    [Google Scholar]
  105. Chen X. Wu J. Lin X. Wu X. Yu X. Wang B. Xu W. Tacrolimus loaded cationic liposomes for dry eye treatment. Front. Pharmacol. 2022 13 838168 10.3389/fphar.2022.838168
    [Google Scholar]
  106. Eldesouky L.M. El-Moslemany R.M. Ramadan A.A. Morsi M.H. Khalafallah N.M. Cyclosporine lipid nanocapsules as thermoresponsive gel for dry eye management: Promising corneal mucoadhesion, biodistribution and preclinical efficacy in rabbits. Pharmaceutics 2021 13 3 360 10.3390/pharmaceutics13030360
    [Google Scholar]
  107. Kumari S. Dandamudi M. Rani S. Behaeghel E. Behl G. Kent D. O’Reilly N.J. O’Donovan O. McLoughlin P. Fitzhenry L. Dexamethasone-loaded nanostructured lipid carriers for the treatment of dry eye disease. Pharmaceutics 2021 13 6 905 10.3390/pharmaceutics13060905
    [Google Scholar]
  108. Chen Y.Z. Chen Z.Y. Tang Y.J. Tsai C.H. Chuang Y.L. Hsieh E.H. Tucker L. Lin I.C. Tseng C.L. Development of lutein-containing eye drops for the treatment of dry eye syndrome. Pharmaceutics 2021 13 11 1801 10.3390/pharmaceutics13111801
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871310261240929163138
Loading
/content/journals/rrct/10.2174/0115748871310261240929163138
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: patents ; Dry eye disease ; recent advances ; diagnostic techniques ; etiology ; clinical trials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test